Jungah Jung

Date of Award


Level of Access Assigned by Author

Open-Access Thesis

Degree Name

Master of Arts (MA)




William A. Halteman

Second Committee Member

Robert D. Franzosa

Third Committee Member

Sundar Subramanian


Many discrete response variables have counts as possible outcomes. Poisson regression has been recognized as an important tool for analyzing count data. This technique includes the simple Poisson generalized linear model and mixtures of independent Poisson models as special cases. Generalized linear models have been found useful in many statistical analysis. Count data analyzed under such models often exhibit overdispersion. In many practical circumstances the restriction that the mean and variance are equal is not realistic. Especially, when there is overdispersion in the data, a conditional negative binomial mixed model, given some random effects, could be an attractive alternative. This paper focuses on the data analysis using mixed Poisson regressions and mixed Negative Binomial regressions. The motivation comes from attempts to analyze habitat use from the snow tracking data.

Included in

Analysis Commons