Additional Participants

Graduate Student
James Hunt
Alan Wanamaker

Undergraduate Student
Zachary VonHasseln
Scott Fiendel
Nancy Raymond

Partner Organization
University of Copenhagen
Edkerd College
California Institute of Technology

Other Collaborators or Contacts
Coordinating Research on the North Atlantic Network

Project Period

08/01/2002-07/31/2005

Level of Access

Open-Access Report

Grant Number

0222351

Submission Date

8-17-2005

Abstract

Oxygen isotopic analysis of marine carbonate shells (δ18Oc) is a standard paleoceanographic technique used to document the chronology of seawater temperature change. Shell δ18Oc depends not only upon seawater temperature, but also upon the isotopic composition of the seawater (δ18Ow; related to salinity) and any species-specific fractionation that occurs during biomineralization. In the past, the interpretation of shell δ18Oc has been based upon theoretical studies of chemical equilibrium and kinetics, or laboratory experiments involving the inorganic precipitation of CaCO3 from solution. Other methods have employed an empirical calibration done by measuring the δ18Oc of collected shells where only estimates of time-series variability of the key parameters in the isotope paleothermometry equation (water temperature and δ18Ow) could be made. The actual environmental conditions during biomineralization, any species-dependent fractionation, any growth-dependent changes in δ18Oc including growth hiati, and any geographical/latitudinal influences that may be affecting δ18Oc cannot be quantified by these methods. Hence, the ability to quantitatively estimate paleotemperatures and salinities from any particular species of interest and any specific environment is limited.

This project sought to empirically calibrate δ18Oc in a cultured marine mollusc (Mytilus edulis) with controlled and monitored water temperatures, salinities, and δ18Ow. The development of this technique enables better correlation of δ18Ow and δ18Oc by increasing the temperature and salinity ranges to be used in calibration. The method will contribute significantly to the field of isotope paleoceanography, as it can be used to culture a wide range of species under specific environmental parameters. For example, we are particularly interested in fossil molluscan assemblages from ice-proximal environments where reliable temperature and salinity proxies are unknown.

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for educational uses. For other uses, you need to obtain permission from the rights-holder(s).

Share

 

Rights Statement

In Copyright - Educational Use Permitted.