Date of Award
5-2007
Level of Access Assigned by Author
Campus-Only Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Marine Biology
Advisor
James A. Wilson
Second Committee Member
Yong Chen
Third Committee Member
James L. Fastook
Abstract
Over the last several decades scientific predictions of imminent over-fishing of the lobster fishery have been very inconsistent with the huge increases in landings and population numbers. To acquire a better understanding of the spatial/temporal dynamics of the fishery and explain this discrepancy, a new modeling approach, an agent-based model with John Holland's learning classifier system, is introduced to model the lobster fishery. Instead of modeling the system from prior knowledge of the major factors affecting the population of lobsters and the population of fishers, an agent-based modeling approach models the system from bottom-up, i.e., it simulates the interactive decisions (where to place traps and whether to cut others' traps) made by large numbers of individual fishers. Learning classifier systems allow 'fishers' to learn from their experiences and adapt their fishing strategies to the changing ecological and social environment. The aggregate patterns of the fishery 'emerge' as the product of thousands of individual decisions and give us a better understanding of the competitive dynamics that lay the foundation for the growth of self-governance in the fishery. The spatial, temporal and behavioral patterns produced by the model nicely match the patterns found in observations of 988,000 trap placements made by 44 fishers in the Gulf of Maine.
Recommended Citation
Yan, Liyin, "Agent-Based Modeling with Classifier System: A New Modeling Tool to Investigate the Dynamics of Social/Ecological Systems with Particular Reference to the Maine Lobster Fishery" (2007). Electronic Theses and Dissertations. 1489.
https://digitalcommons.library.umaine.edu/etd/1489
Files over 10MB may be slow to open. For best results, right-click and select "save as..."