Document Type


Publication Title

Applied Optics

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by copyright and related rights legislation that applies to your use. Rights assessment remains the responsibility of the researcher. In addition, no permission is required from the rights-holder(s) for non-commercial uses.

Publication Date


First Page


Last Page


Issue Number


Volume Number


Abstract/ Summary

Inherent optical properties play an important role in understanding the biogeochemical processes of lakes by providing proxies for a variety of biogeochemical quantities, including phytoplankton pigments. However, to date, it has been difficult to accurately derive the absorption coefficient of phytoplankton [aph(λ)] in turbid and eutrophic waters from remote sensing. A large dataset of remote sensing of reflectance [ Rrs (λ)] and absorption coefficients was measured for samples collected from lakes in the middle and lower reaches of the Yangtze River and Huai River basin (MLYHR), China. In the process of scattering correction of spectrophotometric measurements, the particulate absorption coefficients [ap(λ)] were first assumed to have no absorption in the near-infrared (NIR) wavelength. This assumption was corrected by estimating the particulate absorption coefficients at 750 nm [ap(750)] from the concentrations of chlorophyll-a (Chla) and suspended particulate matter, which was added to the ap(λ) as a baseline. The resulting mean spectral mass-specific absorption coefficient of the nonalgal particles (NAPs) was consistent with previous work. A novel iterative IOP inversion model was then designed to retrieve the total nonwater absorption coefficients [anw(λ)] and backscattering coefficients of particulates [bbp(λ)], aph(λ), and adg (λ) [absorption coefficients of NAP and colored dissolved organic matter (CDOM)] from Rrs (λ) in turbid inland lakes. The proposed algorithm performed better than previously published models in deriving anw(λ) and bbp(λ) in this region. The proposed algorithm performed well in estimating the aph(λ) for wavelengths > 500 nm for the calibration dataset [N = 285, unbiased absolute percentage difference (UAPD) = 55.22%, root mean square error (RMSE) = 0.44 m−1] and for the validation dataset (N = 57, UAPD = 56.17%, RMSE = 0.71 m−1). This algorithm was then applied to Sentinel-3A Ocean and Land Color Instrument (OLCI) satellite data, and was validated with field data. This study provides an example of how to use local data to devise an algorithm to obtain IOPs, and in particular, a ph (λ), using satellite Rr s (λ) data in turbid inland waters.

Citation/Publisher Attribution

Xue, K., E. Boss, R. Ma, and M. Shen, 2019. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes, Appl. Opt. 58, 8549-8564,

Publisher Statement

© 2019 Optical Society of America




publisher's version of the published document



Rights Statement

In Copyright - Educational Use Permitted.