Document Type


Publication Title

Reviews of Geophysics


American Geophysical Union

Rights and Access Note

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for educational uses. For other uses, you need to obtain permission from the rights-holder(s).

Publication Date


First Page


Last Page


Issue Number


Volume Number


Abstract/ Summary

Human activities have already modified the chemical composition of the natural atmosphere even in very remote regions of the world. The study of chemical parameters stored in solid precipitation and accumulated on polar ice sheets over the last several hundred thousand years provides a unique tool for obtaining information on the composition of the preindustrial atmosphere and its natural variability over the past. This paper deals with the chemistry of polar ice focused on the soluble mineral (Na+, NH4+, K+, Ca++, Mg++, H+, F, Cl, NO3, SO4−−, and H2O2) and organic (methanesulfonate (CH3SO3), formate (HCOO), acetate (CH3COO), and formaldehyde (HCHO)) species and their interpretation in terms of past atmospheric composition (aerosols and water soluble gaseous species). We discuss ice core dating, the difficulties connected with trace measurements, and the significance of the ionic composition of snow. We examine temporal (from the last decades back to the last climatic cycle) and spatial (including examples from coastal as well as central areas of Greenland and Antarctica) variations in the ionic budget of the precipitation and evaluate ice core studies in terms of the chemical composition of our past atmosphere. We review (1) how Greenland and Antarctic ice cores that span the last few centuries have provided information on the impact of human activities and (2) how the chemistry of deep ice cores provides information on various past natural phenomena such as climatic variations (glacial-interglacial changes, El Niño), volcanic eruptions, and large boreal forest fires.

Citation/Publisher Attribution

Legrand, M., and P. Mayewski (1997), Glaciochemistry of polar ice cores: A review, Reviews of Geophysics, 35(3), 219–243, doi:10.1029/96RG03527.

Publisher Statement

© Copyright 1997 by the American Geophysical Union




publisher's version of the published document



Rights Statement

In Copyright - Educational Use Permitted.