Document Type


Publication Title


Publication Date


First Page


Last Page


Issue Number


Volume Number


Abstract/ Summary

The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record delta(13)C values of ambient seawater dissolved inorganic carbon. Here, we measured delta(13)C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO(2) into the northern North Pacific Ocean and Bering Sea. The delta(13)C was measured in the high Mgcalcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in delta(13)C values increased from 0.03% yr(-1) in the 1960s to 0.095% yr(-1) in the 1990s, which was higher than expected due to solely the delta(13)C-Suess effect. Deeper water in this region exhibits higher concentrations of CO(2) and low delta(13)C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the delta(13)C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended delta(13)C records also varied on 4-7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling.

Citation/Publisher Attribution

Williams B, Halfar J, Steneck RS, Wortmann UG, Hetzinger S, Adey W, Lebednik P, Joachimski M. Twentieth Century Delta(13)C Variability in Surface Water Dissolved Inorganic Carbon Recorded by Coralline Algae in the Northern North Pacific Ocean and the Bering Sea. Biogeosciences. 2011;8(1): 165-174.




publisher's version of the published document

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.