Date of Award
2006
Level of Access Assigned by Author
Campus-Only Thesis
Degree Name
Master of Arts (MA)
Department
Mathematics
Advisor
David E. Hiebeler
Second Committee Member
André Khalil
Third Committee Member
Sunddar Subramanian
Abstract
Pair approximation equations have been in use as a method to enhance the level of spatial information captured by mathematical models. For several years David Hiebeler, as well as others (Levin, Ellner, Filipe), have been exploring the use of pair approximation as a way to better estimate a system's behavior than previous methods (i.e. mean field approximations). His previous work has involved studying the pair approximations for basic contact processes on homogeneous landscapes, with populations with near and far dispersal, heterogeneous landscapes, and spatially correlated disturbances on the population level. This thesis will explore the combined effect of two of Dr. Hiebeler's previous works: heterogeneous landscapes and spatially correlated population disturbances. The question of the effect of the simultaneous interactions is so far left open. Specifically, this thesis will investigate the effect of having both the landscape (or static) and population level (or dynamic) disturbances on the same spatial scale.
Recommended Citation
Morin, Benjamin R., "The Effect of Static and Dynamic Spatially Structured Disturbances on a Locally Dispersing Population Model" (2006). Electronic Theses and Dissertations. 1077.
https://digitalcommons.library.umaine.edu/etd/1077