CAREER: Acoustic Wave Filters for High Frequency Wireless Communication Applications

Mauricio Pereira da Cunha
Principal Investigator; University of Maine, Orono, mdacunha@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports
Part of the Electrical and Computer Engineering Commons

Recommended Citation
https://digitalcommons.library.umaine.edu/orsp_reports/142
Final Report for Period: 03/2008 - 02/2009
Submitted on: 06/04/2009

Principal Investigator: Pereira da Cunha, Mauricio
Award ID: 0134335

Organization: University of Maine

Submitted By:
Pereira da Cunha, Mauricio - Principal Investigator

Title:
CAREER: Acoustic Wave Filters for High Frequency Wireless Communication Applications

<table>
<thead>
<tr>
<th>Project Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Personnel</td>
</tr>
</tbody>
</table>
| Name: Pereira da Cunha, Mauricio
Worked for more than 160 Hours: Yes
Contribution to Project:
Prof. Pereira da Cunha is the PI on this project and directly responsible for all the activities involved in this initiative. |
| Name: Beenfeldt, Eric
Worked for more than 160 Hours: No
Contribution to Project:
Eric has been instrumental in advising students, providing support in equipment maintenance, and in the development of measurement techniques. |
| Name: Hummels, Donald
Worked for more than 160 Hours: No
Contribution to Project:
Prof. Don Hummels was involved in the advising of Jason Withee (NSF REU summer 2007) and Evan Dudzik regarding the implementation of the signal processing acquisition board. |
| Name: Abedi, Ali
Worked for more than 160 Hours: No
Contribution to Project:
Prof. Abedi was involved in advising Evan Dudzik in the selection of codes for implementation in the spread spectrum wireless passive surface acoustic wave tags. He is supported in part by a NASA/Maine Space Research Consortium research effort. |
| **Post-doc** |
| Name: Thiele, Jeremy
Worked for more than 160 Hours: No
Contribution to Project:
Jeremy performed his MS on new materials and harsh environment gas sensors with partial support from the NSF Career project (equipment usage, materials). He was mostly funded by a Maine Space Grant Consortium/NASA Funds. |
| Name: Kenny, Thomas
Worked for more than 160 Hours: Yes
Contribution to Project:
Tom is concluding his PhD thesis in the proposal topic. He has been fully funded by the NSF Career project and worked on the identification of new orientations and device modeling for the new modes identified. |
| Name: Dudzik, Evan
Worked for more than 160 Hours: Yes
Contribution to Project:
Evan is developing his MS in acoustic wave filter applications for passive wireless surface acoustic wave tags and interrogating |
system for about two years. He is supposed to present his thesis in the second semester of 2008. He has been partially funded by
the NSF Career and partially by a Maine Space Grant Consortium / NASA funds.

Name: Pollard, Thomas
Worked for more than 160 Hours: Yes
Contribution to Project:
Tom is developing his thesis on Biosensors and is funded by another NSF grant under the Sensors initiative. His involvement in this project relates to the development of methods for device modeling and acoustic wave directions propagation, a topic that has common denominator with the work performed by Thomas Kenny, previously identified.

Name: Davulis, Peter
Worked for more than 160 Hours: Yes
Contribution to Project:
Peter started working on this project as as an NSF REU student in 2005 in the characterization of gallium orthophosphate, a new piezoelectric crystal. Out of his efforts he generated a conference paper in the IEEE 2006 Frequency Control Symposium. After that work, he became a graduate student under my advisory, working on the characterization of LGX crystals in harsh environment. He is being supported mostly by a Petroleum Research Fund grant at this point in time.

Undergraduate Student

Name: Meulendyk, Bennett
Worked for more than 160 Hours: Yes
Contribution to Project:
Bennett worked in this project as a NSF REU student. His work resulted in both conference and journal publications. He is presently a graduate student under my advisory working on another NSF Gas Sensor project in a multidisciplinary team with Chemical Engineering and Spatial Sciences.

Name: Rioux, Benjamin
Worked for more than 160 Hours: No
Contribution to Project:
Ben worked on this project in the 2003 timeframe on the extraction of dielectric constants of piezoelectric crystals used for acoustic wave applications. He was mostly funded by an Army project.

Name: Cowperthwait, Jacob
Worked for more than 160 Hours: No
Contribution to Project:
Jacob worked on the development of files for the calculation of optimal orientations for surface acoustic wave propagation. He was an NSF REU student in 2002 and regular undergraduate afterwards, when he inspected orientations in regular acoustic wave crystals and new crystals. His work generated an IEEE 2003 Frequency Control Symposium paper.

Name: Spinney, Patrick
Worked for more than 160 Hours: No
Contribution to Project:
Patrick worked on SAW parameter extraction based on measured device response as an NSF REU student in 2002. He is now a graduate student funded by another colleague in the Dept. of Electrical and Computer Engineering at the University of Maine.

Name: Beaucage, Timothy
Worked for more than 160 Hours: Yes
Contribution to Project:
Tim started as an NSF REU student working on the measurement of crystal density, the design of microfluidic chambers for acoustic wave biosensors, and the extraction of thermal expansion coefficients for acoustic wave crystals. Tim presented his MS thesis on these topics in July 2007. He has been mostly funded by an Army project.

Name: Tkachuk, Vitaly
Worked for more than 160 Hours: No
Contribution to Project:
Vitaly was an NSF REU student involved in this project with one of the graduate student, Thomas Kenny, in the implementation of Green function methods for the determination of orientation of propagation and device modeling.

Name: Jordan, Jared
Worked for more than 160 Hours: No
Contribution to Project:
Jared Jordan was involved in this project as an NSF REU student, and performed measurements of piezoelectric constants and the determination of acoustic wave modes using electromagnetic transducer technology (EMAT). His work generated a conference paper.

Name: Hermansen, Kiva
Worked for more than 160 Hours: No
Contribution to Project:
Kiva was involved in this project under the preparation of samples for acoustic wave measurements (aligning, cutting, grinding, and polishing) and also on the extraction of dielectric constants procedures.

Name: Duy, Stephanie
Worked for more than 160 Hours: No
Contribution to Project:
Stephanie continued the work started by Kiva in sample preparation and dielectric constant extraction. She performed measurement on LGX samples along Z and Y crystalline axis, working together with two graduated students under Prof. Pereira da Cunha advisory, Peter Davulis and Blake Sturtevant.

Technician, Programmer
Name: Moonlight, Thomas
Worked for more than 160 Hours: No
Contribution to Project:
Thomas has been giving technical support regarding equipment maintenance and overseeing material purchase. He has also provided support in equipment and test procedure development. Thomas is mainly funded by an Air Force contract.

Name: Call, Mike
Worked for more than 160 Hours: Yes
Contribution to Project:
Mike has been giving technical support regarding crystal orientation measurements using XRD equipment, equipment maintenance and overseeing material purchase. Mike has been funded by several projects from diverse funding sources.

Name: Bernhardt, George
Worked for more than 160 Hours: Yes
Contribution to Project:
George has been giving technical support mostly in clean room fabrication issues, including photolithography, pattern generation, metal deposition. George is funded by several projects from diverse funding sources.

Other Participant

Research Experience for Undergraduates
Name: Withee, Jason
Worked for more than 160 Hours: No
Contribution to Project:
Jason participated in this project as an NSF REU student during the summer of 2007. He worked closely with Evan Dudzik, one of the graduate students involved in the project, in the design of an acquisition board for capturing the signal coming from a surface acoustic ware wireless passive tag and providing the required digital signal processing.

Years of schooling completed: Junior
Home Institution: Same as Research Site
Activities and Findings

Research and Education Activities:
The research and education activities under this project embrace:
- Graduate student research and training, which include several technical paper presentations by the students in major conferences in the field, namely IEEE International Ultrasonics Symposium, IEEE International Frequency Control Symposium, and IEEE International Sensors Conference (conference papers listed in this report).
- Journal publications with the major findings (publications listed in this report).
- Undergraduate training with 15 NSF REU students being directly advised by the PI. Ten of these 15 continued to do research with the PI or colleagues, while still undergraduate students. In addition, seven out of those 15 went to graduate school.
- High school activities through GK-12 fellows (graduate students) who brought and included wireless and filtering topics in local high schools.
- Inclusion of proposal and project writing in senior undergraduate courses. The students were asked to write individual proposals for a course project (ECE 466 Sensors and Instrumentation Laboratory). The proposals were defended to other students. After every student presented a proposal, the class voted the best proposals for group work and implementation (the PI monitored the feasibility regarding the course timeframe).
- Another educational initiative was incorporated in ECE 453 (Microwave Engineering), where students were asked to prepare lab manuals, and execute the envisioned experiments, as if they were preparing classes and training other students. The activity helped prepare students to convey information to others, write appropriate reports, and be initiated in the tasks of working in group on diverse lab experiments. In addition, several of the prepared lab manuals were be used in following course session experiments.
 These hands-on learning experience showed very fruitful with very positive feedback from the students.
- Interactions with other Universities, namely University of Central Florida, Magdenburg University (Germany), Albert-Ludwig-University of Freiburg (Germany), on topics including acoustic wave modeling, wireless SAW devices, and wireless sensors and tags.
- Inclusion of high performance commercial Advanced Design System (ADS) software in the ECE 453 Microwave Engineering course taught by the PI, including filter design, antenna design, devices' fabrication and test by undergraduate and graduate students.

Findings:
Major scientific (research) findings include (technical details in the published papers listed in this report):
- Capability of identifying new High Velocity Pseudo Surface Acoustic Wave (HVPSAW), Pseudo Surface Acoustic Wave (PSAW), and Shear Horizontal Surface Acoustic Wave (SH-SAW) orientations in regular (quartz, lithium tantalate, and lithium niobate) and new piezoelectric crystals (potassium niobate, gallium orthophosphate, langasite family of crystal) for high frequency wireless applications and biosensor applications. (technical details described in the listed published conference and peer reviewed papers)
- Capability to model HVPSAW, and PSAW, and SH-SAW propagation and transduction properties, including the excitation, coupling and radiation to spurious bulk acoustic wave modes.
- Capability to model acoustic wave transducer and periodic structures on piezoelectric crystals. The relevance of this modeling reflects on enabling this technology and findings to be used in the design of higher frequency wireless filters and sensors for bio applications (liquid environment). This work is under final stages of completion through two Ph.D. thesis by Tom Kenny and Tom Pollard under the PI's advisory.
- Investigation of computational methods including boundary element method and finite element methods for propagation and structure modeling in finite and infinite structures for acoustic wave modal analysis and device applications.
- Investigation of stiffness variation of polymer film deposited on piezoelectric substrates using surface acoustic wave propagation. The target of the research is to improve shear horizontal mode trapping and device design for biosensor and communication applications.
- Extraction of SAW network model parameters based on the above mentioned finite and boundary element method analyses. This technique allows the necessary tools for fast and accurate design of SAW devices, based on a computation intensive technique.
- Design, fabrication, and implementation of a novel wireless tag sensor device and system using coded matched filters. The developed wireless system employs passive, battery-free SAW devices as sensors. These SAW devices also allow for multisensor interrogation, permitting the monitoring of several individual samples or diverse measurands. The device design and system implementation used the tools developed under this project.

Training and Development:
Research and teaching skills and experience:

- Team work with other graduates, technical staff, and faculty.
- Multidisciplinary approach to research and problem solving, involving expertise from other areas of knowledge (biotechniques, mechanical engineering, chemical, information theory, signal processing, and mathematical techniques).
- Co-advisory of undergraduate students by graduate student (monitored by the PI)
- Technical document writing and publication in peer reviewed journals by graduate and undergraduate students
- Paper presentations in conferences, both oral and poster by graduate and undergraduate students involved in the project
- Microwave equipment specification and purchase by graduate, undergraduate students, and staff.
- Computer network design and parallel operation
- Development of class material for GK-12 fellows for inclusion in local high school classes dealing with wireless and microwave techniques.
- Teaching assistant experience in preparing lab., working with professional software, and teaching undergraduate courses.
- Training, operation, and design of clean room equipment and techniques required for microelectronics fabrication. These techniques are necessary for the previously mentioned research activities involved in acoustic wave modeling, design, and experimental verification.
- Wireless sensor interrogation system design, antenna integration and optimization, and wireless sensor system implementation.

Outreach Activities:
Participation, seminar elaboration, and activities coordination in
- Engineering week at the University of Maine
- Monitor GK-12 fellows and high school activities
- NSF REU through advisory, student competitions
- NSF RET and associated seminars
- Integrative Graduate Education and Research Traineeship (IGERT) programs
- Discussion with visiting parents and students about the importance of STEM research
- Presentation and Laboratory visits to Elementary, Middle School, and High School students throughout the year
- Yearly Graduate and undergraduate EXPO seminars and poster presentations to the University community, visiting sponsors, parents, GK-12 schools, and overall community.

Journal Publications

Books or Other One-time Publications

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers

Editor(s): Institute of Electrical and Electronic Engineers

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2002 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2007 International Ultrasonics Symposium Proceedings

Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2007 International Ultrasonics Symposium Proceedings
Contributions within Discipline:

Major contributions within discipline include (technical details in the papers listed in this report):

- Identification of new High Velocity Pseudo Surface Acoustic Wave (HVPSAW), Pseudo Surface Acoustic Wave (PSAW), and Shear Horizontal Surface Acoustic Wave (SH-SAW) orientations in regular (quartz, lithium tantalate, and lithium niobate) and new piezoelectric crystals (potassium niobate, gallium orthophosphate, langasite family of crystal) for high frequency wireless applications and biosensor applications.
- Modeling of HVPSAW, and PSAW, and SH-SAW propagation and transduction properties, including the excitation, coupling and radiation to spurious bulk acoustic wave modes.
- Modeling of acoustic wave transducer and periodic structures on piezoelectric crystals. The relevance of this modeling reflects on enabling this technology and findings to be used in the design of higher frequency wireless filters and sensors for bio applications (liquid environment).
- Investigation of computational methods including boundary element method and finite element methods for propagation and structure modeling in finite and infinite structures for acoustic wave modal analysis and device applications.
- Investigation on piezoelectric crystal properties, orientations, and electrode thin film for wireless and sensor applications
- Investigation of passive wireless sensor systems using novel thin film electrode materials, piezoelectric crystals, and orientations researched.
Contributions to Other Disciplines:
The contributions within discipline previously described have impacted other fields of knowledge, namely the sensors, harsh environment devices for frequency control, and characterization of acoustic wave crystals. The impact is partially verified through the related publications attached to this report and also through contemporary work of other authors in the research of the gallium orthophosphate, potassium niobate, and the langasite family of crystals for high temperature sensors, liquid sensors, and material characterization. These publications can be found in different conferences' proceeding and journals, such as in the proceeding of the IEEE Ultrasonics Symposia, IEEE Frequency Control Symposia, and the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

Contributions to Human Resource Development:
This NSF Career project has been instrumental in providing research opportunities and scientific dissemination in the State of Maine through:
- Seven NSF REU Career students, five of which have become graduate students in Maine with the PI or one of his colleagues
- Training of local technicians and scientific personnel in acoustic wave device modeling and fabrication
- Participation in the NSF GK-12 program, through which the findings and training of graduate students have been brought to local high schools in Maine
- Participation in the NSF RET program, exposing the topics of the Career project to local Maine high school teachers, enabling their training during high school holidays, and ultimately bringing research topics to high school students.
- Integration with the Sensor NSF IGERT program at University of Maine, bringing multidisciplinary approach to the Career findings in terms of modeling, new piezoelectric materials research, and identification of new propagation modes.
- Enabling other successful proposals to be written and granted to the PI and co-workers in the areas of wireless communication, sensors, and material research, thus generating further personnel training to the State of Maine and to the country.

Contributions to Resources for Research and Education:
This NSF Career project has greatly facilitated the establishment of the Microwave Acoustic Laboratory (MAL) at the Department of Electrical and Computer Engineering and at the Laboratory for Surface Science and Engineering, the University of Maine. Through the MAL and the finding associated with this CAREER project in acoustic wave propagation calculation and device modeling, several other projects have been facilitated, including new piezoelectric crystals research and characterization, thin film research for acoustic wave device, gas sensor research, and biosensor research and device modeling.

The facilities put together in this project, in particular the generation of a computer cluster for the calculation of the finite element modeling used in the calculation of acoustic wave propagation and device modeling, granted the means and the environment for twelve graduate students and twenty seven undergraduate students under the direct advisory of the PI to develop their work. In addition, these facilities permit the interactions and platform to the work of high schools teachers, GK-12 fellows, the preparation of undergraduate microwave (ECE 453 Microwave Engineering) and Sensor lab (ECE 466 Sensor Laboratory and Instrumentation) courses thought by the PI with the assistance of his graduate students.

Contributions Beyond Science and Engineering:
As a result of this CAREER project, the PI has established contacts with companies and national laboratories interested in the outcomes of the project in terms of the identification of new propagation modes, acoustic wave device modeling, and new materials research. These companies and national laboratories are: Luna Innovations, VA; Vectron Inc., NH; RF Micro Devices, NC; Applied Sensor Research & Development Corporation, MD; the Oak Ridge National Laboratory; the Naval Undersea Warfare Center, RI; and the Air Force Research Laboratory, OH. The mentioned companies and national laboratories have also been interested and actively recruiting the graduate and undergraduate students trained by the PI under this project.

Conference Proceedings

Categories for which nothing is reported:
Organizational Partners
Any Web/Internet Site
Any Product
Any Conference
FEM/BEM Impedance and Power Analysis for Measured LGS SH-SAW Devices

Thomas D. Kenny, Student Member, IEEE, Thomas B. Pollard, Student Member, IEEE, Eric Berkenpas, Student Member, IEEE, and Mauricio Pereira da Cunha, Senior Member, IEEE

Abstract—Pure shear horizontal piezoelectrically active surface and bulk acoustic waves (SH-SAW and SH-BAW) exist along rotated Y-cuts, Euler angles (0°, θ, 90°), of trigonal class 32 group crystals, which include the LGX family of crystals (langasite, langatanate, and langanite). In this paper both SH-SAW and SH-BAW generated by finite-length, interdigital transducers (IDTs) on langasite, Euler angles (0°, 28°, 90°), are simulated using combined finite- and boundary-element methods (FEM/BEM). Aluminum and gold IDT electrodes ranging in thickness from 600 Å to 2000 Å have been simulated, fabricated, and tested, with both free and metalized surfaces outside the IDT regions considered. Around the device’s operating frequency, the percent difference between the calculated IDT impedance magnitude using the FEM/BEM model and the measurements is better than 5% for the different metal layers and thicknesses considered. The proportioning of SH-SAW and SH-BAW power is analyzed as a function of the number of IDT electrodes; type of electrode metal; and relative thickness of the electrode film, \(h / \lambda \), where \(\lambda \) is the SH-SAW wavelength. Simulation results show that moderate mechanical loading by gold electrodes increases the proportion of input power converted to SH-SAW. For example, with a split-electrode IDT, comprising 238 electrodes with a relative thickness \(h / \lambda = 0.63\% \) and surrounded by an infinitesimally thin conducting film, nearly 9% more input power is radiated as SH-SAW when gold instead of aluminum electrodes are used.

I. INTRODUCTION

The pure shear horizontal (SH) surface acoustic waves (SAW) that occur on rotated Y-cuts, Euler angles (0°, \(\theta \), 90°), of the LGX family of crystals (langasite, LGS; langatanate, LGT; and langanite, LGN) have been identified as having several attractive features for SAW device applications [1]–[5]. High frequency filtering, biological sensing, and liquid properties sensing are among these potential SAW applications along selected LGX substrate orientations, due to properties such as: higher phase velocity than the regular SAW or Rayleigh mode, which makes it suited for higher frequency devices; reduced attenuation compared to other SAW and PSAW modes when the surface is immersed in liquid, which can be used for liquid and biosensor applications; calculated and measured electromechanical coupling up to 0.8%; and slightly greater power penetration depth in comparison to the Rayleigh SAW mode, when a grating or thin metallic film is used for additional guidance of the SH-SAW at the surface. This latter property, namely the use of a uniform metallic film, is discussed and explored in this work to increase the proportion of input power converted to SH-SAW by the interdigital transducers (IDT) along LGS propagation directions of interest. For liquid sensor applications, the thin metallic film is used to isolate the device response from variations in the electrical properties of the liquid media [4].

Over the past three decades, boundary-element method (BEM) and finite-element method (FEM) techniques have been applied to the simulation of SAW devices. A rigorous BEM analysis of acoustical and electrical fields generated by IDTs was discussed in [6], which considered in particular the SH-SAW cut of PZT-4 Euler angles (0°, 90°, 0°). Finite-element techniques have been used more recently to perform full IDT analysis [7] and to incorporate the effect of mass loading due to the finite mass of the IDT electrodes into the BEM analysis, in the generation of SAW, pseudo-SAW [8]–[10], and SH-SAW [11]–[13].

Both finite structures [9], [10] and infinite periodic electrode structures [8], [11], [13] have been considered. In the case of infinite periodic electrode grating structures, the calculated dispersion curves have been used to extract modeling parameters, such as coupling of modes (COM) parameters [8] and network parameters [7].

This work reports on numerical simulations, using combined FEM/BEM techniques, and experimental results regarding the generation of SH-SAW and SH-BAW by finite-length IDTs along rotated Y-cut langasite, Euler angles (0°, 28°, 90°). This work also investigates the effect of mass loading by different metal types and thicknesses of IDT electrodes on the percentage of input power converted to SH-SAW, or the SH-SAW transduction efficiency. High transduction efficiency is critical for high performance, low-loss devices, with low spurious levels, and improved signal-to-noise ratio in the case of liquid sensors. Aluminum and gold IDT electrodes ranging in thickness from 600 Å to 2000 Å have been simulated, fabricated, and tested, with both free and metalized surfaces considered outside the IDT regions. Around the device’s operating frequency, the percent difference between calculated IDT impedance using the FEM/BEM model and the measurements is better than 5% for the different metal layers and thicknesses considered. The simulations performed have shown that, for the LGS propagation direction considered,
II. THEORETICAL BACKGROUND

The structure and coordinate system considered in this analysis are illustrated in Fig. 1. The IDT is patterned on the surface of a piezoelectric substrate that occupies the half-space \(z < 0 \). Surface regions outside of the IDT are considered free of mechanical stress, though they may be covered with an infinitesimally thin conducting film. The fields associated with each surface or bulk wave mode are assumed to follow \(F(x, z, t) = \tau(k_x, z)e^{j(\omega t-k_x x)} \), where \(\omega \) is the angular frequency, \(k_x \) is the wave-vector component parallel to the surface, and the function \(\tau(k_x, z) \) is the weighted sum of complex exponentials describing how \(F \) varies with depth. Surface waves propagate along \(\pm x \) rotated directions. No field variation is assumed in the direction normal to the sagittal plane (i.e., \(\partial/\partial y = 0 \)), and the phasor notation will be adopted from this point forward.

A. Spectrum of Waves

Applying a sinusoidal varying electric potential to IDT structures in piezoelectric solids generate a combination of surface and bulk acoustic waves, usually referred to as a “spectrum of waves” [6]–[13]. The knowledge of how the input electrical power distributes among the acoustical modes allows a better understanding of the IDT performance, which leads to improved modeling, and ultimately to the design of efficient transducers for a particular mode.

The pure SH-SAW orientation considered in this paper is a particular symmetry case, classified as symmetry Type 4 in [14], in which the sagittal mechanical particle displacement components uncouple from the electrical field and the shear horizontal mechanical particle displacement component, leading to two separate solutions. One solution is a purely mechanical sagittal wave, and the other solution is the piezoelectrically stiffened pure SH wave [15]. The fields used in the matrix method [16] to solve the acoustic wave problems along symmetry Type 4 orientations are the surface normal component of stress, \(T_z \); particle velocity, \(\nu_x \); surface normal component of electric displacement, \(D_z \); and electric potential, \(\phi \), arranged in the vector \(\tau = [T_z \ D_z \ \nu_x \ j\omega \phi]^T \), where the superscript “T” indicates transpose. The dependency of \(\tau \) with \(z \) is given by \((\partial \tau / \partial z) = j\omega [A] \tau \), where the system matrix \([A]\), defined in (1), is a function of slowness, \(s_x = k_x/\omega \), mass density, \(\rho \), and rotated stiffness, piezoelectric, and permittivity constants, \(c_{hijk} \), \(e_{ijk} \), and \(\varepsilon_{ik} \), respectively [16]:

\[
[A] = \left[s_x \begin{bmatrix} I_{13} & [X] & [g_0] - s_x^2 \{ [I_{11}] - (I_{13}) [X] [I_{31}] \} \end{bmatrix} [X] \begin{bmatrix} R_{31} \end{bmatrix} \right],
\]

(1)

where, for the particular symmetry 4 case:

\[
[r_{ik}] = \begin{bmatrix} \varepsilon_{12} & \varepsilon_{k2i} \\ \varepsilon_{k1i} & -\varepsilon_{ik} \end{bmatrix}, \quad [X] = [I_{33}]^{-1} [g_0] = \begin{bmatrix} \rho & 0 \\ 0 & 0 \end{bmatrix}.
\]

(2)

B. Partial Mode Selection

At any single angular frequency, \(\omega \), it is possible to express \(\tau \) as a function of \(k_x \) using normal-mode expansion of the eigenvectors and eigenvalues of \(j[\tau] \) [16] as in:

\[
\tau(k_x, z < 0) = [P] \begin{bmatrix} e^{j\gamma_1 z} & 0 \\ 0 & e^{j\gamma_2 z} \end{bmatrix} c,
\]

(3)

where \([P]\) is the \(4 \times 2 \) matrix containing 2 eigenvectors of \(j[\tau] \), \(\gamma_1 \) and \(\gamma_2 \) are the corresponding eigenvalues, and \(c \) is the \(2 \times 1 \) normal-mode weighting vector. Although the matrix \(j[\tau] \) has four eigenvectors, only those partial modes that decay with depth and those that radiate power into the lower half space [17] occupied by the substrate are selected to address any propagating mode, and consequently, to build \(\tau(k_x) \). For the coordinate system adopted, eigenvalues with positive real parts correspond to partial modes that decay with depth, herein called decaying partial modes. Purely imaginary eigenvalues correspond instead to radiating modes, or bulk waves. The \(k \)-vector of the \(i \)th bulk wave, \(k_i \), is given by:

\[
k_i = k_x \hat{x} + k_z \hat{z} = \omega s_x \hat{x} + j \omega \gamma_i \hat{z},
\]

(4)
where \(\gamma_i(s_x) \) is the \(i \)th purely imaginary eigenvalue of \(j [A] \) and \(\hat{x} \) and \(\hat{z} \) are unit vectors in the rotated coordinate system. The Poynting vector [18] of each bulk wave is examined to determine the direction of power flow, and the radiating modes that carry power downward toward the bulk of the crystal are selected.

C. Spectral Domain Green’s Functions

In this section, surface normal stress, \(T_0 \), and charge, \(\sigma \), are considered the source of all waves. The dependent variables are represented by the particle displacement, \(u_2 \), and surface potential, \(\phi \). From an electrical standpoint, the electrodes are considered infinitesimally thin sheets of charge located at the surface of the substrate, and the surface charge density, \(\sigma \), is equal to the divergence of the electric displacement evaluated at \(z = 0 \). Applying Laplace’s equation in the vacuum region above the substrate and calculating the divergence of \(D_3 \), one obtains:

\[
\sigma(k_x, z = 0) = \varepsilon_0 \omega |s_x| \phi(k_x, z = 0) - D_3(k_x, z = 0^-).
\] (5)

It is now possible to write the four-component vector \(\mathbf{\tau}_\sigma = [T_4 \sigma, \nu_2, j \omega \phi]^T \) at the surface in terms of the modified eigenvector matrix, \([P_\sigma] \):

\[
\mathbf{\tau}_\sigma(k_x, z = 0) = [T_4 \sigma, \nu_2, j \omega \phi]^T = [P_\sigma] \mathbf{c}(k_x),
\] (6)

where:

\[
[P_\sigma] = \begin{bmatrix}
- j \varepsilon_0 |s_x| [P(1,:)] \\
[P(4,:)] - [P(2,:)]
\end{bmatrix},
\] (7)

with \([P(1,:)]\), \([P(4,:)]\), and \([P(2,:)]\) indicating the matrices containing the 1st, the 4th, and the 2nd rows of \([P]\), respectively, and \([P(3:4,:)]\) the matrix containing 3rd and 4th rows of \([P]\), a notation adopted from the MATLAB® Software (The Mathworks, Natick, MA 01760). Manipulating (6), it is possible to express the surface potential and particle displacement in terms of surface stress, charge density, and the spectral domain Green’s functions as in:

\[
u_2 = \frac{\Gamma_\nu T_4 + \Gamma_{\nu\sigma}}{\omega} \sigma, \\
\phi = \frac{\Gamma_\phi T_4 + \Gamma_{\phi\sigma}}{\omega} \sigma,
\] (8)

where:

\[
\begin{bmatrix}
\Gamma_\nu T_4 & \Gamma_{\nu\sigma} \\
\Gamma_\phi T_4 & \Gamma_{\phi\sigma}
\end{bmatrix} = [P_\sigma(3:4,:)] [P_\sigma(1:2,:)]^{-1}.
\] (9)

Expressions (8) and (9) permit the calculation of the SH wave particle displacement and potential as a function of the distributed electrical charges and mechanical sources located at the surface. An additional equation relating particle displacement and surface stress is obtained next with the aid of FEM techniques, such that (8) and (9) may be combined, yielding a single equation relating electrical potential and surface charge density, including the effect of mass loading.

D. Finite-Element Method

In this work, FEM was applied to relate traction forces and particle displacements at the boundary between the isotropic metallic electrodes and the piezoelectric substrate. Each electrode was divided into discrete elements using a mesh of several linear triangle finite elements. All simulations presented in this work were carried out using triangular elements no wider than \(1/64 \)th of the SH-SAW wavelength and with a height-to-width ratio of no greater than \(8 \). Galerkin’s method [19] was applied to obtain a system of equations relating the reaction forces, \(f \), at each node of the finite-element mesh as

\[
f = ([K] - \omega^2 [M]) u = [Z] u,
\]

where the matrices \([K]\) and \([M]\) embody the elastic and mass properties of the metallic electrodes, respectively. There is no externally applied force at every node in the electrode finite-element mesh, except at the electrode/substrate boundary. Thus, it is possible to express the traction forces at the electrode/substrate interface, \(f_I \), in terms of the nodal displacements at the interface, \(u_I \), by:

\[
f_I = [Z_S] u_I,
\] (11)

where \([Z_S]\) is the matrix that relates all nodal interface traction forces to the respective SH particle displacements at the electrode/substrate interface due to mass loading. The determination of surface stress from these traction forces is discussed in the next section, in which the FEM and BEM techniques are combined.

E. Combining Finite- and Boundary-Element Methods

The surface stress vector is defined by

\[
T = \begin{bmatrix}
T_4^{(1)} & T_4^{(2)} & \ldots & T_4^{(N)}
\end{bmatrix}^T,
\]

where \(T_4^{(n)} \) is the complex coefficient of the rectangular stress pulse on the \(n \)th boundary element, and \(N \) is the total number of boundary elements for the entire IDT structure. The particle displacement within each finite element is interpolated linearly, and from Hooke’s Law, the stress within the isotropic element is \(T_4 = c_{44}(\partial u_2/\partial z) \) and is considered constant throughout each element. Thus, it is appropriate that the stress on the boundary elements be approximated using rectangular pulses. Likewise, the surface charge density is approximated using rectangular pulses and is represented by the charge density vector, \(\sigma = [\sigma^{(1)} \sigma^{(2)} \ldots \sigma^{(N)}]^T \) such that \(\sigma^{(n)} \) is the charge density on the \(n \)th boundary element.

The surface displacement vector \(u = [u_2(\Delta x) \ u_2(2\Delta x) \ldots u_2(N\Delta x)]^T \) comprises the particle displacements at the centers of the boundary elements. The displacement at each node at the interface is equal to the mean of the displacements found at the centers of the two adjacent boundary elements. Thus, \(u_I \) is linearly interpolated from \(u \) by \(u_I = [C] u \), where the matrix \([C]\) performs this averaging, and from (11) the nodal traction forces at the interface are related to \(u \) by \(f_I = [Z_S] [C] u \). The nodal forces at the endpoints of each element are averaged, and the result is divided by the element width and the unit aperture.
to find $T_i^{(n)}$ [10]. Performing this operation on $[Z_S]$ results in the matrix $[Z_{TS}]$ which relates element stress to nodal displacements:

$$T = [Z_{TS}] [C] u.$$ \hspace{1cm} (12)

Using (8), (9), and (12) one now can describe the relationship between surface charge density and potential, including the source effect of mass loading. The derivation is presented in Appendix A. The electrical potential on the boundary elements is represented by the potential vector $\phi = [\phi^{(1)} \phi^{(2)} \ldots \phi^{(N)}]^T$ where $\phi^{(n)}$ is the voltage on the nth boundary element. The convolution matrix $[H]$, derived in Appendix A and given by (A24), relates surface potential to surface charge density, including the effect of mass loading.

The electrical admittance of the IDT for any arbitrary arrangement of electrode potentials is calculated by applying the following electrical boundary conditions: charge density for boundary elements located in the gaps between the electrodes is equal to zero, $\sigma_{gap} = 0$; the potential for boundary elements located on positive and negative electrodes, ϕ_{pos} and ϕ_{neg}, are $+V/2$ and $-V/2$, respectively, where V is the peak-to-peak applied voltage between electrodes; zero net charge on the transducer, $\sum_{n=1}^{N} \sigma^{(n)} = 0$. The unknown quantities are potential on the gap elements, ϕ_{gap}, and charge density on the electrode elements, σ_{elec}, which are found by way of constrained least-squares minimization. The total IDT current, I_{IDT}, is given by:

$$I_{IDT} = j\omega \Delta x W \sum_{m=1}^{M} \sigma_{pos}^{(m)}$$ \hspace{1cm} (13)

where $\sigma_{pos}^{(m)}$ is the mth complex charge density coefficient taken only on positive voltage electrodes; W is the IDT aperture; and M is the total number of boundary elements associated with positive electrodes. The electrical admittance is found by Ohm’s Law, $Y(\omega) = I_{IDT}/V$.

F. Power Partitioning

The total power transduced by the IDT, $P_{TOT,IDT}$, may be divided into SH-SAW and SH-BAW contributions, as $P_{TOT,IDT} = P_{SH-SAW} + P_{SH-BAW}$. Partitioning electrical input power between SH-SAW and SH-BAW waves is performed using both numerical and analytical means as presented in [6] and [10]. At each frequency of interest, the Fourier transform of the surface stress and charge density distributions are computed for discrete values of k_z in order to determine the normal-mode weighting vector in (3). The fields, and thus the power spectral density of the SH-BAW mode, (dP_{SH-BAW}/dk_z), then may be calculated for all values of k_z. Because the SH-BAW exists over a finite interval of k_z, the total SH-BAW power radiated may be computed by numerical integration.

The power converted to SH-SAW is calculated using residue theory and is given by [6]:

$$P_{SH-SAW} = -\pi^2 \omega W \text{Re} \left(G_s \sigma (\omega s_o) \sigma (\omega s_o)^* \right).$$ \hspace{1cm} (14)

where G_s is a coefficient used to approximate the simple poles in the electrostatic Green’s function $\Gamma_{\phi\sigma}(s_x)$ used in (10). These poles are located at the free-surface SH-SAW slowness, $\pm s_o$, and are approximated as [6]:

$$\Gamma_{\phi\sigma}(pole) (s_x) = \frac{G_s}{s_x - s_o} + \frac{-G_s}{s_x + s_o}. \hspace{1cm} (15)$$

III. Numerical and Experimental Results

A. Equipment Used

The numerical simulations reported in this work were performed using MATLAB® Release 14 (The Mathworks, Inc., Natick, MA) on a DellTM 530 Precision Workstation (Dell Inc., Round Rock, TX) operating Windows® XP Professional (Microsoft Inc., Redmond, WA). The system was configured with dual Intel Pentium 4 Xeon® (Intel Inc., Santa Clara, CA) processors operating at 2.4 GHz and 4 Gb of system memory. The impedance measurements presented used an Agilent© 8753E S-Parameter Network Analyzer (Agilent Technologies Inc., Palo Alto, CA) and a vibration isolated Cascade™ Microtech probe station (Cascade Microtech Inc., Beaverton, OR) with 150 µm pitch ground-signal-ground test probes. The IDT electrode thickness was measured using a Tencor Alphastep 500 surface profilometer (KLA Tencor, San Jose, CA).

B. Radiation Plots and Power Partitioning on Langusite

There are BAW propagation directions in certain anisotropic crystals for which the k-vector may be oriented out of the substrate surface, whereas the power is still radiated to the bulk of the crystal. Fig. 2 shows the slowness surface of the SH-BAW in the sagittal plane of LGS (0°, 22°, 90°). The LGS constants used throughout this section have been taken from [20]. The bold portion of the curve indicates orientations for which the outward normal of the slowness curve has a $-z$ directed component. Eigenvectors corresponding to bulk waves radiated along these directions must be considered in the IDT power radiation analysis because they carry power away from the surface into the bulk of the crystal.

The distribution of bulk wave power with respect to the direction of propagation is given by [6]:

$$\frac{dP_{SH-BAW}}{d\theta_k} = \frac{dP_{SH-BAW}}{dk_x} \frac{dk_x}{d\theta_k}.$$ \hspace{1cm} (16)

where $\theta_k = \tan^{-1}(k_z/k_x)$ is the k-vector direction with k_x and k_z as defined in (4). Fig. 3 plots the normalized BAW power distribution, $(dP_{SH-BAW}/d\theta_k)/P_{SH-BAW}$, as a function of the wave vector direction for a split-finger IDT along LGS (0°, 22°, 90°), $N_e = 78$ IDT electrodes with no guard electrodes, $\lambda = 32 \mu m$, mark-to-space ratio 1:1, and a uniform aperture $W = 50\lambda$. The region external to the IDT is completely metalized with an infinitesimally
thin conducting film. Figs. 2 and 3 are very important in determining the crystal anisotropy, identifying the limits of integration in the calculation of total P_{SH-BAW}, and identifying which BAW modes and respective slowness values that contribute to the P_{SH-BAW} irradiated.

The crystal anisotropy that can be observed from Figs. 2 and 3 does not allow a proper visualization of the SH-BAW power radiation with depth. The SH-BAW radiation pattern inside the substrate [10] is given by:

$$\frac{dP_{SH-BAW}}{d\theta_A} = \frac{dP_{SH-BAW}}{dk_x} \frac{dk_x}{d\theta_A},$$

(17)

where $\theta_A = \tan^{-1}(S_{z,SH-BAW}/S_{x,SH-BAW})$ is the radiation angle with respect to the surface of the substrate, and $S_{x,SH-BAW}$ and $S_{z,SH-BAW}$ are the x- and z-directed components of the Poynting vector of the SH-BAW traveling with the k-vector direction θ_k.

Fig. 4 plots the normalized BAW power radiation pattern ($dP_{SH-BAW}/d\theta_A$)/P_{SH-BAW} with respect to radiation angle for the IDT referred to in Fig. 3. The metalized boundary condition has three major effects in the SH-BAW behavior. The first effect under the metalized substrate condition the SH-BAW tilts into the substrate at a higher angle, with the peak of the main lobe going from 1.9 degrees in the case of free substrate to 6.3 degrees in the case of metalized substrate. The second effect refers to the reduction of the IDT power converted into SH-BAW, thus increasing the IDT power converted to SH-SAW. The calculations performed in this work along LGS (0°, 22°, 90°) verified that, for the nonmetalized substrate case, more than 99% of the input power is delivered to the SH-BAW regardless of frequency, transducer length, or electrode thickness and metal type, a similar result to that obtained for PZT-4 in [6], and verified by the numerical routines developed in this work. The third effect of the metallization outside the IDT is an increase of the asymmetry of the SH-BAW main lobes, an effect that results from the crystal asymmetry that can be observed from Fig. 2.

Fig. 5 shows the percentage of IDT power converted to SH-SAW as a function of the number of IDT electrodes, N_e, when the LGS substrate surface outside the IDT structure is metalized. All of the simulated IDTs were split-finger type, with 4 µm electrode width and mark-to-space ratio 1:1. The ratio P_{SH-SAW}/P_{IDT} was calculated at the frequency at which the peak SH-SAW conductance occurred. The four mass-loading cases considered are: Case 1, massless electrodes; Case 2, 2000 Å aluminum (Al) electrodes; Case 3, 1000 Å gold (Au) electrodes; Case 4, 2000 Å Au electrodes. The material constants for the Al and Au electrode layers used throughout this work have been taken from [21].

As can be noticed from Fig. 5, the effect of mass loading due to the finite IDT electrode mass must be considered in the IDT analysis, due to the modest SH-SAW piezoelectric coupling effect of the LGS orientation considered when compared to PZT-4 used in [6]. Fig. 5 shows that
for Au electrodes of thickness $h/\lambda = 0.00625$ the ratio $P_{\text{SH-SAW}}/P_{\text{TOT,IDT}}$ increased based on type of electrode material and thickness from 35% to 38.5% for $N_e = 38$; and from 44.4% to 48.8% for $N_e = 78$; and from 55.2% to 62.9% for $N_e = 158$; from 61.8% to 71.7% for $N_e = 238$. These results show that the metallic electrode film material and thickness can be used to increase the SH-SAW transduction efficiency, thus resulting in improved performance, less device insertion loss, and higher sensitivity in the case of a SH-SAW sensor.

C. Measured and Calculated IDT Admittance for the SH-SAW on Langasite

The FEM/BEM calculations and the measured devices reported in this section refer to the LGS propagation direction Euler angles (0°, 22°, 90°). The SH-SAW devices have been fabricated and tested at the University of Maine cleanroom and acoustic microwave laboratory facilities. The first transducer consists of a split-finger IDT fabricated on LGS (0°, 22°, 90°) with $N_e = 80$, finger width, $a = 4 \mu m$, uniform $W = 50\lambda$, and a mark-to-space ratio of 1:1. Six dummy electrodes were patterned on each side, and the regions outside of the IDT were mechanically and electrically free. The electrodes were composed of 1820 Å of radio frequency (RF) magnetron sputtered aluminum on top of 100 Å electron beam (e-beam) evaporated chromium (Cr) adhesion layer. Fig. 6 shows both calculated and measured electrical admittance responses for this device. During all simulations considered here, Δx did not exceed 2.1% of the SH-SAW wavelength, and the ratio of finite-element width to height did not exceed 8:1. Based on the numerical predictions discussed in the previous section, 99.1% of the IDT input power is delivered to the SH-BAW for this combination of IDT structure and LGS propagation direction. As can be observed from Fig. 6, the percent difference between the FEM/BEM simulated magnitude of the IDT admittance and the measurement is better than 5%.

In order to verify the FEM/BEM model when a more significant fraction of the total IDT power is converted to SH-SAW, devices have been fabricated in which the regions outside the IDT have been metalized. Two IDT structures have been fabricated and tested. The first one consists of a split-finger IDT fabricated on LGS (0°, 22°, 90°) with $N_e = 80$, finger width, $a = 4 \mu m$, uniform $W = 25\lambda$, and a mark-to-space ratio of 1:1. For this first IDT structure, a 720 Å Al film has been RF magnetron sputter deposited on top of a 100 Å e-beam evaporated Cr adhesion layer. For the second IDT structure, the same IDT dimensions have been used, but Au electrodes were sputter deposited to a thickness of 526 Å over 100 Å e-beam evaporated Cr adhesion layer. Figs. 7 and 8 compare calculated and measured results for these cases. The agreement between calculated and measured results is better in the case of Fig. 7, in which the Al film has been sputtered all over the device, when compared to Fig. 8, in which a heavier Au film has been sputtered all over the device, indicating that the thickness and material of the film outside the IDT (not considered in the calculations) significantly affects the IDT impedance.

The results in this section show that the FEM/BEM model implemented predicts IDT admittance to within 5% of measured values along LGS symmetry Type 4 orientations, including the effect of different types of IDT electrode metallization and thickness.
Fig. 6. Calculated and measured IDT admittance on LGS (0°, 22°, 90°); split-finger IDT, 1820 Å Al, 100 Å Cr, \(N_e = 80 \), \(\lambda = 32 \mu m \), \(W = 50\lambda \), \(a = 4 \mu m \), nonmetalized case.

Fig. 7. Calculated and measured IDT admittance on LGS (0°, 22°, 90°); split-finger IDT, 720 Å Al, 100 Å Cr, \(N_e = 80 \), \(\lambda = 32 \mu m \), \(W = 25\lambda \), \(a = 4 \mu m \), metalized case.

Fig. 8. Calculated and measured IDT admittance on LGS (0°, 22°, 90°); split-finger IDT, 526 Å Au, 100 Å Cr, \(N_e = 80 \), \(\lambda = 32 \mu m \), \(W = 25\lambda \), \(a = 4 \mu m \), metalized case.

IV. Conclusions

The combined FEM/BEM IDT model implemented in this work has been used to calculate the IDT impedance considering both SH-SAW and SH-BAW piezoelectric active modes along the SH-cut LGS, Euler angles (0°, 22°, 90°), and the results have been compared to measured IDT impedances.

The effect of finite-thickness Al or Au electrodes and the presence (metalized case) or absence (nonmetalized case) of an infinitesimally thin metal guiding layer outside the IDT region have been included in the analysis.

Around the device’s operating frequency, the percent difference between calculated and measured magnitudes of the IDT impedance is better than 5%, considering the effect of mass loading by Al and Au IDT electrodes and both the metalized and nonmetalized cases.

Calculations of the IDT input power distribution between SH-SAW and SH-BAW, and therefore the calculation of the SH-SAW transduction efficiency, as a function of film type, thickness, and presence or absence of guiding films have been performed. It has been numerically verified that, for the nonmetalized case, less than 1% of IDT input power is converted to the SH-SAW mode, regardless of frequency, transducer length, and electrode thickness and metal type. That number increases to nearly 72% when a \(N_e = 238 \) split-electrode IDT, \(h/\lambda = 0.63\% \) Au electrodes surrounded by an infinitesimally thin conducting film is used, a 9.9% improvement over aluminum electrodes of comparable thickness. This increase of nearly 10% in SH-SAW transduction efficiency, which can be achieved when heavier Au electrodes are used, directly reflects in lower device losses, improved SH-SAW based sensor sensitivity, and increase in the signal-to-noise ratio of the sensor.

Appendix A

The surface charge density was represented by the charge density vector \(\sigma = [\sigma^{(1)} \sigma^{(2)} \ldots \sigma^{(N)}]^T \), where \(\sigma^{(n)} \) is the surface charge density on the \(n^{th} \) boundary element, and \(N \) is the total number of boundary elements. The actual surface charge density, \(\sigma(x) \) may be expressed as a continuous function of position in terms of \(\sigma \) by:

\[
\sigma(x) = \text{cvec}(x) \cdot \sigma, \tag{A1}
\]
where:

\textbf{cvect}(x) =
\[
\text{rect}\left(\frac{x - \Delta x}{\Delta x}\right) \text{rect}\left(\frac{x - 2\Delta x}{\Delta x}\right) \ldots \text{rect}\left(\frac{x - N\Delta x}{\Delta x}\right)^T,
\]
(A2)

and:

\[
\text{rect}\left(\frac{x - m\Delta x}{\Delta x}\right) = \begin{cases}
1 & -\frac{\Delta x}{2} \leq x - m\Delta x \leq \frac{\Delta x}{2} \\
0 & \text{otherwise}
\end{cases}.
\]
(A3)

For any position \(x\), located on the \(m\)th boundary element, the \(m\)th element of \textbf{cvect}(x) is equal to 1, and the remaining elements are 0. Thus, at any position on the \(m\)th boundary element, (A1) gives \(\sigma(x) = \sigma^{(m)}\). Similarly, the \(T_4\) surface stress component may be expressed in terms of \(\textbf{T}\) by:

\[
T_4(x) = \textbf{cvect}(x) \cdot \textbf{T}.
\]
(A4)

The forward and inverse Fourier transforms adopted in this work are defined, respectively, as:

\[
\tilde{f}(k_x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{jk_x x} dx,
\]
(A5)

\[
f(x) = \int_{-\infty}^{\infty} \tilde{f}(k_x) e^{-jk_x x} dk_x.
\]
(A6)

Applying the Fourier transform (A5) to \textbf{cvect}(x) gives:

\[
\textbf{cvect}(k_x) = \frac{\Delta x}{2\pi} \text{sinc}\left(\frac{k_x \Delta x}{2}\right) \text{cvect}(x) \cdot \left[e^{jk_x \Delta x} e^{jk_x 2\Delta x} \ldots e^{jk_x N\Delta x}\right].
\]
(A7)

Because \(\textbf{T}\) and \(\sigma\) are independent of position, the Fourier transform of charge and surface stress, respectively, are given by:

\[
\text{\overline{\sigma}}(k_x, z = 0) = \text{cvect}(k_x) \cdot \sigma,
\]
(A8)

\[
\text{\overline{T}_4}(k_x, z = 0) = \text{cvect}(k_x) \cdot \textbf{T}.
\]
(A9)

where the overbar denotes that the quantity is given in the spectral domain, as indicated by (A5).

Combining (8), (9), (A8), and (A9), one obtains expressions for the particle displacement and surface potential in terms of \(\textbf{T}\) and \(\sigma\):

\[
u_2(x) = \frac{\Gamma_{uT}}{\omega} \text{cvect}(k_x) \cdot \textbf{T} + \frac{\Gamma_{u\sigma}}{\omega} \text{cvect}(k_x) \cdot \sigma,
\]
(A10)

\[
\phi(x) = \frac{\Gamma_{\phi T}}{\omega} \text{cvect}(k_x) \cdot \textbf{T} + \frac{\Gamma_{\phi \sigma}}{\omega} \text{cvect}(k_x) \cdot \sigma.
\]
(A11)

Applying the inverse transform given by (A6) to equation (A10), one obtains an integral expression for the real-space particle displacement:

\[
u_2(x) = \int_{-\infty}^{\infty} \left(\Gamma_{uT} \text{cvect}(\omega s_x) \cdot \textbf{T} + \Gamma_{u\sigma} \text{cvect}(\omega s_x) \cdot \sigma\right) e^{-j\omega s_x x} ds_x.
\]
(A12)

The particle displacement at the center on the \(m\)th boundary element is equal to the mean displacement on the element, which is computed by applying:

\[
u^{(m)} = \frac{1}{\Delta x} \int_{-\infty}^{\infty} \nu_2(x) \text{rect}\left(\frac{x - m\Delta x}{\Delta x}\right) dx.
\]
(A13)

Inserting (A12) into (A13) results in an expression relating the displacement vector \(\textbf{u}\) to \(\textbf{T}\) and \(\sigma\):

\[
\textbf{u} = \left[\Phi\right] \text{\overline{\textbf{T}}} = [\Lambda] \sigma.
\]
(A14)

Combining (9), which relates the surface stress vector \(\textbf{T}\) to \(\textbf{u}\), and (A14), one obtains (A15), which gives the displacement vector \(\textbf{u}\) in terms of charge density, including the effect of mass loading by the IDT electrodes:

\[
\textbf{u} = \left[\Phi\right] \left[\frac{Z_{TS}}{\text{\overline{C}}}\right]^{-1} [\Lambda] \sigma,
\]
(A15)

where:

\[
\text{\overline{C}} = \text{Identity matrix},
\]
(A16)

\[
\Lambda_{nm} = \frac{\Delta x}{2\pi} \int_{-\infty}^{\infty} \Gamma_{u\sigma} (s_x) \text{sinc}^2(0.5\omega s_x \Delta x)
\times \exp(-j\omega s_x (n - m)\Delta x) ds_x,
\]
(A17)

\[
\Phi_{nm} = \frac{\Delta x}{2\pi} \int_{-\infty}^{\infty} \Gamma_{\phi T} (s_x) \text{sinc}^2(0.5\omega s_x \Delta x)
\times \exp(-j\omega s_x (n - m)\Delta x) ds_x.
\]
(A18)

Applying the inverse transform to (A11), one obtains an integral expression for the real-space surface potential, \(\phi(x)\), given by:

\[
\phi(x) = \int_{-\infty}^{\infty} \left(\Gamma_{\phi T} \text{cvect}(\omega s_x) \cdot \textbf{T} + \Gamma_{\phi \sigma} \text{cvect}(\omega s_x) \cdot \sigma\right) e^{-j\omega s_x x} ds_x.
\]
(A19)

The potential is assumed uniform across each boundary element, and the potential on the \(m\)th boundary element is given by:

\[
\phi^{(m)} = \frac{1}{\Delta x} \int_{-\infty}^{\infty} \phi(x) \text{rect}\left(\frac{x - m\Delta x}{\Delta x}\right) dx.
\]
(A20)
The surface potential vector is given by:

\[\phi = [\Theta]T + [\Psi]\sigma \]
\[(A21) \]

where:

\[\Theta_{nm} = \frac{\Delta x}{2\pi} \int_{-\infty}^{\infty} \Gamma_{\phi T} (s_x) \text{sinc}^2(0.5\omega s_x \Delta x) \times \exp(-j\omega s_x (n-m) \Delta x) ds_x, \]
\[(A22) \]

\[\Psi_{nm} = \frac{\Delta x}{2\pi} \int_{-\infty}^{\infty} \Gamma_{\phi \sigma} (s_x) \text{sinc}^2(0.5\omega s_x \Delta x) \times \exp(-j\omega s_x (n-m) \Delta x) ds_x. \]
\[(A23) \]

Inserting (12) into (A21), and substituting (A15) for the displacement vector, one obtains (A24), in which the N × N convolution matrix [H] gives the potential vector \(\phi \) resulting from distributed surface charge \(\sigma \), including the source effect of mass loading:

\[\phi = [H]\sigma = (\Theta[Z_{TS}][C] - [\Phi][Z_{TS}][C])^{-1}[\Lambda + [\Psi]]\sigma. \]
\[(A24) \]

Thus, the potential on the \(m^{th} \) boundary element resulting from the charge distribution over the entire IDT is given by \(\phi^{(m)} = \sum_{n=1}^{N} H_{mn}\sigma^{(n)}. \)

When regions outside of the IDT are metalized by an infinitesimally thin conducting film, the source of waves is instead surface normal stress, \(T_4 \), and tangential electric field, \(E_1 \). The resulting fields [6] are then particle displacement, \(u_2 \), and integrated charge, defined as \(Q(x) = \int_{-\infty}^{x} \sigma(x) dx \). Spectral domain Green’s functions are calculated for the metalized case, and the remaining analysis is unchanged with respect to the non-metalized case.

References

Thomas Bain Pollard (S’02) was born in Blue Hill, ME, on October 29, 1979. He received the B.S. degree in computer engineering at the University of Maine, Orono, ME, in 2003 and is currently pursuing his Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Maine. He has been involved with microwave acoustics research in the Microwave Acoustics Laboratory at the University of Maine’s Laboratory for Surface Science and Technology (LASST) since the fall of 1999. As an undergraduate student he was a three time participant in the National Science Foundation Research Experience for Undergraduates (NSF-REU) summer program at the University of Maine. His current research interests are SAW liquid biosensors, new materials, shear horizontal SAW, and interdigital transducer modeling. He has twice been a student paper competition finalist at the 2003 and 2004 Ultrasonics Symposia.

Eric Berkenpas (S’02) was born in Iowa in the United States in 1978. He received his B.S. degree in electrical engineering with a minor in computer science from the South Dakota State University in May of 2002. He received the M.S. degree in electrical engineering from the University of Maine, Orono, ME, in 2005. His research interests include surface acoustic wave devices, biological sensing, and sensor instrumentation.

Mauricio has worked with the Microwave Devices R&D Group at NEC (Nippon Electric Co.), Brazil, Laboratório de Microeletrônica, Escola Politécnica, Department of Electrical Engineering, Universidade de São Paulo, McGill University, Montreal, PQ, Canada, and SAWTEK Inc., Orlando, FL. He passed a sabbatical year at University of Central Florida, Consortium for Applied Acoustoelectronic Technology (CAAT), Orlando, FL, where he worked in cooperation with Piezotechnology Inc., on the characterization of new piezoelectric materials, namely langatate, langanite, and langasite, and with bulk and surface acoustic wave devices. Mauricio was a Professor in the Department of Electronic Engineering, Universidade de São Paulo until he joined the Department of Electrical and Computer Engineering at the University of Maine in 2001.

Dr. Pereira da Cunha is a member of the IEEE, Sigma Xi, and of the Brazilian Microwave Society (SBMO). He was elected to serve on the SBMO Administrative Committee from 1996 to 1999. He is a reviewer for the IEEE UFFC TRANSACTIONS, and he has been a member of the IEEE International Ultrasonics Symposium Technical Program Committee since 1997. He has served on the UFFC-Society Administrative Committee from 2002–2004. At Ultrasonics Symposia he gave the invited paper, “High Velocity Pseudo Surface Acoustic Waves (HVPSAW): Further Insight,” in 1996, and presented the short course, “SAW, PSAW, and BAW Materials and Devices” in 2000. He wrote the invited paper “Pseudo and High Velocity Pseudo SAWs,” for the International Journal of High Speed Electronics and Systems (IJHSES), also published as a chapter in the book Advances in SAW Technology, Systems and Application, vol. 2, Singapore, (2001).