Date of Award

Fall 12-15-2023

Level of Access Assigned by Author

Open-Access Dissertation

Degree Name

Doctor of Philosophy (PhD)


Spatial Information Science and Engineering


Kate Beard-Tisdale

Second Committee Member

Ali Abedi

Third Committee Member

Torsten Hahmann

Additional Committee Members

Harlan Onsrud

C. Dana Tomlin


The typical approach for consuming data from wireless sensor networks (WSN) and Internet of Things (IoT) has been to send data back to central servers for processing and analysis. This thesis develops an alternative strategy for processing and acting on data directly in the environment referred to as Active embedded Map Algebra (AeMA). Active refers to the near real time production of data, and embedded refers to the architecture of distributed embedded sensor nodes. Network macroprogramming, a style of programming adopted for wireless sensor networks and IoT, addresses the challenges of coordinating the behavior of multiple connected devices through a high-level programming model. Several macroprogramming models have been proposed, but none to date has adopted a comprehensive spatial model. This thesis takes the unique approach of adapting the well-known Map Algebra model from Geographic Information Science to extend the functionality of WSN/IoT and the opportunities for user interaction with WSN/IoT. As an inherently spatial model, the Map Algebra-inspired metaphor supports the types of computation desired from a network of geographically dispersed WSN nodes. The AeMA data model aligns with the conceptual model of GIS layers and specific layer operations from Map Algebra. A declarative query and network tasking language, based on Map Algebra operations, provides the basis for operations and interactions. The model adds functionality to calculate and store time series and specific temporal summary-type composite objects as an extension to traditional Map Algebra. The AeMA encodes Map Algebra-inspired operations into an extensible Virtual Machine Runtime system, called MARS (Map Algebra Runtime System) that supports Map Algebra in an efficient and extensible way. Map algebra-like operations are performed in a distributed manner. Data do not leave the network but are analyzed and consumed in place. As a consequence, collected information is available in-situ to drive local actions. The conceptual model and tasking language are designed to direct nodes as active entities, able to perform some actions on their environment. This Map Algebra inspired network macroprogramming model has many potential applications for spatially deployed WSN/IoT networks. In particular the thesis notes its utility for precision agriculture applications.