10-27-1996

Historical Biomass Burning: Late 19th Century Pioneer Agriculture Revolution in Northern Hemisphere Ice Core Data and its Atmospheric Interpretation

G. Holdsworth

K. Hiuchi

G. A. Zielinski

Paul Andrew Mayewski

University of Maine, paul.mayewski@maine.edu

M. Wahlen

See next page for additional authors

Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub

Part of the Atmospheric Sciences Commons, Climate Commons, Geochemistry Commons, Glaciology Commons, and the Hydrology Commons

Repository Citation

https://digitalcommons.library.umaine.edu/ers_facpub/241

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Authors
Historical biomass burning: Late 19th century pioneer agriculture revolution in northern hemisphere ice core data and its atmospheric interpretation

G. Holdsworth,1,2 K. Higuchi,3 G.A. Zielinski,2 P.A. Mayewski,2 M. Wahlen,4 B. Deck,4 P. Chylek,5 B. Johnson,5 and P. Damiano6

Abstract. Ice core data from Yukon and Greenland spanning from ~1750 to 1950 indicate that between ~1850 and ~1910 a clear atmospheric signal exists of an episodic biomass burning event that is referred to as the Pioneer Agriculture Revolution. This is best seen in NH4+ ion and particulate concentrations but also in some limited black carbon concentration data, where for all three quantities maximum levels reach about 3 times the prerevolution background concentrations. Tree cellulose δ13C data and some early, controversial, French, air CO2 data, occurring within the same time interval, are interpreted as providing other independent evidence for the same, mainly North American, late 19th century biomass burning event. Some hitherto problematic northern hemisphere ice core derived CO2 concentration data may now be interpreted as containing a biomass burn signal, and these data are compared, especially as to the time of occurrence, with all the other results. A global carbon cycle model simulation of atmospheric CO2 mixing ratios using a maximum input of 3 Gt(C)/yr at northern midlatitudes produces “anomalous” CO2 levels close to some of the ice core carbon dioxide values. However, other values in this data set do not reasonably represent fully mixed atmospheric values. This suggests that these values might be transients but still “tracers” for biomass burning. Nevertheless, it appears possible that interhemispheric CO2 gradients of similar magnitude to the present one could have existed briefly late last century.

Introduction

The term “Pioneer Agriculture Revolution” (PIAGREV) used throughout this paper was first formulated by Leavitt [1991], who modified the original terminology of Wilson [1978]. Here its use is based on evidence for sustained, anthropogenically triggered biomass burning and related emissions that attained maximum intensity during the latter half of the 19th century. The main stage of the event was referred to by Wilson [1978] as the “Pioneer Agriculture Explosion,” a term which describes the rapid rise of biomass clearing and burning associated with agrarian activities that occurred, according to the tree core data, from about 1860 to 1890. Wilson [1978] deconvoluted δ13C data from a single but free standing Californian Bristlecone pine core to compute the change in atmospheric CO2 concentration that the data implied. He estimated that the preindustrial revolution CO2 levels were close to 270 parts per million by volume (ppmv) and that over three decades it climbed to about 300 ppmv.

The biosphere-atmosphere process model that Wilson used is now considered to be oversimplified. Whereas Wilson assumed that the apparent magnitude of the event that he identified in one tree core was global in extent, our data are more indicative of the probably dominant North American component. This is also evidently the case for Wilson’s data. It is now known that preindustrial CO2 levels were closer to averaging about 280 ppmv [Friedli et al., 1986; Wahlen et al., 1991] and that Wilson’s “explosion step” in carbon dioxide was neither everywhere as large as he calculated nor as sudden, nor in one single step. Furthermore, many tree cores examined subsequently simply do not show any significant perturbation in δ13C during the PIAGREV. Such a result is due, evidently, to the complexities in the
processes whereby the different isotopes of carbon are sequestered into tree cellulose, as well as to the length of the growing season and the position of the tree with respect to the major smoke plumes. Here it should be noted that the main burning season during the PIAGREV must have been several months in duration; in comparison, the growing season for many of the trees sampled by dendroclimatologists can be as short as 6 weeks (as in the case of the Bristlecone pine). The tree core data as a whole represents a curious enigma in terms of defining the PIAGREV, yet it still forms an important part of our evidence. Nevertheless, there is overwhelming glaciochemical and historical evidence that the PIAGREV was a real event. The fact that the signature of the PIAGREV has been left in several essentially independent domains strengthens the overall interpretation of the event.

The main activities associated with the agriculture revolution were the cutting of forest stands and the clearing of vast tracts of land for agricultural purposes and the burning of wood, both as a means of removal and for domestic heating. Contemporaneous with these activities were the tilling and repeated ploughing of the soil. This activity introduced mineral and organic soil particles into the atmosphere. It has been estimated [Wong, 1978] that for the contiguous United States, 25% of the forest area was cleared during the 19th century. In addition to natural forest fires, many large "controlled" and uncontrolled fires occurred in mid-latitude North America, particularly during the latter quarter of last century. Whereas wooden buildings initially sequestered carbon, large property fires, sometimes involving whole towns (as in the case of Seattle, Spokane, Ellensburg, and Vancouver in 1889 [Gould, 1938]) suddenly injected large amounts of particulate matter, carbon dioxide, and other gases into the atmosphere. Enhanced levels of black carbon would also have been introduced into the atmosphere during this time. The opening up of vast tracts of interior North America with the building of the railway system during the latter half of the last century must have played an important role in the PIAGREV.

Here, using ice core data, we are able to trace, in more detail than before, the course of the PIAGREV in the northern hemisphere. Principal evidence for the PIAGREV comes from ice core sites in central and southern Greenland and on Mount Logan (Yukon, Canada). After reviewing the nature of the ice core sites and their positions with respect to emission sources, previously published and new data are presented to show that there were sustained biospheric emissions during the period from about 1850 to 1900. New detail for the course of the PIAGREV comes from ice core chemical data, from existing but selected tree ring data, and from direct air measurements made late last century. These latter measurements were discussed by several authors in some detail between 1982 and 1985 in the journal Climatic Change. Stanhill [1982] stated that one particular series of the French data was "compatible with the hypothesis that a major and variable nonfossil fuel source of atmospheric CO₂ was active during the last quarter of the nineteenth century." Even so, it was evident that these data were highly controversial. However, seen in the light of the present ice core data, some of the French direct-air CO₂ concentration data now take on a supportive role in defining part of the PIAGREV.

Some previously unpublished "anomalous" ice core CO₂ results from Mount Logan and some recently published data for Greenland [Wahlen et al., 1991] are now indirectly and qualitatively supported by the chemical ice core evidence presented here. Finally, to determine if the CO₂ data are realistic, we used an estimated carbon input function (derived from published estimates and from new data presented here) in a global carbon cycle model. The complexity of carbon sink functions (including the well-known "missing sink") make this exercise somewhat qualitative, but results are presented which show a small perturbation in atmospheric carbon dioxide in the high latitudes of the northern hemisphere during the PIAGREV. Whereas the global atmospheric carbon cycle model computes CO₂ concentrations in a fully mixed atmosphere after each time step, we interpret some of the ice core CO₂ concentration data as not being representative of a fully mixed atmosphere. This does not necessarily detract from the value of those data, which can still be used qualitatively as a "tracer" for the most intense phases of the PIAGREV.

Several sources of information suggest that the PIAGREV event consisted of two main episodes. Peaks in activity evidently occurred between about 1850 to 1860 and between about 1890 to 1900, the second episode (or emission pulse) being the larger one. In the last decades of last century the major railways of North America were being established, and the second pulse of the PIAGREV may be directly and indirectly associated with that event.

The evidence presented here strongly suggests that the Antarctic ice core sites are not very "sensitive" to short-term transient events in the middle to high latitudes of the northern hemisphere, yet the Antarctic ice core gas data have usually been used to describe the state of the global atmosphere prior to about the middle of the 20th century. Most importantly, the northern hemisphere ice cores contain information on trace gases that is not immediately apparent in the high-latitude ice cores of the southern hemisphere. This is somewhat surprising considering that there were concurrent pioneer agricultural activities taking place in the southern hemisphere [Wilson, 1978] and that some exposed trees in coastal South America show a δ¹³C decrease at the time of the PIAGREV. The observation that other southern hemisphere trees do not show this underscores the important fact that tree δ¹³C data are often very difficult to interpret. This is apparent from the very rich literature on the subject. Recent developments in modeling forest fire plume transport on a hemispheric scale [e.g., Jacobellis et al., 1994] seem to provide a means of interpreting some of the large variability in the ice core and the tree ring data, and particularly between differences in the published tree δ¹³C data.
The philosophy of this paper is based on an interdisciplinary approach to problem solving and on the principle that multiple pieces of independent evidence, which on their own would hardly be sufficient to support a thesis, accumulate a higher degree of probability when considered in combination. Thus a “cumulative probability” results that must be significantly greater than any one of the individual probabilities attached to each single piece of evidence. This concept is given a formal but not a rigorous basis at the end of the section synthesizing the evidence for the PIAGREV.

Ice Core Sites and Data Overview

The names and locations of the principal ice core sites are as follows: “GISP2” (72.2°N; 37.8°W; 3200 m elevation above sea level (asl)) is in central Greenland, 20D (64.99°N; 44.44°W; 2625 m elevation asl) is in southern Greenland, and the Mount Logan site (60.62°N; 140.52°W; 5347 m elevation asl) is in the St. Elias Mountains, Yukon, Canada. Published data from the Crête (Greenland) ice core site (110 km south of GISP2; 3170 m elevation asl) is also used. GISP2 and Mount Logan are the coldest sites available in their respective regions, with mean annual temperatures of -30 ± 1°C. The two sites, one in central Greenland [Wahlen et al., 1991] (site temperature -31°C ± 0.5°) and the other in the St. Elias Mountains [Holdsworth et al., 1992] (-29°C ± 0.5°), lie essentially in the melt-free “polar snow” zone [Benson, 1962]. This thermal regime is important for the preservation of chemical species in the snow. It is especially important when studying past CO₂ concentrations in cores where the “ice” formed from dry snow. The formation of ice at the surface will sequester CO₂ which will subsequently contaminate the core in the region at depth where the interstices between grains are sealing off a sample of the atmospheric air. Careful core sampling will reveal the local contamination, enabling the “correct” atmospheric sample to be obtained [Stauffer et al., 1985].

Carbon dioxide data for the GISP2 site are already published [Wahlen et al., 1991] but were not fully interpreted at that time. There, the formation of ice at the surface is rare, and strict sampling procedures were used which discriminated against surface-formed “ice” in the core. At the site on Mount Logan, transient meltwater ice lenses have not been seen in the recent snowpack. These would affect not only gas adsorption but also soluble ion concentrations at the surface. Ice lensing is unlikely to have occurred significantly during the last, generally colder, three centuries, which the core spans. However, hard (high density) riming [Alford and Keeler, 1970; Labelle, 1974; G. Holdsworth, unpublished data, 1986, 1988) occurs infrequently but is one possible cause for sporadic anomalies seen in ~99% of part of the Mount Logan CO₂ concentration data obtained in 1984 [Claud, 1985]. These data will not be presented here because of the general difficulty in interpreting all the anomalies that seem to be present in those data. It has been suggested that acid-base reactions at grain boundaries may generate “excess” CO₂ [Delmas, 1993], but we do not have convincing in situ ice core chemical evidence to support this model. If this chemical process has occurred in our samples, then, because of its position in the core, a necessary increase in carbonate dust influx would have been required about a century earlier than when the PIAGREV-era gas was trapped. Then, the CO₂ anomalies (as well as the carbonate mineral dust) would be unrelated to the PIAGREV. There are, however, other possibilities for the anomalous CO₂ concentrations in the ice core.

When only trace gas data with the lowest error bars are selected from the Mount Logan ice core data set, the “excess” CO₂ anomalies (above the Antarctic CO₂ reference curve) have a striking correspondence in time with the PIAGREV emission history to be described. This is also the case for the GISP2 data. Rimming (solid condensate from a supercooled, supersaturated atmosphere) onto the surfaces of sastrugi (snow dunes), particularly on Mount Logan, may also have affected trace gas (and chemical species) enrichment factors, but we are not currently able to quantify this process.

Major chemical time series for the GISP2 core have been presented by Mayewski et al. [1993]. The diagnostic pulses of the PIAGREV may be seen in the NH₄⁺ series. Just after AD 1900, when NH₄⁺ concentrations decline to pre-PIAGREV levels, both (non-seasalt) SO₄²⁻ and NO₃⁻ begin climbing, indicating the switch from mainly biomass fuel burning to predominantly fossil fuel combustion.

Core from the southern Greenland site (20D) (mean annual temperature about -20°C) has provided interpretable time series of the soluble ions over the last two centuries [Mayewski et al., 1990; Dibb et al., unpublished data]. One of these time series (NH₄⁺) is used here, with the GISP2 data, as primary evidence for the biomass burning component of the PIAGREV. Trace CH₄ and N₂O data from this site and from Mount Logan relevant to the PIAGREV have been presented elsewhere [Dibb et al., 1993]. We now present the primary data used in building up a self-consistent description of the PIAGREV.

We have reported the data as the original ionic (or other component) concentrations in the ice core meltwater, rather than converting to fluxes. Although, in principle, this step could be taken, since the timescales and annual increments are known very well, we have not done so because there are too many uncertainties associated with atmospheric and surface snow processes occurring at the ice core sites involved [Dibb et al., 1992]. The carbon input function used in the global carbon cycle model is a flux, but it was generated using (as a guide) published fluxes derived from tree core δ¹³C data together with form functions derived from the ice core data.

Data and Results

We first present data that are strongly associated with known agricultural activities which occurred (pri-
arily in North America) during the latter half of the 19th century. Several ions (including \(\text{NH}_4^+ \)) associated with biomass burn compounds have been identified in Greenland cores [Legrand et al., 1992; Whittow et al., 1994].

Ammonium Data

Figure 1 shows the \(\text{NH}_4^+ \) ion concentrations in the GISP2 and 20D cores. Enhanced levels occur between ~1850 and ~1920, with a prominent minima occurring at AD 1875±5. These are the highest sustained levels reached in the complete 20D core as well as the GISP2 core from AD 1650 to present. At Mount Logan, there are spikes corresponding to the Greenland spikes [Whittow et al., 1994], but they are of the same order of magnitude as other spikes in the core. It is possible that the Mount Logan core site is regularly recording a relatively high level of forest fire chemistry from naturally occurring wildfires in the Yukon and Alaska (and also probably Siberia) and that the \(\text{NH}_3 \) (\(\text{NH}_4^+ \)) signal from more southern (PIAGREV) sources would have attenuated to low levels after air associated with those emissions completed a circuit around the northern hemisphere (usual transit time of the order of ~10 days). The residence time of ammonia in the troposphere is probably of the order of a few days. On the other hand, the Greenland Ice Sheet is very well situated for recording direct anthropogenic emissions from central North America [Mayewski et al., 1990]. The transit time here is short and probably of the order of the residence time of gaseous ammonia in the lower troposphere.

Black Carbon (Soot) Data

It is reasonable to associate the presence of elemental carbon (and other carbonaceous materials) in ice cores with mainly combusted, or sometimes incompletely combusted, terrestrial biomass or fossil hydrocarbons. The method used for analyzing carbon in the ice cores is based on measuring the light transmittance through a particle-trapping quartz filter before and after combustion at 700°C [Chylek et al., 1992]. All carbonaceous material is thus converted to gaseous form and expelled. There is thus no discrimination made between graphitic carbon and partly, or even wholly, uncombusted substances (such as lignins) on the filter. Because the origins of all such atmospheric carbonaceous materials during the PIAGREV were probably closely related, the data presented are assumed to broadly represent that event in a qualitative, integrated way. Thus the reference to “graphitic carbon,” black carbon (or soot) is used here in a rather loose sense. In Figure 2, we present the results of the carbon analyses carried out on all remaining but discontinuous samples of Mount Logan core at Dalhousie University. Three overlapping cores (A, C, and D) were used. Core D has been dated accurately [Holdsworth et al., 1992]. The other, shorter, cores are key to it by cross-correlation using isotopic and chemical time series. Core A is 100 m south of the site where the contiguous cores C and D were taken on the NW Col of Mount Logan. We do not yet have high-resolution data for Greenland within the same time interval, but one should expect that carbon concentrations would show similar characteristics to the form shown in Figure 2, because this nonreac-

![Figure 1. Plot of \(\text{NH}_4^+ \) ion concentrations for two Greenland ice cores: 20D in southern Greenland (thick curve based on filtered subannual data) and Greenland Ice Sheet Project 2 (GISP2) central summit (thin curve based on filtered biannual data). The dashed line is the mean value curve. Enhanced values from ~1850 to 1910 are indicative of North American biomass burning during the Pioneer Agriculture Revolution. The existence of the two prominent peaks is assumed to be mainly related to biomass burning history and is used in estimating the shape of the source function in the carbon-cycle model (see Fig. 5).](image-url)
Figure 2. Black carbon concentration (μg C/L meltwater) in the Mount Logan ice cores [Holdsworth et al., 1992]. Mean values are shown by blocks; otherwise, single-year values are shown by vertical line (subannual variations shown by adjacent short and long lines). Gaps in record are due to limited availability of remaining core.

The black carbon concentration appears to be showing the same variations as the Greenland NH$_4^+$ data, which suggests a hemispheric “soot” signal of the PIAGREV. In support of this, Junge [1963] found that insoluble aerosols have a fairly uniform concentration for a few kilometers above about 5 km altitude. The Mount Logan ice core site is located in this part of the troposphere. It thus appears that temporary mixing occurs at these altitudes and that residence times of the solid particles (such as soot) will be much longer than that of gaseous (fire) derivatives, such as ammonia.

Referring to Figure 2, it must be realized, however, that after about 1910, carbon sources from increasing fossil fuel combustion started to become important and that these early 20th century sources were not subjected to emission controls. Thus the maintenance of high levels of nonforest fire carbon after about 1910 is to be expected. In this respect, the Mount Logan site would seem to be a good receptor for soot transported long distances in the northern hemisphere. The amounts of carbon contributed from local fires is not known. Also, because the chemistries and transports of ammonia and soot are quite different, it is not surprising that the C and NH$_4^+$ time series [Whitlow et al., 1994] from the Mount Logan core do not look very similar. Because the Greenland NH$_4^+$ signal is of similar form to several other time series of PIAGREV indicators at different locations (as described in this paper), it is thought that during the PIAGREV the North American contribution to atmospheric loading probably tended to dominate.

Microparticle Data

Insoluble microparticle concentrations for the GISP2 core are presented in Figure 3. The particles are assumed to be mineral matter and soil as well as burned or unburned biomass material. These data further support the influence of the PIAGREV on the remote atmosphere in Greenland. Peaks in microparticle concentrations over the last 250 years occur around 1850 to 1870, 1885 to almost 1900, and again between 1910 and 1920, time periods that closely coincide with maximum biomass burning indicated by increases in ammonium levels (Fig. 1). The increases in particle mass occurring during these same general time periods (Fig. 3) reflect an increase in the abundance of larger particles. Higher particle concentrations imply greater at-

Figure 3. Plot of insoluble microparticle concentrations and mass in the 0.65- to 13-μm size range from biyearly samples in the GISP2 ice core. Particle numbers were determined with an Elzone$^\text{TM}$ particle counter. Mass values were calculated assuming a particle density of 2.65 g/cm3.
mospheric turbidity during PIAGREV, probably from the known clear-cutting, biomass burning, and tilling of top soil at that time. Such actions would increase the amount of material available for transport by wind to Greenland. We next look at other sources of data that support the existence of the PIAGREV.

Ice Core Carbon Dioxide Data

Ice cores from glacier sites where the mean annual temperature is less than about -25°C are generally thought to trap atmospheric trace gases about the same mixing ratio as they had in the free atmosphere [Raynaud and Barnola, 1985]. One proviso is that there should be no melt-ice formation at the surface or near surface; otherwise, excess CO2 will be sequestered into the snowpack. However, suitable sampling can usually be made to avoid such ice layers [Stauffer et al., 1985]. Another process that could sequester CO2 in the surface snowpack is hard rime formation (derived from supercooled water droplets occurring in clouds at low temperatures). This process may occur more readily at high-altitude sites such as on Mount Logan.

In Table 1 we present the results of the most reliable, previously unpublished, analyses of the Mount Logan ice core made using the "French technique" [Raynaud and Barnola, 1985]. For the new Mount Logan data, the error on the estimated age [Schwander, 1989] of the bubble air is typically ±6 years. Because the combined ice core data set merges with the "instrumental" data set, a degree of confidence in the ice core timescales is implied. It should be noted that the Mount Logan carbon dioxide data presented here is based on analyses carried out in 1981 and 1988 at the Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble. It is thus necessary to discuss these particular data in much more detail here than the Greenland data which have been published and documented elsewhere.

Note on the Time Offset Between the Age of the Air in the Bubbles and the Age of the Ice Surrounding Them

The gas/ice age offset for the Mount Logan core was taken by Dibb et al. [1993] as 103 ± 5.5 years. Here we take the offset as 100 years as this produces the best match with the Greenland ice sheet CO2 data, to be presented. The gas/ice age offset of the GISP2 data [Wahlen et al., 1991] is ~220 years. The age error bars on the Greenland data [Staffelbach et al., 1991; Wahlen et al., 1991] must be of the order of a decade in order for the data to connect with the atmospheric data set [Keeling et al., 1989]. There may still be an unresolved constant offset error (<10 yrs) between the different ice core data sets that are presented later.

Close-off at the firn-ice transition even in a summer/fall season (when smoke levels tend to be greatest) is quite rapid (compared with many high polar glacier sites), as the vertical flow rate of the ice at 65-m depth is ~0.25 m/yr. This may be compared with the ice core sampling interval. Gas subsampling was made at 3- to 4-cm intervals (Table 1 footnote), so that one in situ ice subsample would have had its air bubbles sealed off in ~1.7 months, which is well within the duration of a fire season. Because the site is situated on a saddle (col), where winds may reach jet stream speeds of 160 km/hr, the possibility for (summer) seasonal trace gas "contamination" in some air bubbles is evident. In contrast, the winter air would be more mixed. At this latitude the current seasonal CO2 variation is about 15 ppmv [Conway et al., 1988; Tanaka et al., 1988; Keeling et al., 1989]. Transient peaks in air trace gas concentrations would tend to be damped by diffusion processes in the firn, but we know of no reliable model (that applies to the Mount Logan NW Col site) to account for this.

The data presented in Table 1 is compatible with the Greenland ice core data. Significantly, the combined ice core CO2 data show temporal features that associate it with the PIAGREV. This important point will be demonstrated in a later section of the paper. Thus any attempted explanation of the high CO2 values based solely on in situ ice core chemical reactions [Delmas, 1993] would have to provide a reason why these reactions are concentrated in just those places. Because the chemical data available for the Mount Logan core do not seem to favor the process proposed by Delmas [1993], we do not attribute the anomalous CO2 values to in situ postdepositional processes. This would specifically require excess acid and/or excess carbonate

<table>
<thead>
<tr>
<th>Depth Interval, cm</th>
<th>Gas Age (AD)(^a)</th>
<th>[CO2](^b) ppmv</th>
</tr>
</thead>
<tbody>
<tr>
<td>9993-10053</td>
<td>1805±7</td>
<td>275±8</td>
</tr>
<tr>
<td>9920-9952</td>
<td>1819±6</td>
<td>285±7; 286±5</td>
</tr>
<tr>
<td>9590-9688</td>
<td>1839±6</td>
<td>286±8</td>
</tr>
<tr>
<td>9339-9366</td>
<td>1860±6</td>
<td>301±6(^c)</td>
</tr>
<tr>
<td>8663-8696</td>
<td>1897±5</td>
<td>308±6; 309±7</td>
</tr>
</tbody>
</table>

\(^a\)Gas/ice age offset used here is 100 years. The absolute age error bars for the Mount Logan data may be larger than those calculated.

\(^b\)Mean of subsamples cut from \(\frac{1}{2}\) core; subsample size: 3 to 4 cm vertical cuts.

\(^c\)One anomalous value removed. Analyses by J.-M. Barnola. Some 1984 data [Claud, 1985] (seven points) is excluded because of high error bars (>8 ppmv) and the existence of several large spikes of unknown origin. However, some of those data are consistent with the data given above. Interpretation of those data should be investigated.
salts occurring in close proximity. (Although there is a higher than average Ca++ concentration from about 1760 to 1780, the acid concentrations are lower than average. Ice in this interval is contiguous with bubble air a century younger in age. In addition, the middle of this last interval (where the gas age is ~1870) was not marked by particularly high values of the principal PIAGREV chemical “tracers,” as our collected data tend to show). Furthermore, there is no quantitative support for in situ chemical reactions for the CO2 data of Wahlen et al. [1991]. Concentrations of Ca++ and Mg++ in the GISP2 core for the last millennium do not positively correlate with high values of CO2; in fact, almost the reverse (negative) relationship is observed.

Presentation and Discussion of Supporting Data

Tree Core Data

Because there are certain similarities among Figures 1, 2, and 3 (within the context of the PIAGREV), we have searched for and compiled data (from various published sources) which might also act as proxy for biomass burning activity. In Figure 4, we show a selection of time series of δ13C gradients (δi / dt, where δi is specific tree δ13C data and t is time). These series are derived from various δ13C data [Freyer, 1978; Wilson, 1978; Freyer and Belacy, 1983; Stuiver et al., 1984; Freyer, 1986] determined from isotopic analysis of northern hemisphere tree ring samples. They have been plotted over the same time interval. To avoid an overconcentration of lines in Figure 4, we have omitted similar data that are also available from other references [e.g., Tans and Mook, 1980; Stuiver, 1986; Stuiver and Brazuni, 1987]. The combined series typically show a prominent reversal of gradient beginning somewhat before 1850. This increase in negative gradient corresponds to a decrease in δ13C. Such a δ13C step, or ramp, occurring soon after ~1850, may be found in many (free standing) tree core records and has been interpreted [Freyer, 1978; Wilson, 1978; Peng et al., 1983; Stuiver, 1986] to signal a rapid increase in atmospheric CO2. However, there are other environmental influences such as climatic factors [Peng et al., 1983; Leavitt, 1993] or biomass-driven isotope fractionation chemistry [Francey and Farquhar, 1982] that affect δ13C in wood, and some northern hemisphere trees studied [Leavitt, 1993] do not appear to carry a clear (~1850+) signal near the start of the PIAGREV.

Another possibility for explaining part of the overall large variability in northern hemisphere tree core δ13C values during the PIAGREV may be from different degrees of exposure of sampled tree stands to CO2 plumes emanating from forest fires or other centers of massive CO2 generation. This may be deduced from the plume transport modeling results of Iacobellis et al. [1994], where CO2 concentrations of several ppmv above background may occur over large, continental-scale areas on a timescale of weeks.

Also, the δ13C PIAGREV signal was not identified in Tasmanian wood sampled more than a decade ago [Francey, 1981]. However, these data might more nearly

Figure 4. Processed δ13C data from various sources. Tree cellulose: curve 1 (solid line, 1760-1940), Wilson [1978]; curve 2 (open triangle), Freyer [1978]; curve 3 (solid circle), Freyer and Belacy [1983]; curve 4 (open circle), Stuiver et al. [1984]; curves 5 and 6 (open square, dashed), Freyer [1986]. Ice core air bubbles: curve 7 (solid triangle), Friedli et al. [1986]. Symbols (points) trace histograms of 20-year averaged time derivatives of deviations (δi) of the δ13C values from a designated mean [Freyer, 1986; Stuiver, 1986]. In some cases, a histogram “block” is missing because of large scatter of data in a 20-year interval. Spans A, B, and C define the three main stages of the Pioneer Agriculture Revolution (PIAGREV): A, explosion; B, postexplosion minimum; C, final maximum (see Fig. 5).
reflect complex multivariate atmospheric and local tree chemistry variations [Franey and Farquhar, 1982] as they are not similar to other coastal southern hemisphere tree core $\delta^{13}C$ data [Stuiver et al., 1984] from specially selected trees or to Antarctic ice core data [Friedli et al., 1986], which clearly show the decline in $\delta^{13}C$ (consistent with an increase in the biospheric component of CO$_2$) around 1850. The error on the dating of the ice core air is given as \pm11 years, and there was no stated correction made for possible gravitational and extraction isotopic fractionation effects. However, these are the only such data available at this time. Despite these limitations of the data, this situation should not significantly affect gross relative changes in the $\delta^{13}C$ data and hence the time gradients which are shown (data set 7), together with the tree cellulose $\delta^{13}C$ data, in Figure 4.

Considerable doubt still exists regarding the suitability of many tree $\delta^{13}C$ series as reliable atmospheric indicators [Franey, 1981; Leavitt, 1993; Peng et al., 1983] emphasizing the fact that proper tree selection (as with ice core site selection) is very important [Stuiver et al., 1984]. Thus in the light of these considerations we acknowledge that the (~1850) tree $\delta^{13}C$ anomaly could correspond, in part, to a change in the isotopic composition of atmospheric CO$_2$ as a result of biomass burning or to a change in some climate variables (temperature, moisture content) or to changes in forest regime. This anomaly is hardly affected by absolute errors in $\delta^{13}C$ determinations, which are suggested by a recent interlaboratory calibration exercise (C.S. Wong and M. Stuiver, personal communications, 1993). Regional differences in atmospheric variables as well as possible differences in reliability of data have made it difficult to identify a consistent (1850+/-) signal in either hemisphere, but the majority of available time series contain it, particularly in the northern hemisphere, as one would expect [e.g., Freyer, 1978; Wilson, 1978; Freyer, 1979; Freyer and Belacy, 1983; Stuiver et al., 1984; Peng and Freyer, 1986; Stuiver and Braziunas, 1987].

Some of the inconsistencies among different tree core data sets may be due to the particular geometries of smoke (and gas) plume trajectories that evolve from the fire source. This is suggested by the CO$_2$ transport modeling by Iacobellis et al. [1994]. Some tree core data have a very short wood-forming interval. For Bristlecone pine it is only about 6 weeks [Wilson, 1978]. The trees that were situated in a preferred plume path would show more depressed values of $\delta^{13}C$ than trees well outside the plume path. Furthermore, in cases of extreme contamination by fire emissions, after cessation of those emissions or changes in the burn patterns, the $\delta^{13}C$ values in the wood should recover toward a value more nearly representative of the value that pertains to a more fully mixed atmosphere. Some time series seem to show post-PIAGREV features that might be attributed to this effect [e.g., Freyer, 1986; Leavitt and Long, 1992], although climatic effects in this time interval may be just as important in affecting the tree $\delta^{13}C$ values.

Direct Air CO$_2$ Data

A number of different measurements of air CO$_2$ content were made in the late 19th century. It is not possible here to present the complete data sets and discuss them. From and Keeling [1986] have discussed and apparently validated one particular data set obtained from coastal France by J. Reiset in 1872-1880. The remainder have been under considerable suspicion. One of those data sets (from the Montsouris Observatory) was considered reliable by Stahil [1982], who further defended their integrity [Stahil, 1983, 1984] against multiple criticisms [Waterman, 1983; Wigley, 1983; Siegenthaler, 1984]. The Montsouris data (to be presented later) show a prominent pulse in CO$_2$ centered on about AD 1900. Whatever is the correct judgement on these data, we note that the relative variations within this data set are qualitatively consistent with some of the ice core data and the tree core data. The absolute values, however, do not appear to be those of a fully mixed atmosphere. (This condition also applies to the ice core and the tree ring data).

Synthesis of Evidence for Deforestation, Biomass Burning, and Soil Cultivation and the Probability that Independent Data Sets Indicate the Same Event

In summary, there are six lines of evidence suggesting intensified deforestation, cultivation, and biomass burning, particularly in North America, during the late 19th and early 20th centuries. These are (1) ice core NH$_4^+$ data, (2) ice core carbon data, (3) ice core microparticle concentrations, (4) ice core CO$_2$ data (two independent sets), (5) tree cellulose $\delta^{13}C$ data (multiple sets), and (6) direct air CO$_2$ data. The peak biomass burning activity seems to have occurred within the interval AD 1889-1910 (see also Wong [1978] and Peng et al. [1983]). Although not entirely independent of the above evidence, another form of support is provided by the atmospheric modeling results, which provide a verification of the CO$_2$ data.

The main signal for biomass burning comes from the NH$_4^+$ ion concentration data for the Greenland sites. The precursor gas for ammonium compounds in snow (e.g., [NH$_4$]$_2$SO$_4$) is ammonia gas, which is a constituent of forest fire smoke [Laursen et al., 1992; Levine et al., 1992]. NH$_3$ may also be emitted from soils after forest burning. LeGrande et al. [1992] have already pointed out the strong likelihood that ammonium spikes in pre-AD 1700, central Greenland snow originated from North American forest fires. Junge [1963] reported that atmospheric NH$_3$ was measured in the second half of the 19th century at various locations in western Europe, including the 2800-m-high site on Pic du Midi in France. The values were "rather high compared with more recent data" [Junge, 1963, p. 87]. This information may be used as supporting evidence for the PIAGREV. Re-
cent forest fire plume transport simulations (S. F. Jacobellis, unpublished, 1994) indicate that North American emissions can impact both Greenland and Europe. Depending on the prevailing climatology, it is possible that anomalies of several ppmv above far-field mixed air existed on timescales of weeks. The levels of biomass burning may also have been high in Western Europe late last century.

The carbon concentration data for Mount Logan was reported as soot, but we caution that it may include non-combusted carbonaceous matter as well. Before about 1900 the ice core carbonaceous material is assumed to be mainly from forest wood and other biomass destruction. The only data available for this study are from Mount Logan, Yukon. The data are sparse, but they show a variation with time which has similarities to the $\delta^{13}C$ data from Greenland up to the beginning of this century. This correlation (except for the most recent part of the data set) suggests that the Mount Logan site was a good receptor and indicator for mainly North American carbon emissions. With more complex emissions for the 20th century the condition of a “good indicator” may no longer apply. Additionally, the almost ubiquitous burning of fossil fuels with inefficient combustion before 1950 must be responsible for the high carbon levels during the first part of this century (Fig. 2).

The ice core microparticle concentrations for the GISP2 core show significantly higher levels and greater variance over the last half of the 19th century and the first two decades of the 20th century compared with the levels a century before and the seven decades after. The link with the PIAGREV in time suggests that the particulates were predominantly produced as a result of agricultural activities, such as tilling of newly exposed soils. The particulate inventory must also include various particles derived from burned or incompletely burned biomass material, such as is recorded in the data of Figure 2.

The northern hemisphere ice core CO$_2$ data for the late 19th century have represented (with respect to the Antarctic data) an anomaly that was not easily interpreted until now. Seen in the context of the PIAGREV, these data appear to take on a particular significance, especially after global carbon cycle modeling (to be described) shows that elevated northern hemispheric carbon dioxide levels (over Antarctic values), in response to concentrated northern midlatitude biomass burning, could have occurred. In addition, as we have seen, some of the controversial French direct air CO$_2$ data from late last century can be claimed to qualitatively support the ice core data.

Data from tree cores, usually in the form of time series of $\delta^{13}C$, have been confusing and often contradictory. However, it is evident that in many free-standing trees there is a “signal” that corresponds in time to the PIAGREV. Where the $\delta^{13}C$ step occurs, it is usually of the right order of magnitude to be explained predominantly by an increase in atmospheric CO$_2$ [e.g., Stuiver et al., 1984]. Next, we look at the strength of the combined data sets that indicate the PIAGREV as being the common denominator.

Probability Estimate for Combined Data

Given that each data set described above has an individual probability of being related to a common event, the system of data sets provides a means of estimating the combined probability that the PIAGREV was a “fundamental” event. If, for simplicity, we initially take only three of the events and assign individual probabilities $P(E_i); (i = 1, 2, 3)$ that they are all related to a single main event, E, we can estimate this combined probability $P(E)$ using the general addition law of probabilities [Chatfield, 1983]. The combined probability that the three “subevents” are related to the parent event E is thus given by

$$P(E) = P(\sum_{i=1}^{3} E_i) = P(E_1) + P(E_2) + P(E_3) - P(E_1E_2) - P(E_2E_3) - P(E_1E_3) + P(E_1E_2E_3).$$

Taking a relatively low probability of $P(E_i) = 0.50$ for all three events, we calculate a combined probability of $P(E) = 0.875$ that the three events are related to the parent event. Next, to accommodate the six events, we repeat this procedure for two combined “events” (each composed of three subevents) with a probability of 0.875 of being related to a common event (again E). The required equation is

$$P'(E) = P(E_a + E_b) = P(E_a) + P(E_b) - P(E_aE_b)$$

where E_a and E_b are now each taken as equal to the previous $P(E)$.

We thus get a new probability, $P'(E) = 0.984$, which is close to the probability level acceptable in most statistical studies. Even using a less optimistic value of $P(E_i) = 0.40$ (40% probability), the equations yield a value of $P'(E) = 0.954$, which is still within acceptable statistical limits. If we take a more confident value of $P(E_i) = 0.60$ (and this would not be unrealistic for the combined ice core CO$_2$ data, in which each data set would, of course, have a much lower individual probability), then we find that $P'(E) = 0.996$, which defines a very high statistical probability.

Atmospheric Carbon Input Fluxes From Biomass Sources

In 1860, fossil fuel burning was taking place, but at a very low level compared to extant biomass burning [e.g., Keeling, 1973; Marland and Rotty, 1984; Marland, 1989; Marland et al., 1989]. Furthermore, carbon dioxide input to the atmosphere from this source was to remain very low until the start of the 20th century. Figure 5 shows various biomass carbon source functions (input into the atmosphere) which are possi-
Figure 5. Estimated carbon input (Gt[C]/yr) to the atmosphere from biomass burning as derived from data shown in Figure 4 by different authors: curve 1, Freyer and Belacy [1983]; curves 2 and 3, Peng and Freyer [1986]. For clarity of presentation, not all published curves for this function are shown here. Curve 4 defines the estimated input function used in the global carbon cycle model to best produce an output showing the main features of the available CO2 data. This function is based on earlier, near-maximum estimates [Peng and Freyer, 1986; Stuiver, 1986] and modified according to information shown in Figures 1 and 2. Source is applied at northern hemisphere midlatitudes until 1950; thereafter it becomes a sink (dashed curve S) T, tropical source function. Curve F is the fossil fuel curve [Stuiver, 1986]. PIAGREV, Pioneer Agriculture Revolution.
Figure 6. Two centuries of atmospheric carbon dioxide variations as suggested by various data sources and by model results. The double-dashed curve a is a spline fit to the Antarctic (Siple Station) ice core data, here shifted 2 years to the right so that it lies (observationally) ~1 ppmv below the Mauna Loa data [Keeling et al., 1989] starting in 1958 (curve b) (range indicated by solid triangle and inverted solid triangle). Some individual Antarctic data points are shown either by small horizontal dashes (averages) or by small open squares [see Nefel et al., 1994]. (In addition, we have recently added the new data of Etheridge et al. [1996]. These data are shown by the solid circles connected by thin lines.) The two vertical arrows shown below curve a indicate the location of possible perturbations that may be related to the PIAGREV. The symbols (open triangle, open inverted triangle, open circle, asterisk) define annual ranges at several coastal stations [Conway et al., 1988; Tanaka et al., 1988; Keeling et al., 1989] near 60°N, adjusted to the altitude of Mount Logan. The capped arrows above and below the earliest Mauna Loa data define the estimated annual range at 60.5°N at the altitude of the Mount Logan site (similar for Greenland). CO₂ data derived from northern hemisphere ice cores are shown as single points: (solid square) Mount Logan; (open square) GISP2, Greenland [Wahlen et al., 1991]; (solid diamond) Crête, Greenland [Staffelbach et al., 1991]. Error bars are estimated absolute values. Curve c (joined open circles from 1890 to 1910) shows the measured variation of CO₂ in the air at the Montsouris Observatory, near Paris, France [Stanhill, 1982]. The coastal French data of J. A. Reiset [From and Keeling, 1986] is shown in the block marked R. Curve d: Model CO₂ simulation for high-latitude northern hemisphere sites (60°-80°) based on curve 4 and curve F input functions shown in Figure 5 and employing experimentally constructed sink functions to duplicate the Antarctic curve for high southern latitudes.

Figure 6 defines the Antarctic ice core data set [Friedli et al., 1986] spline fitted by Siegenthaler and Oeschger [1987] and here shifted 2 years to the right to produce an (observational) ~1 ppmv underfit with the Mauna Loa data [Keeling et al., 1989] (shown as curve b). Such a shift is still within the age error bar given for these data. Some of the original Antarctic ice core data values are shown at two significant times during the PIAGREV, marked by the vertical arrows below curve a.

Direct air measurements (data points) shown after 1958, and defining seasonal ranges, are taken from Bischoff [1981], Conway et al. [1988], Tanaka et al. [1988], Keeling et al. [1989], and from air samples taken on Mount Logan in July 1986 (top solid circle). (Analyses of these samples are courtesy of C.S. Wong, Institute of Ocean Sciences, Sidney, B.C., Canada.) The expected annual range at Mount Logan (60.5°N, 500 mbar) is indicated by the vertical arrows at the start of the instrumental data. Northern hemisphere ice core CO₂ data are shown as single points (see caption for explanation). Error bars are estimated absolute values. For each set, the relative errors are less than the error bars shown. Also shown in Figure 6 (curve c) are the direct (chemically determined) air CO₂ data (1890-1910, annual averages) obtained at the Montsouris Observatory, near Paris, France. The absolute values of the air sample data (as with some of the ice core data) do not appear to be those of a fully mixed atmosphere (see Discussion for results of forest fire plume transport modeling studies). Another set of chemical data from the north coast of France spanning 1872-1880 is also included in Figure 6 (data block R) because it is considered reliable [From and Keeling, 1986] within the plotted error range. (These data were obtained when
there was an apparent recession in the PIAGREV, but because of the location, the samples also have a much higher probability of representing a fully mixed atmosphere.

In addition, Stauffer et al. [1984] provide a set of δ^{13}C data and an atmospheric CO$_2$ reconstruction together with a biospheric carbon flux curve which indicates a pulse injection of CO$_2$ into the atmosphere for about a decade through AD 1900. The CO$_2$ reconstruction is qualitatively realistic from ~1700 to early 20th century. Thereafter, the assumptions made in the Stauffer et al. model appear to break down. Fortuitously, the time of collection of the most reliable Montsouris (air) CO$_2$ data occurred in this interval. The correspondence between these data and the other data presented earlier suggests strong coherence between the data sets and support for the second pulse in the PIAGREV signal. Lastly, because trace gas enrichment during the PIAGREV is seen in other trace gas data [Dibb et al., 1993], those data should be interpreted as supporting the PIAGREV. In particular, there are steps in methane and nitrous oxide in the Mount Logan and 20D cores in the interval 1850-1900. Both these gases are associated with biomass burning directly or with postburn soil gas emissions.

Next, we present a strategy involving a coupled atmosphere-ocean model, which was used in an effort to simulate the atmospheric CO$_2$ variations over the last two centuries. This exercise requires a knowledge of the biomass "source" function and a certain freedom to construct carbon "sink" functions. An experimental, empirically determined, carbon input function was established after a series of iterations were carried out to produce a simulated CO$_2$ curve that compared with the available data shown in Figure 6. Each iteration required a modification to the sink functions. While this procedure requires a significant degree of operator control (which involves manipulation of the model), the important point is that the atmospheric mixing ratios for CO$_2$ in the high northern hemisphere latitude bands (where the data were obtained) is still dominated by the carbon input function rather than by the "inferred" sink functions. At the very least these sink functions could be used to guide experimental investigation of carbon sinks, which are still not properly understood.

Global Carbon Cycle Model

The time-dependent global carbon cycle model (GCCM) used in this study is a modified version of the model developed by Higuchi [1983a, b]. It describes the routing of CO$_2$ injected into the atmosphere. As the overall structure of the model is essentially the same, only a short description is given here. The model is formulated to include, as much as is reasonably possible, the essential and fundamental processes of the global carbon cycle that are necessary to reproduce some of the globally consistent and basic features of the observed CO$_2$ time series. The model structure is made up of three components: (1) an atmospheric model, which is two-dimensional, zonally averaged, and vertically layered; within this atmosphere, the air masses transport trace gases by advection and diffusion; (2) an oceanic model, with three explicitly resolved but independent water masses, all coupled to the atmosphere; (3) a terrestrial biosphere, which is treated as a lower boundary forcing function to the model atmosphere.

Model Atmosphere

The two-dimensional atmospheric model architecture is identical to the one used by Pearman and Hyson [1980] except that the present model is composed of 162 boxes (18 vertical columns, each column spanning a 10° latitude band and composed of nine layers from the 1000-mbar surface to a 10-mbar upper level. The mass of the model atmosphere is 5.26 x 1021 g. The advective fluxes, F_i ($i = y, z$ where y is meridional direction, z is vertical direction), of CO$_2$ (in units of concentration/unit time) are given by

$$F_{y}^{ADV} = \frac{(\rho VCA_{H})}{M},$$

$$F_{z}^{ADV} = \frac{(\rho WCA_{V})}{M},$$

where ρ is air density, V and W are the monthly averaged meridional and vertical wind speeds, respectively, C is the CO$_2$ concentration, M is the mass of the atmospheric box under consideration, and A_{H} and A_{V} are the horizontal and vertical areas of the box, respectively, through which the gas flux takes place. Diffusion of the input CO$_2$ is governed by the following diffusion equations:

$$F_{y}^{DIFF} = \rho \left(K_{yy} \frac{\partial C}{\partial y} + K_{yz} \frac{\partial C}{\partial z} \right) A_{H}/M,$$

$$F_{z}^{DIFF} = \rho \left(K_{zy} \frac{\partial C}{\partial y} + K_{zz} \frac{\partial C}{\partial z} \right) A_{V}/M,$$

where K_{ij} are diffusion coefficients. The eddy diffusion coefficients ($i \neq j$) are always positive. The coefficients defined by $i = j$ are those introduced by Reed and German [1965] to account for the countergradient flux in the stratosphere. The seasonally stratified meridional winds were modified after Hyson et al. [1980] by Higuchi [1983a]. Vertical winds in a column were calculated using the mass conservation equation. The diffusion coefficients used were derived from krypton 85 data [Morimoto, 1994].

The rate of change of CO$_2$ concentration in an atmospheric box is given by

$$\Delta C/\Delta t = F_{y}^{ADV} + F_{z}^{ADV} + F_{y}^{DIFF} + F_{z}^{DIFF}$$

The time step $\Delta t = 1$ day for the atmospheric model. The "box" model atmosphere is in contact with and coupled to the "box" model ocean, which will now be described.
Model Oceans

The oceans constitute one of the two major internal reservoirs (the other being the land biosphere and, to a lesser but unknown degree, the ocean biosphere) which have any significant feedback to the anthropogenic CO2 in the atmosphere. The amount and the rate of absorption of excess atmospheric CO2 by the oceans depend on physical and chemical processes operating across the air-sea interface and at depth within the oceans.

The oceanic reservoir is represented by a model composed of three basins: the Atlantic, the Pacific, and the Indian. Each basin is treated as independent and is represented by a zonally averaged two-dimensional advective multibox model with a highly simplified meridional circulation pattern, which, however, resembles the gross water movement observed in nature [Broecker et al., 1980]. Carbon dioxide is transported in the direction of net water flow within a circulation cell. In each of the major oceans the surface layer (0- to 100-m depth), is divided into 11 zonally averaged boxes. (A single box represents the equatorial surface layer from 20øN to 20øS except for the Indian Ocean, where it is 0ø to 20øS). Five more boxes are used to represent the intermediate layer water column down to 1000 m. Thus there are a total of 16 boxes. Outside the equatorial regions box, the intermediate layer is not modeled explicitly. The deep ocean (>1000-m depth) is also not treated explicitly. Since the turnover time of the deep water is of the order 500-1000 years, it is treated as an infinitely large sink for recent century-scale emissions of anthropogenic CO2.

Water fluxes for each surface box are determined from specified current speeds and from the vertical area of each box. Once the surface meridional fluxes are specified, all other fluxes are determined using the equations for conservation of mass. To produce downwelling and prevent upwelling of water into the extratropical surface layer, the poleward flowing meridional surface current in each of the model oceans is suitably specified [Higuchi, 1983a, b]. As an example of one of the parameters calculated from the model, the deep water flux upwelling in the equatorial region is 5.2 x 10^6 m^3/s.

The initial total carbon dioxide concentration C0 is assigned to the surface layer of each ocean so that it increases poleward in accordance with a decreasing sea surface temperature scheme outlined in Table 2. In the same table the corresponding values of ΣC0 are also shown. The resultant latitudinal profile of Pm (partial pressure of carbon dioxide in the mixed layer) is guided by the results given by Broecker et al. [1980]. The following values for the total borate concentration (ΣB), carbonate-borate alkalinity constant (A), and chlorinity (CI), are used for all the oceans in calculating Pm values: ΣB = 0.40 per mil, A = 2.43 per mil, and CI = 19.24 per mil.

The initial total carbon content in the surface layers is specified as 830 x 10^5 g C, which is about 1.4 times that of the initial atmospheric carbon mass of 610 x 10^15 g C (corresponding to a mixing ratio for CO2 of about 280 ppm). Here we are only concerned with carbon in the form of carbon dioxide.

In the present model, the role of the marine biomass is not explicitly accounted for because of the large uncertainties in the processes that are involved.

In the coupling to the atmosphere the net flux, ΔF, across the air-sea interface for wind speeds w > 3 m/s [see Tans et al., 1990] is given by

\[\Delta F = k(P_a - P_m) \]

where \(P_a \) and \(P_m \) are the \(pCO_2 \) of the atmosphere and the mixed layer of the ocean, respectively. The parameter k is given (again following Tans et al. [1990]) by the equation

\[k = 0.016(w - 3) \]

where \(w \) is the horizontal wind speed at 10 m above the sea surface, in meters per second. Under steady state conditions, \(\Delta F_j \) of box \(j \) is made equal to the amount of carbon made deficient (or surplus) by the advective current in the surface layer. In addition, the index 1 represents the most northern (60ø-70øN) box, and the index 11 represents the most southern box (60ø-70øS). The equatorial and largest box is represented by the index 6.

The model of Nir and Lewis [1975] is employed in transporting carbon dioxide from the extratropical surface layer into the intermediate layer and finally into the equatorial column. The time step used in the ocean model is 1 year. The residence time in the intermediate layer is defined here as the time which CO2 spends in transit between the surface layer and the equatorial column. The residence times of excess CO2 in the in-

Table 2. Temperature and Carbon Data Used in Model Oceans

<table>
<thead>
<tr>
<th>Latitude Zone, deg</th>
<th>Sea Surface Temperature, °C</th>
<th>Total Initial Carbon Concentration ΣC₀, mol/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20</td>
<td>28</td>
<td>2.00</td>
</tr>
<tr>
<td>20 - 30</td>
<td>23</td>
<td>2.02</td>
</tr>
<tr>
<td>30 - 40</td>
<td>18</td>
<td>2.04</td>
</tr>
<tr>
<td>40 - 50</td>
<td>12</td>
<td>2.07</td>
</tr>
<tr>
<td>50 - 60</td>
<td>7</td>
<td>2.14</td>
</tr>
<tr>
<td>60 - 70</td>
<td>3</td>
<td>2.17</td>
</tr>
</tbody>
</table>
termediate layer range from 30 years for downwelling in low latitudes to 100 years for downwelling in high latitudes. Carbon advected into the deep water is treated in this modeling exercise as carbon lost from the cycle.

The ocean model is calibrated with observed vertical profiles of prebomb 14C data [Bien et al., 1960; Broecker et al., 1960] and compared with results obtained by Bjorkstrom [1979]. The atmospheric production rate of 14C atoms by cosmic rays is assumed to be constant at 2 atoms/cm2/s. Given the observed surface values of 14C/12C, the ocean model is able to simulate Δ^{14}C values and hence C14 ages, relative to the surface layer, of over 200 years for the deep water upwelling into the Atlantic equatorial column, and over 1000 years for the deep water upwelling into the Pacific equatorial column.

Model Carbon Budget and Comparison Between This and Other GCCMs

The overall carbon budget in the model is balanced for each time step. For example, in the 1985 simulation the following idealized input (in Gt/yr) was applied: fossil fuel input = 5.5; tropical biomass input = 2.0 (Σ = +7.5 Gt/yr). The following sinks were calculated: atmospheric reservoir = 3.0; ocean sink = 2.0. To balance the budget, a northern hemisphere midlatitude (land) sink = 2.5 was introduced (Σ = -7.5 Gt/yr). This produces a "model" northern hemisphere-southern hemisphere latitudinal gradient of about 5 ppm, whereas the observed value is about 4 ppm. Comparing these results with Tables 1.1 and 1.3 in Intergovernmental Panel on Climate Change [1994], it may be seen that the GCCM described here is broadly consistent with other carbon cycle models. The main difficulty for all these models is to account for all the carbon sinks. It has been recognized that both northern and southern hemisphere sink fluxes can change quite significantly on an interannual timescale (especially the southern hemisphere, where a 300% subdecadal change has been postulated in order to explain variations in the data) [Conway et al., 1994]. The mechanisms of these variations are not properly understood.

In the model simulation to examine the atmospheric effects of the PIAGREV, the model was started in AD 1800. The biomass carbon input function (described in the next section) was applied. Empirical sink functions were constructed in order to replicate, as nearly as possible, the atmospheric CO$_2$ curve for high southern latitudes obtained from Antarctic ice cores.

Biomass Carbon Input Function

The biospheric carbon function shown in Figure 5 (curve 4) was created from an initial estimated function using a successive trial procedure. We manually created the trial function with an amplitude equal to the function derived by Peng and Freyer [1986] and with a shape that reflected the two peaks in activity of the PIAGREV as seen in our own ice core data. Because the GCCM is zonally averaged, the carbon input function does not discriminate between emissions that came from North America, Europe, or Eurasia. This initial function was input to the GCCM over a prescribed northern hemisphere midlatitude band (40° to 60°N), and the output (atmospheric CO$_2$ concentrations at high northern hemisphere latitudes) was examined. It was necessary, at this stage to modify the sink functions so that the Antarctic ice core CO$_2$ data could be matched. These data are assumed to closely represent the concentrations of CO$_2$ in the remote atmosphere of the southern hemisphere. By progressively increasing the amplitude of the initial carbon input function, it was possible to observe the corresponding increase in atmospheric CO$_2$ in the northern hemisphere. Each step required an adjustment of the sink function structure in order to duplicate the high-latitude southern hemisphere ice core data. Details of this function and a sensitivity analysis of the model will be described in a paper in preparation by K. Higuchi. This study of the time variation of atmospheric CO$_2$ over the last two centuries is quite limited by deficiencies in knowledge about the physics and distribution of carbon sinks [Tans et al., 1990; Quay et al., 1992]. Here, as in any other long-term (century-scale) carbon cycle studies, estimated empirical sink functions have to be used.

The biospheric carbon function (curve 4) shown in Figure 5 was the last of a series of trial functions. It still produces less total cumulative carbon flux into the atmosphere than curve 1 (in Fig. 5), which set the upper limit of our trials. Even so, curve 4 produces a 5-10 ppmv increase above the Antarctic curve between about 1850 and 1920, as can be seen in Figure 6. The output curve d is considered to possess similarities to the available data in a qualitative sense. Further manipulation of the carbon input function and the sink function was not pursued as this was not considered to be in the best interests of this exercise. Rather, the main point is that it is possible to generate, in this model, elevated levels of CO$_2$ mixing ratio in the high-latitude northern hemisphere that are relatively insensitive to the structure of the more southerly sinks, whose architecture is necessarily of an empirical nature, when the only "calibration" of the model output for the high southern latitudes is the Antarctic ice core data.

The simplified physical ocean sink mechanism in the original model [Higuchi, 1983b] was found to be inadequate; that is, not enough gas is absorbed by the model ocean. Subsequently, it has been found that there are other processes [e.g., Farmer et al., 1993] operating at the air-ocean interface that enhance the absorption. Also, we are ignoring the possibility that the oceans have undergone decadal-scale circulation changes. Such changes could have affected atmospheric CO$_2$ levels in a similar way that oceanic El Niño's affect atmospheric CO$_2$. There is some preliminary observational evidence to suggest that deep water formation in the North Atlantic (Greenland Sea) has slowed down in recent years. A recent global carbon model [Kwon and Schnoor, 1994] is similarly limited with respect to sink structure.

In Figure 6, it is to be noted that peaks in the simulated CO$_2$ curve d show a lag with respect to peaks in the forcing function of the model northern hemisphere...
atmosphere. Without a suitably prescribed additional sink to the south, Antarctic atmospheric CO₂ concentrations would closely follow the northern hemisphere, with a lag of between 1 and 2 years [see also Keeling et al., 1989]. Carbon forcing functions in the northern hemisphere midlatitudes and tropics after ~1950 are designed to replicate, in the model, the high-latitude northern hemisphere instrumental data as well as to be consistent with various estimates of biomass burning [e.g., Peng and Freyer, 1986]. The important features of curve d are the twin maxima between 1850 and 1950, which clearly reflect the assumed biomass forcing function. The difference between curves a and d defines a possible transient interhemispheric gradient that might have been similar to the present one, on a timescale of decades, during the late 19th century.

The current maximum interhemispheric (approximate pole to pole) difference in CO₂ mixing ratio is 3-4 ppmv [Conway et al., 1988; Tanaka et al., 1988; Keeling et al., 1989], whereas its value in 1957 was close to ~1 ppmv [Keeling et al., 1989] (see Fig. 6). The value before the start of instrumental measurements is not known with any certainty but has generally been assumed to be negligible (other model studies included a much smaller biomass input function than we have used). However, in the light of the data presented here, this does not appear to have been the case. For future, more precise, model simulations it is of interest to know whether the past difference between the CO₂ mixing ratios of the high-latitude northern and southern hemisphere atmospheres could have been similar to or greater than the present value.

Discussion of Results and Conclusions

Given that the PIAGREV signature in the ice cores is a result of the “fallout” of biomass burn products transported over long distances, we can make use of a large literature base upon which to develop a discussion of some of the dynamics of the processes involved [e.g., Levine, 1991]. From the purely meteorological standpoint the recently developed concept of “tropospheric rivers,” or filaments of water vapor in the troposphere [Newell et al., 1992; Newell and Zhu, 1994], appears to offer a useful avenue for discussing the dynamics of long-range transport of surface emissions associated with agrarian activities. It is possible that smoke plumes from major fires in North America may have formed similar “filaments” of aerosols in the atmosphere, even in association with the filaments of water vapor, which appears to have the capacity to form an aerosol with CO₂. This has a bearing on some of the anomalously high ice core CO₂ data presented earlier. (There is some basis for supposing that solid rime ice derived from supercooled water vapor droplets is enriched in CO₂. Rime ice has been found infrequently at high altitudes on Mount Logan.)

The time-dependent evolution of forest fire smoke plumes that has been simulated in a numerical atmospheric transport model by Iacobellis et al. [1994] also provides possible answers to the question of the transient CO₂ values seen in northern hemisphere ice cores and to the hitherto unexplained irregularities existing between different tree δ¹³C time series. Using the biomass CO₂ emissions for 1900 derived in this paper (input function in Fig. 5) and applying them to mid-latitude North America during the PIAGREV, recent simulations by S. Iacobellis (unpublished data, 1995) indicate that “excess” CO₂ gas concentrations of 2-4 ppmv above background could have reached parts of the high Canadian Arctic, Greenland, and Europe and persisted on the timescale of 1 month. The simulations made so far use only the 1979 global wind data set. For extreme meridional airflow, significantly elevated levels of CO₂ could have impacted distant tree stand and ice core sites to produce the anomalies that are seen in the data.

An example of a visible smoke layer in close proximity to the ice core site in the St. Elias Mountains is described by Benjey [1974]. The smoke pall was seen in late June 1969, and it was estimated by pilots to have a ceiling of around 5000 m against Mount Logan. This smoke originated from forest fires burning along the Alaska-Yukon border. In August 1986 the first author saw a similar brown smoke layer (approximately 1.5 km thick), which was attributed to forest fires in Alaska. The ceiling then was at least 5000 m altitude. Although of a regional scale, these observations serve to reinforce the conjecture that unmixed forest fire emissions may impact ice core sites in the northern hemisphere.

The collected northern hemisphere CO₂ data suggest that concentrations of this trace gas may have significantly exceeded southern hemisphere values (by several ppmv) at certain times and for brief seasonal periods at the ice core sites. These northern hemisphere high-latitude CO₂ levels (elevated by several ppmv) could have been seasonally sustained on the timescale of a decade, which is the timescale of the PIAGREV. The possibility was already considered by Siegenthaler et al. [1988] that atmospheric CO₂ levels may have increased significantly, albeit temporarily, before the extensive use of fossil fuels. However, these data, which came from a south pole core, have not been substantiated from additional Antarctic cores or from Greenland core studied so far.

The GCCM modeling suggests that the higher CO₂ values plotted in Figure 6 do not represent fully mixed northern hemisphere atmospheric annual values, but nevertheless they can be considered to be acting as tracers for biomass burning. Similarly, certain trees throughout the northern hemisphere would have responded to regional (and seasonal) climatic variations and to smoke assimilation according to atmospheric circulation at the time. Certain trees only form new wood for very brief periods, with timing determined by local climatic conditions. This could account for much of the nonuniformity seen in the late 19th century tree ring data.

The atmospheric modeling results reported here indicate that the maximum short-term interhemispheric
CO₂ difference (the north-south gradient) might have equaled or slightly exceeded the present value, although this modeling is not highly constrained. Nevertheless, the modeling results do support the atmospheric CO₂ data in several important aspects. The structure and results of the GCCM used here also suggest that carbon cycle models should be improved by incorporating better physical mechanisms into the carbon sinks [e.g., Robertson and Watson, 1992; Farmer et al., 1993] so that current semi-empirical or quasi-arbitrary methods of model tuning may be reduced in the future. Also, in modeling the carbon cycle through the PIAGREV, the effects of possible atmospheric and oceanic cooling should be accounted for.

There are other trace gases that may be used as indicators of biomass burning. Methane and nitrous oxide concentration data for Mount Logan [Dibb et al., 1993] are smoothly varying and marginally suggest (as does the CO₂ data) small increases ~1860. The more anthropogenically sensitive southern Greenland (20D) core [Dibb et al., 1993] shows consistently elevated levels of methane during the late 19th century. These collected data offer qualitative supporting evidence for biomass fire activity [Lawsen et al., 1992; Levine et al., 1992] in North America. Furthermore, the implications of biomass burning for global climate variations are now well known.

It appears that associated factors, such as surface albedo changes and atmospheric dust and smoke [Sagan et al., 1979], causing local cooling (at least in the northern hemisphere) temporarily negated any tendency for radiative greenhouse warming. As a result, the PIAGREV, through the influence of smoke plumes [Pittock et al., 1988; Penner et al., 1991] and associated agricultural dust, may have helped deepen and prolong the ending of the Little Ice Age [Grove, 1988], which is recognized to have occurred in many glaciated alpine regions. Documentation of the northern hemisphere regional climatic regimes throughout the PIAGREV will be the subject of a paper in preparation.

Acknowledgments. We acknowledge support from Environment Canada (National Hydrology Research Institute and the Atmospheric Environment Service), the Electric Power Research Institute of California, the U.S. National Science Foundation, Natural Sciences and Engineering Research Council of Canada, and the Arctic Institute of North America, University of Calgary. We also thank J.-M. Barnola for providing the Mount Logan ice core CO₂ data and D. Raynaud and C. Lorius (CNRS, Grenoble) for supporting the collaboration. J.E. Dibb, M.J. Spencer, and S. Whittol helped in data interpretation and A.T. Wilson, C.S. Wong, J.-M. Barnola, M. Stuiver, and S.W. Levitt read earlier versions of the manuscript and offered many helpful suggestions. L.J. Toohey and C.J. Eastoe kindly read the final manuscript and noted that their unpublished 8¹³C record for C4 grasses from the American Southwest appeared to corroborate at least the NH₄⁺ record in Figure 1 for the late 19th century. We thank the journal reviewers and the editor (J. Penner) for helpful advice and detection of obscure statements and for overall improvement to the paper. We also acknowledge F.O. Smith for editing and document preparation. Acknowledgement of individuals does not imply that they necessarily agree with all our interpretations of the data.

References

Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, and V. I. Morgan, Natural and anthropogenic changes in atmospheric CO₂ over the last

Gould, D. F., Beyond the Shining Mountains, Binsford and Mort, Portland, Or., 1938.

G. Holdsworth, The Arctic Institute of North America, University of Calgary, Alberta, Canada T2N 1N4 (email: gholdsw@acs.ucalgary.ca).

K. Higuchi, Atmospheric Environment Service, Department of the Environment, Downsview, Ontario, Canada M3H 5T4 (email: khiguchi@cid.aes.doe.ca).

P.A. Mayewski and G.A. Zielinski, Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, N.H. 03824 (email: p_mayewski@unh.edu; gaz@unh.edu).

B. Deck and M. Wahlen, Scripps Institution of Oceanography, University of California, La Jolla, CA 92033-0220 (email: bdeck@ssurf.ucsd.edu; mwahlen@ssurf.ucsd.edu).

P. Cwynar, P. Damiano, and B. Johnson, Atmospheric Science Program, Dalhousie University, Halifax, N.S., Canada B3H 3J5 (email: bjohnson@ac.dal.ca).

(Received April 26, 1995; revised March 11, 1996; accepted March 12, 1996.)