Date of Award
Summer 8-22-2019
Level of Access Assigned by Author
Open-Access Thesis
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical Engineering
Advisor
Mohsen Shahinpoor
Second Committee Member
Vincent Caccesse
Third Committee Member
Afsoon Ebrahimi
Additional Committee Members
William Davids
Xudong Zhang
Abstract
This dissertation starts with describing the IPMC and defining its chemical structure and fundamental characteristics in Chapter 1. The application of these materials in the form of actuator, sensor, and energy harvester are reported through a literature review in Chapter 2. The literature review involves some electromechanical modeling approaches toward physics of the IPMC as well as some of the experimental results and test reports. This chapter also includes a short description of the manufacturing process of the IPMC. Chapter 3 presents the mechanical modeling of IPMC in actuation. For modeling, shear deformation expected not to be significant. Hence, the Euler-Bernoulli beam theory considered to be the approach defining the shape and critical points of the proposed IPMC elements. Description of modeling of IPMC in sensing mode is in Chapter 4. Since the material undergoes large deformation, large beam deformation is considered for both actuation and sensing model. Basic configurations of IPMC as sensor and actuator are introduced in Chapter 5. These basic configurations, based on a systematic approach, generate a large number of possible configurations. Based on the presented mechanisms, some parameters can be defined, but the selection of a proper arrangement remained as an unknown parameter. This mater is addressed by introducing a decision-making algorithm. A series of design for slit cylindrical/tubular/helical IPMC actuators and sensors are introduced in chapter 5. A consideration related to twisting of IPMCs in helical formations is reported through some experiments. Combinations of these IPMC actuators and sensors can be made to make biomimetic robotic devices as some of them are discussed in this chapter and the following Chapters 6 and 7. Another set of IPMC actuator/sensor configurations are introduced as a loop sensor and actuator that are presented subsequently in Chapter 6. These configurations may serve as haptic and tactile feedback sensors, particularly for robotic surgery. Both of these configurations (loop and slit cylindrical) of IPMCs are discussed in details, and some experimental measurements and results are also carried out and reported. The model for different inputs is studied, and report of the feedback is presented. Various designs of these configurations of IPMC are also presented in chapter 7, including their extension to mechanical metamaterials and soft robots.
Recommended Citation
Tabatabaie, Seyed Ehsan, "Novel Configurations of Ionic Polymer-Metal Composites (IPMCs) As Sensors, Actuators, and Energy Harvesters" (2019). Electronic Theses and Dissertations. 3111.
https://digitalcommons.library.umaine.edu/etd/3111