6-2-2006

Numerical Facility in Geodynamics

Peter O. Koons
Principal Investigator; University of Maine, Orono, peter.koons@maine.edu

Scott Johnson
Co-Principal Investigator; University of Maine, Orono, johnsons@maine.edu

Phaedra Upton
Co-Principal Investigator, Otago University, New Zealand, p.upton@gns.cri.nz

Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports

Part of the Geomorphology Commons

Recommended Citation
Koons, Peter O.; Johnson, Scott; and Upton, Phaedra, "Numerical Facility in Geodynamics" (2006). University of Maine Office of Research and Sponsored Programs: Grant Reports. 77.
https://digitalcommons.library.umaine.edu/orsp_reports/77

This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Submitted on: 06/02/2006
Principal Investigator: Koons, Peter O.
Award ID: 0236756
Organization: University of Maine
Title:
Numerical Facility in Geodynamics

Project Participants

Senior Personnel
Name: Koons, Peter
Worked for more than 160 Hours: Yes
Contribution to Project:

Name: Johnson, Scott
Worked for more than 160 Hours: Yes
Contribution to Project:

Name: Upton, Phaedra
Worked for more than 160 Hours: Yes
Contribution to Project:

Post-doc
Graduate Student
Undergraduate Student
Technician, Programmer
Other Participant

Research Experience for Undergraduates

Organizational Partners

Other Collaborators or Contacts

Activities and Findings

Journal Publications

Books or Other One-time Publications

Web/Internet Site
Other Specific Products

Contributions

Categories for which nothing is reported:

Organizational Partners
Activities and Findings: Any Research and Education Activities
Activities and Findings: Any Findings
Activities and Findings: Any Training and Development
Activities and Findings: Any Outreach Activities
Any Journal
Any Book
Any Web/Internet Site
Any Product
Any Contribution

Using the funds from this grant, together with those from the University of Maine to the PI (Koons), we have purchased a cluster of DELL dual core machines that permit multi-processor parallel computing on up to 16 processors with extension into the University of Maine Supercomputer facility described below. Software purchased from these funds includes finite element, finite difference, visualization software, and standard data presentation software. This cluster forms the core of the Numerical Facility for Geodynamics at the University of Maine and serves faculty, graduate, and undergraduate students from within the Department of Earth Sciences and the Climate Change Institute. The primary use is for three-dimensional mechanical modeling of the deforming lithosphere coupled with 3d thermal modeling and investigations into surface evolution.

Initially, our proposal had requested funding for one year to aid in construction of a center for numerical modeling in geodynamics. We were granted the approximate amount that we requested but over a three year period rather than for the single year that we had requested. This decision on the part of the panel to extend the grant over three years has proven very valuable in that the extra time has allowed us to leverage the facility money with other research proposals to NSF and other funding bodies, and, more importantly, has provided us with time to link more completely with other University of Maine computing centers. In particular, we have developed our cluster to integrate with the Super computing multi-node center being developed at the Target Technology Center in Orono, Maine. The primary cluster contains 256 compute nodes, each containing dual power PC 2.0 Ghz processors (i.e., for a total of 512 compute processors) two gigabytes of RAM and 80 Gigabyte serial ATA disk drives for local storage. These compute nodes can boot into either MacOSX or the Linux operating system. Separate master nodes are provided for each cluster and virtual LANs are used to dynamically assign compute nodes to a cluster. The master node that controls the MacOSX cluster contains dual power PC 2.0 Ghz G5 processors, with four gigabytes of memory, and a 240-gigabyte Serial ATA local disk drive, and a dual fibre channel PCIX card to communicate with the cluster-wide storage system. The master node that controls the (Debian) Linux cluster contains dual 2.0 Ghz power PC processors, with two gigabytes of RAM and an 80-gigabyte serial ATA disk for local storage as well as fibre channel connection to the cluster-wide storage system. The overall cluster is designed in such a way that nodes may be dynamically assigned to either the OSX cluster or the Linux cluster as the needs arise. The cluster-wide storage system is based on Apple Xserve Raid devices and is easily expandable. Communication between nodes currently uses dual gigabit Ethernet connections and is in the process of being upgraded to a high speed fiber optic network.

The resulting numerical capability attracts students and faculty from within and outside of the University of Maine for research, teaching and outreach. The Facility has provided a central tool in MSc and PhD research by students in the Department of Earth Sciences and Climate Change Institute at the University of Maine including: L. Brown (MSc), M. Dupee (MSc), C.Rodda (MSc), A.Barker (MSc), H.Short (PhD), W. Groome (PhD), C.Gerbi (PhD), C. Hofstede (PhD), E. Osterberg (PhD).
One of the goals of the facility has been to serve as a center of numerical modeling for other investigators from Maine and northern New England, as well as from the larger national and international research community. In this respect, we have been successful, attracting collaborators from other institutes in Maine (D. Reusch, UMF; D. Eusden, Bates College) leading to co-supervision of students from each of these institutes. The facility has been at the core of collaborative research projects where the University of Maine researchers provide numerical modeling for projects that include P. Armstrong (Cal. State Fullerton); M. Bishop (U. Nebraska); J. Blum (U. Michigan); R. Bruhn (U. Utah); C.P. Chamberlain (Stanford); A.F. Cooper (U. Otago); D. Craw (U. Otago); J. Freymueller (U. Alaska); B. Hallet (U. Washington); P. Haeusler (USGS); M. Henderson (U. Otago); W.S.F. Kidd (SUNY Albany); D. Montgomery (U. Washington); A. Meltzer (Lehigh); R. J. Norris (U. Otago); G. Pavlis (U. Indiana); T. Pavlis (U. New Orleans); L. Serpa (U. New Orleans); J. Shroder (U. Nebraska); D. West (Middlebury); P. Zeitler (Lehigh). Many of these individuals have visited our facility to use the computational facilities and to work with PI’s on hardware and software funded by this proposal.

International cooperation has grown around this facility through collaborative programs with Prof. Robinson (Norway), Dr. M. Terry (Bayreuth, Germany), Prof. M Strecker (Potsdam, Germany), Prof D. Craw (New Zealand), Dr. M Begbie (New Zealand). These links have led to ongoing research projects with international faculty and student exchange.

Publications from research employing the numerical facility (~15)


Koons, P.O., P. Upton, M.P. Terry, 2003, Three-dimensional mechanics of UHPM terrains and resultant P-T-t paths, European Mineralogical Union, Chapter 9, 5, 415-441


Upton, P., P.O. Koons, Three-dimensional geodynamic framework for the Central Southern Alps, New Zealand: Integrating geology, geophysics and mechanical observations; Submitted to AGU Monograph: Geotectonic Investigation of a Modern Continent-Continent Collisional Orogen: Southern Alps, NZ

Groome, W.G., Johnson, S.E. and Koons, P.O. (accepted pending revision) The effects of porphyroblast growth on the effective viscosity of metapelitic rocks: implications for the strength of the middle crust. Journal of Metamorphic Geology (accepted)

Abstracts from professional presentations related to this proposal (~38)


Koons, P.O., Markley, M., Koons, P.O., Theory and Application of Fault-Related Folding in Foreland Basins, 25 June to 4 July 2005, Beijing, China

Upton, P., Koons, P.O. Three-dimensional geodynamic modeling of the Southern Alps of New Zealand: integrating models and observations to understand crustal rheology. Eos Trans. AGU, Fall Meet. Suppl.; in press December, 2005


Koons, P.O., A. Barker, P. Upton, T Pavlis: Numerical and Analog 3D Models of the Crustal Evolution of Southeast Alaska; Invited keynote participant: Chapman Conference; AGU, Active Tectonics and Seismic Potential of Alaska; (05/06).