Date of Award
2002
Level of Access Assigned by Author
Open-Access Thesis
Degree Name
Master of Science in Electrical and Computer Engineering (MSECE)
Department
Electrical and Computer Engineering
Advisor
Donald M. Hummels
Second Committee Member
Fred H. Irons
Third Committee Member
David E. Kotecki
Abstract
The current trend in the world of digital communications is the design of versatile devices that may operate using several different communication standards in order to increase the number of locations for which a particular device may be used. The signal is quantized early on in the reciever path by Analog-to-Digital Converters (ADCs), which allows the rest of the signal processing to be done by low complexity, low power digital circuits. For this reason, it is advantageous to create an architecture that can quantize different bandwidths at different frequencies to suit several different communication protocols. This thesis outlines the design of an architecture that uses multiple ADCs in parallel to quantize several different bandwidths of a wideband signal. A multirate filter bank is then applied to approximate perfect reconstruction of the wideband signal from its subband parts. This highly flexible architecture is able to quantize signals of varying bandwidths at a wide range of frequencies by using identical hardware in every channel, which also makes for a simple design. A prototype for the quantizer used in each channel, a frequency-selective fourth-order sigma-delta (CA ) ADC, was designed and fabricated in a 0.5 pm CMOS process. This device uses a switched-capacitor technique to implement the frequency selection in the front-end of the CA ADC in each channel. Running at a 5MHz sample rate, the device can select any of the first sixteen 156.25kHz wide bands for conversion. Testing results for this fabricated part are also presented.
Recommended Citation
Saucier, Scott, "Multiband Analog-to-Digital Conversion" (2002). Electronic Theses and Dissertations. 365.
https://digitalcommons.library.umaine.edu/etd/365
Comments
The current trend in the world of digital communications is the design of versatile devices that may operate using several different communication standards in order to increase the number of locations for which a particular device may be used. The signal is quantized early on in the reciever path by Analog-to-Digital Converters (ADCs), which allows the rest of the signal processing to be done by low complexity, low power digital circuits. For this reason, it is advantageous to create an architecture that can quantize different bandwidths at different frequencies to suit several different communication protocols. This thesis outlines the design of an architecture that uses multiple ADCs in parallel to quantize several different bandwidths of a wideband signal. A multirate filter bank is then applied to approximate perfect reconstruction of the wideband signal from its subband parts. This highly flexible architecture is able to quantize signals of varying bandwidths at a wide range of frequencies by using identical hardware in every channel, which also makes for a simple design. A prototype for the quantizer used in each channel, a frequency-selective fourth-order sigma-delta (CA ) ADC, was designed and fabricated in a 0.5 pm CMOS process. This device uses a switched-capacitor technique to implement the frequency selection in the front-end of the CA ADC in each channel. Running at a 5MHz sample rate, the device can select any of the first sixteen 156.25kHz wide bands for conversion. Testing results for this fabricated part are also presented.