Additional Participants

Graduate Student

Qinghan Liang

Arda Nural

Guang Jin

Danqing Xiao

Kraig King

Christopher Dorr

Michael Hennessey

John Whittier

Organizational Partners

University of Melbourne

Oxford University

University of Pittsburgh, PA

University of Maine

Other Collaborators or Contacts

Global Relief Technology, Portsmouth, NH

Project Period

December 2009-November 2010

Level of Access

Open-Access Report

Grant Number


Submission Date



This project explores data management methods for geosensor networks, i.e. large collections of very small, battery-driven sensor nodes deployed in the geographic environment that measure the temporal and spatial variations of physical quantities such as temperature or ozone levels. An important task of such geosensor networks is to collect, analyze and estimate information about continuous phenomena under observation such as a toxic cloud close to a chemical plant in real-time and in an energy-efficient way. The main thrust of this project is the integration of spatial data analysis techniques with in-network data query execution in sensor networks. The project investigates novel algorithms such as incremental, in-network kriging that redefines a traditional, highly computationally intensive spatial data estimation method for a distributed, collaborative and incremental processing between tiny, energy and bandwidth constrained sensor nodes. This work includes the modeling of location and sensing characteristics of sensor devices with regard to observed phenomena, the support of temporal-spatial estimation queries, and a focus on in-network data aggregation algorithms for complex spatial estimation queries. Combining high-level data query interfaces with advanced spatial analysis methods will allow domain scientists to use sensor networks effectively in environmental observation. The project has a broad impact on the community involving undergraduate and graduate students in spatial database research at the University of Maine as well as being a key component of a current IGERT program in the areas of sensor materials, sensor devices and sensor. More information about this project, publications, simulation software, and empirical studies are available on the project's web site (