Additional Participants

Technician

Dawn Bavaro

Graduate Student

Brenda Chase

Undergraduate Student

Neal Anderson

Elizabeth Cloutier

Daniel Dixon

Jonathan Duke

Sorel Edes

Thomas Hannington

Nathan Hewett

August Ibekilo

Alexander Introne

Emily Kubicke

Erin McCann

Ashley Suitter

Matthew Traceski

Emmaline Twitchell

Gabriel Winski

Other

Karen Marysdaughter

Project Period

January 2010-March 2013

Level of Access

Open-Access Report

Grant Number

0902386

Submission Date

5-28-2013

Abstract

The objective of this research is to test if leading hypotheses about drivers of global ice ages explain climate change in the Southern Hemisphere mid-latitudes. The research establishes the timing, magnitude, and structure of southern mid-latitude Last Glacial Maximum climate from two sites bordering the Southern Alps, New Zealand, by reconstructing temperature changes from continuous, isotopically dated, paleo-chironomid and pollen re-cords.

Hypotheses about what drives ice age climate change remain clouded with ambiguities because the timing and magnitude of maximum ice age cooling (Last Glacial Maximum, LGM) does not appear to match between the Northern and Southern Hemispheres. Northern solar insolation is held responsible for driving Southern Hemisphere climate changes even though the intensity and duration of southern insolation is out of phase with that of the north. Apparent mismatches in the timing of LGM climate changes between the hemispheres cannot be adequately explained by northern insolation forcing alone. High resolution records of the precise timing and magnitude of climate change in the mid-latitudes of the Southern Hemisphere are strategic for understanding the forces driving global glacial cycles and identifying interhemispheric leads and lags in the climate system. Terrestrial archives (lake sediment) from southern New Zealand are ideal for such research because the region is sensitive to subtle changes in the circumpolar westerlies and supports distinct vegetation and chironomid (non-biting midge fly) ecological zones. Pollen and chironomids from this region have known relationships to temperature and can provide continuous, datable, quantitative estimates of terrestrial temperature change. This research has two primary goals: 1) to develop paleotemperature reconstructions for the western and eastern margins of the Southern Alps from two lakes located outside LGM moraine belts using pollen and chironomid temperature inference models, and 2) to determine the precise timing and duration of LGM climate changes for this location using detailed AMS radiocarbon dating. The project will provide a comprehensive paleoclimate data set that will be directly applicable to testing hypotheses about forcing mechanisms responsible for major climate changes.

The proposed research will provide training opportunities for four undergraduate students per semester. It will develop and enhance collaborative ties between the University of Maine and several New Zealand institutions. Benefits to society include documenting the temporal and spatial extent and magnitude of climatological phenomena to better understand the LGM climate of the southern mid-latitudes and testing the viability of several hypotheses about mechanisms that drive ice age change.

Included in

Climate Commons

Share