Document Type

Article

Editor

Philippe Archambault, Rimouski, Québec, Canada

Publication Title

Aquaculture Environment Interactions

Publisher

Inter-Research

Rights and Access Note

© The authors 2015. Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are un restricted. Authors and original publication must be credited.

Publication Date

10-21-2015

First Page

205

Last Page

222

Issue Number

3

Volume Number

7

Abstract/ Summary

Bivalve aquaculture relies on naturally occurring phytoplankton, zooplankton, and detritus as food sources, thereby avoiding external nutrient inputs that are commonly associated with finfish aquaculture. High filtration rates and concentrated bivalve biomass within aquacul- ture operations, however, result in intense biodeposition of particulate organic matter (POM) on surrounding sediments, with potential adverse environmental impacts. Estimating the net deposi- tional flux is difficult in shallow waters due to methodological constraints and dynamic processes such as resuspension and advection. In this study, we combined sediment trap deployments with simulations from a mechanistic sediment flux model to estimate seasonal POM deposition, resus- pension, and processing within sediments in the vicinity of an eastern oyster Crassostrea virginica farm in the Choptank River, Maryland, USA. The model is the stand-alone version of a 2-layer sediment flux model currently implemented within larger models for understanding ecosystem responses to nutrient management. Modeled sediment−water fluxes were compared to observed denitrification rates and nitrite + nitrate (NO2 −+NO3 −), phosphate (PO4 3−) and dissolved O2 fluxes. Model-derived estimates of POM deposition, which represent POM incorporated and processed within the sediment, comprised a small fraction of the material collected in sediment traps. These results highlight the roles of biodeposit resuspension and transport in effectively removing oyster biodeposits away from this particular farm, resulting in a highly diminished local environmental impact. This study highlights the value of sediment models as a practical tool for computing inte- grated measures of nitrogen cycling as a function of seasonal dynamics in the vicinity of aquaculture operations.

Citation/Publisher Attribution

Testa JM, Brady DC, Cornwell JC, Owens MS and others (2015) Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes. Aquacult Environ Interact 7:205-222. https://doi.org/10.3354/aei00151

DOI

https://doi.org/10.3354/aei00151

Version

publisher's version of the published document

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

 

Rights Statement

In Copyright