Author

Min Kook Kim

Date of Award

5-2010

Level of Access

Open-Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Forest Resources

Advisor

John Daigle

Second Committee Member

Jessica Leahy

Third Committee Member

Robert Lilieholm

Abstract

Cadillac Mountain, the highest peak along the eastern seaboard in the United States, is a major visitor destination at Acadia National Park. Managing vegetation impact on the summit of Cadillac Mountain is extremely challenging given the number of users and dispersed nature of visitor use at this fragile environmental setting. Since 2000, more intensive management strategies based on placing physical barriers to protect threatened vegetation and leave no trace signs have been employed to reduce vegetation impact and enhance vegetation recovery in the vicinity of the summit loop trail. A number of different change detection techniques and high resolution remote sensing datasets were utilized to identify vegetation impact and recovery from 1979 to 2007. The detection of spatial pattern of vegetation impact and recovery was at a much larger scale than typical recreation ecology studies. Study results showed detailed measurable vegetation regrowth and reduction at distances up to 90 meters from the summit loop trail, indicating overall positive effects in enhancing vegetation recovery in the vicinity of the summit loop trail compared to a nearby control site with similar environmental conditions but no visitor use. As expected, the vegetation recovery was higher as one moved away from the trail itself, and recovery was observed at a higher rate in the intermediate zone where visitor disturbance and ability for sites to regenerate would be higher than more natural variation of regrowth in the outer buffer zone with less visitor activity. It should be noted that overall minimal gains in vegetation regrowth was observed from 2001 to 2007, but compared with the time period of 1979 to 2001 there was more regrowth and less observed vegetation loss but total vegetation has not recovered to 1979 levels. The results also showed that, although with much less resolution than typical recreation ecology studies, vegetation diversity was lower at the experimental site at the level of plant family, suggesting limited success with enhancing vegetation diversity during the analysis time frame. Vegetation change detection using high resolution remote sensing datasets offers an approach for monitoring vegetation change dynamics and to some degree plant diversity, especially for a recreation setting in a sub-alpine environment with limited overstory vegetation such as the case at the summit of Cadillac Mountain. Remote sensing analysis could provide valuable baseline information for future visitorinduced impact monitoring programs and especially for dispersed recreation sites such as Cadillac Mountain.

Share