There are many reasons why geospatial data are not geography, but merely representations of it. Thus geospatial data will always leave their user uncertain about the true nature of the world. Over the past three decades uncertainty has become the focus of significant research in GIScience. This paper reviews the reasons for uncertainty, its various dimensions from measurement to modeling, visualization, and propagation. The later sections of the paper explore the implications of current trends, specifically data science, new data sources, and replicability, and the new questions these are posing for GIScience research in the coming years.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.