2-16-1999

Holocene Climate in Coastal Peru: Potential Implications for Climate Dynamics during the Hypsithermal Period

James D. Wright
Principal Investigator; University of Maine, Orono

Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports
Part of the Oceanography Commons

Recommended Citation
Wright, James D., "Holocene Climate in Coastal Peru: Potential Implications for Climate Dynamics during the Hypsithermal Period" (1999). University of Maine Office of Research and Sponsored Programs: Grant Reports. 224.
https://digitalcommons.library.umaine.edu/orsp_reports/224

This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Holocene Climate in Coastal Peru: Potential Implications for Climate Dynamics during the Hypsithermal Period

Participant Individuals

Senior Personnel

Name: Wright, James

Worked for more than 160 Hours: Yes

Contribution to Project:

Post-doc

Graduate Student

Undergraduate Student

Partner Organizations

Other Collaborators

Activities and Findings

Research Activities:
Faunal assemblages in shell middens along the coastal Peru (4 to 9°S) indicate that molluscan bioproveniences between 6000 to 5000 yr. ago were displaced up to 500 km to the south of their present positions. Previous studies have interpreted this as a classic response to global warming during the Hypsithermal. In contrast, oxygen isotope records from marine bivalves (4° and 9°S) indicate that coastal waters were 3 to 4°C cooler during the 'mid' Holocene relative to present temperatures. This study generated stable isotope records from planktonic foraminifera in two offshore cores (11°S) to try to resolve the apparent discrepancy. Approximately 100 stable isotope analyses from eight different species of planktonic foraminifera were made. The three most abundant species, Gs. sacculifer, N. dutertrei and G. bulloides, recorded ~1‰ higher d18O values during the early and middle Holocene relative to the present day d18O values. These data indicate that the coastal waters along northwestern Peru were ~4°C cooler during the mid-Holocene. Carbon and nitrogen stable isotopes, d13C and d15N, were measured on the sedimentary organic matter. There was little change in the d13C values. The d15N values, however, were ~3 per mil lower for the interval between 7000 to 5000 yr. ago relative to the present. Increased upwelling of colder waters is the best explanation for colder temperatures lower nitrogen isotope values. Two publications are being readied for submission.
Wright, J.D., Planktonic foraminiferal stable isotopic evidence for increased upwelling along the Peruvian coast during the δMidø Holocene.

Research Findings:
It is difficult to interpret the d15N data in terms of upwelling alone, but both the oxygen and nitrogen isotopic data are consistent with higher regional upwelling rates during the 'mid' Holocene. The following preliminary interpretations are made on these data. Evidence for wetter terrestrial climates in northwestern Peru prior to 5000 yr. ago combined with faunal and isotopic records suggesting that the coastal upwelling zone was located much further to the south than at present. This allowed seasonal rainfall in parts of northwestern Peru that are deserts today, accounting for the diverse molluscan fauna during the mid-Holocene. Beginning around 5000 yr. ago, the molluscan fauna migrated to their present positions, planktonic foraminifera oxygen isotopes decreased, and nitrogen isotopes increased to near near-modern values. The post-5000 changes recorded in this region may be linked to the insolation changes that are most pronounced in Africa and
Contributions within Discipline:
This project reconstructed the marine conditions along northwest Peru during the Holocene. Faunal proxies indicate that mid-Holocene conditions differed from the present. Some interpretations suggest that northwestern Peru was warmer and resulted from different atmospheric circulation patterns during the mid-Holocene. As a exploratory project, planktonic foraminiferal stable isotope records were generated from marine cores near the region with anomalous molluscan faunas. The results to date show that the mid-Holocene planktonic foraminifera (Gs. sacculifer, N. dutertrei, and G. bulloides) recorded d18O values that were 1‰ higher during the early and middle Holocene relative to their modern counterparts. The simplest explanation is that marine conditions were colder and not warmer during the early to middle Holocene. These data provide quantifiable results for an area that so far has been devoid of good data or reliant on poor data. These data can be used by climate modelers to better simulate the mid-Holocene climates to help understand the larger-scale operation of the ocean-atmosphere system.

Contributions to Other Disciplines:
A related subdiscipline that might be interested in these results is Atmospheric Sciences. The changes in the upwelling system along coastal Peru has strong implications for the atmospheric circulation patterns 6000 yr. ago.

Contributions to Education and Human Resources:

Beyond Science and Engineering:

Categories for which nothing is reported:
Partner Organizations
Activities and Findings: Any Research Training
Activities and Findings: Any Education or Outreach
Any Journal
Any Book
Any Product
Contributions: To Any Education or Human Resource
Contributions: To Any Science or Technology Infrastructure
Contributions: Beyond Science or Engineering