Author

Yun Ji

Date of Award

5-2007

Level of Access Assigned by Author

Open-Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemical Engineering

Advisor

Adriaan R.P. van Heiningen

Second Committee Member

Joseph M. Genco

Third Committee Member

M. Clayton Wheeler

Abstract

Considerable research has been conducted into the kinetics and selectivity of the oxygen delignification process to overcome limitation in its use. However most studies were performed in a batch reactor whereby the hydroxide and dissolved oxygen concentrations are changing during the reaction time in an effort to simulate tower performance in pulp mills. This makes it difficult to determine the reaction order of the different reactants in the rate expressions. Also the lignin content and cellulose degradation of the pulp are only established at the end of the experiment when the sample is removed from the batch reactor. To overcome these deficiencies, we have adopted a differential reactor system used frequently for fluid-solid rate studies (so-called Berty reactor) for measurement of oxygen delignification kinetics. In this reactor, the dissolved oxygen concentration and the alkali concentration in the feed are kept constant, and the rate of lignin removal is determined from the dissolved lignin content in the outflow stream measured by UV absorption. The mass of lignin removed is verified by analyzing the pulp at several time intervals. Experiments were performed at different temperatures, oxygen pressures and caustic concentrations. The delignification rate was found to be first order in HexA-free residual lignin content. The delignification rate reaction order in caustic concentration and oxygen pressure were determined to be 0.42 and 0.44 respectively. The activation energy was found to be 53kJ/mol. The carbohydrate degradation during oxygen delignification can be described by two contributions: one due to radicals produced by phenolic delignification, and a much smaller contribution due to alkaline hydrolysis. From the first order of the reaction and the pKa of the active lignin site, a new oxygen delignification mechanism is proposed. The number 3 carbon atom in the aromatic ring with the attached methoxyl group forms the lignin active site for oxygen adsorption and subsequent electrophic reaction to form a hydroperoxide with a pKa value similar to that of the present delignification kinetics. The uniform presence of the aromatic methoxyl groups in residual lignin further support the first order in lignin kinetics.

Share