Additional Participants

Senior Personnel

Vincent Kelly

Technician, Programmer

Cameron R. S. Thompson

Graduate Student

Brian M. Preziosi

Organizational Partners

Bigelow Laboratory for Ocean Sciences
Green Eyes Environmental Observing Systems
Institute of Marine Research

Project Period

November 1, 2010-October 31, 2014

Level of Access

Open-Access Report

Grant Number

1041081

Submission Date

1-29-2015

Abstract

While attention concerning impacts of predicted acidification of the world's oceans has focused on calcifying organisms, non-calcifying plankton may also be vulnerable. In this project, the investigator will evaluate the potential for impacts of ocean acidification on the reproductive success of three species of planktonic copepods in the genus Calanus that are prominent in high latitude oceans. C. finmarchicus dominates the mesozooplankton biomass across much of the coastal and deep North Atlantic Ocean. C. glacialis and the larger C. hyperboreus are among the most abundant planktonic copepods in the Arctic Ocean. Previous research showed that hatching success of C. finmarchicus eggs was severely inhibited by increased CO2 and lower pH in seawater, but only tested at an extreme level. Preliminary results in the investigator's laboratory indicate that hatching success of C. finmarchicus is substantially reduced at increased seawater CO2 concentrations corresponding to pH levels between 7.9 and 7.5. Predictions of likely decline of surface pH levels to 7.7-7.8 over the next century raise questions about impacts on Calanus population dynamics if these preliminary results are confirmed. C. finmarchicus, for example, is presently at the southern edge of its range in the Gulf of Maine. The combination of higher surface layer temperature and lower pH may inhibit reproductive success during the late summer/fall bloom, which the PI hypothesize is critical to sustain the overwintering stock in this region. The investigators will collect C. finmarchicus females from the Gulf of Maine and, with the assistance of Canadian colleagues, C. glacialis and C. hyperboreus females from the deep lower St. Lawrence Estuary. They will conduct laboratory experiments in which hatching success, development and growth of Calanus nauplius stages are measured in controls of natural seawater and at a series of treatments in which CO2 concentrations, pH and temperature are rigorously controlled to represent possible future states of the northern ocean. The investigators will measure present surface and deep pCO2 and pH across the Gulf of Maine, including its deep basins, during a research cruise. The study will evaluate the hypothesis that predicted levels of CO2 increase in the northern ocean will impact population dynamics of the Calanus species. Using the results from the research cruise and a recently developed 1-D, Individual-Based life cycle model, the PI will explore in detail scenarios of impact of higher temperature and lower surface and deep pH on population dynamics of C. finmarchicus in the Gulf of Maine.

Broader impacts: The lipid-rich Calanus species are considered key intermediary links between primary production and higher trophic levels in North Atlantic and Arctic Ocean food webs. Impacts of higher surface temperature and lower pH on reproductive success may potentially lead to profound changes in energy transfer and structure of pelagic ecosystems in the northern oceans. In the Gulf of Maine, C. finmarchicus serves as primary prey for herring, sand lance, and mackerel, as well as the endangered northern right whale, warranting thorough evaluation of ocean acidification effects on its population dynamics. This research will provide cross discipline training to a graduate student and undergraduate student interns. Data will be deposited in a recognized data archiving center and results disseminated through presentations at scientific meetings and peer reviewed research articles. Public outreach will be planned as part of the Gulf of Maine Research Institute community activities, including learning opportunities associated with the Cohen Center for Interactive Learning directed at fifth and sixth graders in the state of Maine.

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for educational uses. For other uses, you need to obtain permission from the rights-holder(s).

Share

 

Rights Statement

In Copyright - Educational Use Permitted.