Document Type
Article
Publication Title
Remote Sensing
Rights and Access Note
This Item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by copyright and related rights legislation that applies to your use. Rights assessment remains the responsibility of the researcher. In addition, no permission is required from the rights-holder(s) for non-commercial uses.
Publication Date
7-1-2020
Issue Number
13
Volume Number
12
Abstract/ Summary
Suspended Particulate Matter (SPM) is a major constituent in coastal waters, involved in processes such as light attenuation, pollutant propagation, and waterways blockage. The spatial distribution of SPM is an indicator of deposition and erosion patterns in estuaries and coastal zones and a necessary input to estimate the material fluxes from the land through rivers to the sea. In-situ methods to estimate SPM provide limited spatial data in comparison to the coverage that can be obtained remotely. Ocean color remote sensing complements field measurements by providing estimates of the spatial distributions of surface SPM concentration in natural waters, with high spatial and temporal resolution. Existing methods to obtain SPM from remote sensing vary between purely empirical ones to those that are based on radiative transfer theory together with empirical inputs regarding the optical properties of SPM. Most algorithms use a single satellite band that is switched to other bands for different ranges of turbidity. The necessity to switch bands is due to the saturation of reflectance as SPM concentration increases. Here we propose a multi-band approach for SPM retrievals that also provides an estimate of uncertainty, where the latter is based on both uncertainties in reflectance and in the assumed optical properties of SPM. The approach proposed is general and can be applied to any ocean color sensor or in-situ radiometer system with red and near-infra-red bands. We apply it to six globally distributed in-situ datasets of spectral water reflectance and SPMmeasurements over a wide range of SPMconcentrations collected in estuaries and coastal environments (the focus regions of our study). Results show good performance for SPMretrieval at all ranges of concentration. As with all algorithms, better performance may be achieved by constraining empirical assumptions to specific environments. To demonstrate the flexibility of the algorithm we apply it to a remote sensing scene from an environment with highly variable sediment concentrations.
Repository Citation
Tavora, Juliana; Boss, Emmanuel S.; Doxaran, David; and Hill, Paul, "An algorithm to estimate suspended particulate matter concentrations and associated uncertainties from remote sensing reflectance in coastal environments" (2020). Marine Sciences Faculty Scholarship. 214.
https://digitalcommons.library.umaine.edu/sms_facpub/214
Citation/Publisher Attribution
Tavora, J., E. Boss, D. Doxaran and P. Hill, 2020. An Algorithm to Estimate Suspended Particulate Matter Concentrations and Associated Uncertainties from Remote Sensing Reflectance in Coastal Environments. Remote Sensing 12(13), 2172, https://doi.org/10.3390/rs12132172
Publisher Statement
©2020 The Authors
DOI
10.3390/rs12132172
Version
publisher's version of the published document