Document Type

Article

Publication Title

Nonlinear Processes in Geophysics

Publisher

European Geosciences union

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for educational uses. For other uses, you need to obtain permission from the rights-holder(s).

Publication Date

12-2011

Publisher location

Munich, Germany

First Page

989

Last Page

999

Volume Number

18

Abstract/ Summary

Developed coastal areas often exhibit a strong systemic coupling between shoreline dynamics and economic dynamics. "Beach nourishment", a common erosion-control practice, involves mechanically depositing sediment from outside the local littoral system onto an actively eroding shoreline to alter shoreline morphology. Natural sediment-transport processes quickly rework the newly engineered beach, causing further changes to the shoreline that in turn affect subsequent beach-nourishment decisions. To the limited extent that this landscape/economic coupling has been considered, evidence suggests that towns tend to employ spatially myopic economic strategies under which individual towns make isolated decisions that do not account for their neighbors. What happens when an optimization strategy that explicitly ignores spatial interactions is incorporated into a physical model that is spatially dynamic? The long-term attractor that develops for the coupled system (the state and behavior to which the system evolves over time) is unclear. We link an economic model, in which town-manager agents choose economically optimal beach-nourishment intervals according to past observations of their immediate shoreline, to a simplified coastal-dynamics model that includes alongshore sediment transport and background erosion (e.g. from sea-level rise). Simulations suggest that feedbacks between these human and natural coastal processes can generate emergent behaviors. When alongshore sediment transport and spatially myopic nourishment decisions are coupled, increases in the rate of sea-level rise can destabilize economically optimal nourishment practices into a regime characterized by the emergence of chaotic shoreline evolution.

Citation/Publisher Attribution

Lazarus, E., McNamara, D., Smith, M., Gopalakrishnan, S., & Murray, A.B. 2011. Emergent behavior in a coupled economic and coastline model for beach nourishment, Nonlinear Processes in Geophysics, 18, 989-999.

Publisher Statement

© 2011. European Geosciences Union

DOI

DOI: 10.5194/npg-18-989-2011

Version

publisher's version of the published document

Share

 

Rights Statement

In Copyright - Educational Use Permitted.