Document Type

Article

Publication Title

Remote Sensing of Environment

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by copyright and related rights legislation that applies to your use. Rights assessment remains the responsibility of the researcher. In addition, no permission is required from the rights-holder(s) for non-commercial uses.

Publication Date

8-1-2013

First Page

77

Last Page

91

Volume Number

135

Abstract/ Summary

Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13. years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.

Citation/Publisher Attribution

Siegel, D.A., M.J. Behrenfeld, S. Maritorena, C.R. McClain, D. Antoine, S.W. Bailey, P.S. Bontempi, E.S. Boss, H.M. Dierssen, S.C. Doney, R.E. Eplee Jr., R.H. Evans, G.C. Feldman, E. Fields, B.A. Franz, N.A. Kuring, C. Mengelt, N.B. Nelson, F.S. Patt, W.D. Robinson, J.L. Sarmiento, C.M. Swan, P.J. Werdell, T.K. Westberry, J.G. Wilding, J.A. Yoder, 2013 Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sensing of Environment, 135, 77–91

Publisher Statement

©2013 Elsevier Inc.

DOI

10.1016/j.rse.2013.03.025

Version

publisher's version of the published document

Share

 

Rights Statement

In Copyright - Educational Use Permitted.