University Affiliation
Faculty
Document Type
Article
Publication/Creation Date
3-18-2021
Description
Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both.
Publication Title
PLOS Computational Biology
Editor
Benjamin Muir Althouse, Institute for Disease Modeling, UNITED STATES
Issue Number
3
Volume Number
17
Item Identifier
COVID-19_School of Biology and Ecology_2021_06_11
File Format
Citation/Publisher Attribution
Lieberthal B, Gardner AM (2021) Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network. PLoS Comput Biol 17(3): e1008674. https://doi.org/10.1371/journal.pcbi.1008674
Rights and Access Note
© 2021 Lieberthal, Gardner. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Repository Citation
Lieberthal, Brandon and Gardner, Allison M., "Connectivity, Reproduction Number, and Mobility Interact to Determine Communities’ Epidemiological Superspreader Potential in a Metapopulation Network" (2021). School of Biology & Ecology. 5.
https://digitalcommons.library.umaine.edu/c19_bio/5