Date of Award

Summer 8-18-2023

Level of Access Assigned by Author

Open-Access Dissertation

Degree Name

Doctor of Philosophy (PhD)




Matthew Brichacek

Second Committee Member

William Gramlich

Third Committee Member

Michael Kienzler

Additional Committee Members

Alice Bruce

Barbara Cole


N-(2-thioethyl)-2-aminobenzamide (TEAB), a novel glycan auxiliary, was synthesized and its utility was evaluated. The auxiliary was conjugated to glycans by reductive amination with the water-stable reagent 2-picoline borane complex. Glycan products, which ranged from 1 to 7 linked hexoses, were all isolated in yields ranging from 60% to 90% after purification by reverse-phase chromatography. The novel conjugate introduces a convenient, shelf-stable thiol directly onto the desired free glycans with purification advantages and direct modification with efficient reactions through alkenes, halides, epoxides, disulfides, and carboxylates in yields of 49% to 93%. Subsequently, a thiol-selective modification of the BSA protein was used to generate a neoglycoprotein with a bifunctional PEG–maleimide linker. To further illustrate the utility of a thiol motif, 2-thiopyridine activation of a thiol-containing support facilitated the covalent chromatographic purification of labeled glycans in yields up to 63%. Additionally, initial proof of concept of implementation in a light printed microarray was explored and validated through FITC-labeled concanavalin A binding. The thiol-functionalized glycans produced greatly expand the diversity of bioconjugation tools that can be developed with glycans and enable a variety of biological investigations. Finally, some non-reductive amination techniques were preliminarily investigated which achieved labeling of a xylose species in non-anomeric positions in poor yields (

Files over 10MB may be slow to open. For best results, right-click and select "save as..."

Included in

Chemistry Commons