Document Type

Article

Publication Title

Remote Sensing

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by copyright and related rights legislation that applies to your use. Rights assessment remains the responsibility of the researcher. In addition, no permission is required from the rights-holder(s) for non-commercial uses.

Publication Date

8-1-2018

Issue Number

8

Volume Number

10

Abstract/ Summary

We report the first radiative transfer model that is able to simulate phytoplankton fluorescence with both photochemical and non-photochemical quenching included. The fluorescence source term in the inelastic radiative transfer equation is proportional to both the quantum yield and scalar irradiance at excitation wavelengths. The photochemical and nonphotochemical quenching processes change the quantum yield based on the photosynthetic active radiation. A sensitivity study was performed to demonstrate the dependence of the fluorescence signal on chlorophyll a concentration, aerosol optical depths and solar zenith angles. This work enables us to better model the phytoplankton fluorescence, which can be used in the design of new space-based sensors that can provide sufficient sensitivity to detect the phytoplankton fluorescence signal. It could also lead to more accurate remote sensing algorithms for the study of phytoplankton physiology.

Citation/Publisher Attribution

Zhai, P.-W.; Boss, E.; Franz, B.; Werdell, P.J.; Hu, Y. Radiative Transfer Modeling of Phytoplankton Fluorescence Quenching Processes. Remote Sens. 2018, 10, 1309

Publisher Statement

©2019 The Authors

DOI

10.3390/RS10081309

Version

publisher's version of the published document

Share

 

Rights Statement

In Copyright - Educational Use Permitted.