Similarity measures have a long tradition in fields such as information retrieval artificial intelligence and cognitive science. Within the last years these measures have been extended and reused to measure semantic similarity; i.e. for comparing meanings rather than syntactic differences. Various measures for spatial applications have been developed but a solid foundation for answering what they measure; how they are best applied in information retrieval; which role contextual information plays; and how similarity values or rankings should be interpreted is still missing. It is therefore difficult to decide which measure should be used for a particular application or to compare results from different similarity theories. Based on a review of existing similarity measures we introduce a framework to specify the semantics of similarity. We discuss similarity-based information retrieval paradigms as well as their implementation in web-based user interfaces for geographic information retrieval to demonstrate the applicability of the framework. Finally we formulate open challenges for similarity research.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.