Honors College

Document Type

Honors Thesis

Publication Date

Spring 5-2016


Raman spectroscopy is a promising method for detection of a wide range of water contaminants. Raman spectroscopy’s growing list of applications relies upon signal enhancement achieved in recent years. A test strip or substrate designed to optimize Raman spectra, capable of withholding water and enhancing signal, would be a useful tool for applications including water quality tests. Signal enhancement may be achieved by the addition of silver nanoparticles (NPs) into a three-dimensional structure of cellulose nanofibers (CNF). The magnitude of signal enhancement may be related to nanoparticle size and morphology, and so control over the synthesis of silver nanoparticles could prove essential to this emerging technology. Particle diameter may be controlled by careful selection and concentration adjustment of the reducing agent in addition to varying the reaction’s duration. In addition to the resulting size, the reliability of the signal would rely upon its reproducibility, which would in turn be affected by the size distribution of nanoparticles produced, as well as their even dispersion within the test strip. To produce a nanoparticle engineered for use within a cellulose nanofiber substrate, a number of these parameters were investigated.