Janice Duy

Date of Award


Level of Access Assigned by Author

Campus-Only Dissertation

Degree Name

Doctor of Philosophy (PhD)


Functional Genomics/Interdisciplinary


Laurie B. Connell

Second Committee Member

Rosemary L. Smith

Third Committee Member

Scott D. Collins


The rapid identification of pathogenic organisms is necessary for recognizing and managing human and environmental health risks. Numerous detection schemes are available, but most are difficult to employ in non-laboratory settings due to their need for bulky, specialized equipment, multiple reagents, or highly trained personnel. To address this problem, a rapid, field-compatible biosensor system based on the colorimetric detection of nucleic acid hybrids was developed.

Peptide nucleic acid (PNA) probes were used to capture ribosomal RNA sequences from environmental samples. Non-target nucleic acids, including single-base mismatches flanked by adenines and uracils, were removed with a micrococcal nuclease digestion step. Matched PNA-RNA hybrids remained intact and were indicated by the cyanine dye DiSC2(5). PNA-containing duplexes function as templates for the aggregation of DiSC2(5), visualized as a change in solution color from blue to purple. This transition can be measured as an increase in the solution absorbance at 540 nm (dye aggregate) at the expense of the dye monomer peak at 650 nm. These concomitant spectral changes were used to calculate a “hybridization signal” using the ratio Aaggregate/Amonomer ~ A540/A650.

Testing with pathogenic environmental samples was accomplished using two model organisms: the harmful algal bloom-causing dinoflagellate Alexandrium species, and the potato wart disease-causing fungus Synchytrium endobioticum. In both cases, the colorimetric approach was able to distinguish the targets with sensitivities rivaling those of established techniques, but with the advantages of decreased hands-on time and cost.

Assay fieldability was tested with a portable colorimeter designed to quantify the dye-indicated hybridization signal and assembled from commercially available components. Side-by-side testing revealed no difference in the sensing performance of the colorimeter compared to a laboratory spectrophotometer (Pearson’s r=0.99935). Assay results were obtained within 15 minutes, with a limit of detection down to 10-17 mole. This quick, inexpensive and robust system has the potential to replace laborious pathogen identification schemes in field environments, and is easily adapted for the detection of different organisms.