Author

Jeremy J. Jay

Date of Award

12-2013

Level of Access

Open-Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Science

Advisor

George Markowsky

Second Committee Member

Elissa J Chesler

Third Committee Member

Erich J Baker

Abstract

Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical.

This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest.

The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge.

Share