7-28-2011

Ice-Bed Coupling Beneath and Beyond Ice Streams: Byrd Glacier, Antarctica

Terence J. Hughes
University of Maine - Main, terry.hughes@maine.edu

Aitbala Sargent

James L. Fastook

Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub

Part of the Earth Sciences Commons

Repository Citation
Hughes, Terence J.; Sargent, Aitbala; and Fastook, James L., "Ice-Bed Coupling Beneath and Beyond Ice Streams: Byrd Glacier, Antarctica" (2011). Earth Science Faculty Scholarship. 49.
https://digitalcommons.library.umaine.edu/ers_facpub/49

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Ice-bed coupling beneath and beyond ice streams:
Byrd Glacier, Antarctica

Terence Hughes,1 Aitbala Sargent,2 and James Fastook2

Received 11 October 2010; revised 25 March 2011; accepted 18 April 2011; published 28 July 2011.

[1] Ice sheet thickness is determined mainly by the strength of ice-bed coupling that controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from 820 m yr−1 to 900 m yr−1. This resulted in partial ice-bed recoupling above the lakes and partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using flowband and flowline models in which the controlling variable for ice height above the bed is the floating fraction φ of ice along the flowband and flowline. Changes in φ before and after drainage are obtained from available data, but more reliable data in the map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding velocity is derived that depends on φ, with contributions from ice shearing over coupled beds and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.

1. Introduction

[2] We seek to determine the strength of ice-bed coupling beneath and beyond Byrd Glacier that decreases from sheet to stream to shelf flow. Byrd Glacier has the largest ice drainage system on the planet (Figure 1). It drains about ten percent of the East Antarctic Ice Sheet [Rignot and Thomas, 2002]. Byrd Glacier occupies a fjord 100 km long through the Transantarctic Mountains, and becomes afloat halfway along the fjord before entering Ross Ice Shelf at 80.5°S, 160°E. Fast streamflow develops from tributaries in strongly converging sheet flow beyond the fjord headwall. Stearns et al. [2008] reported that velocity in Byrd Glacier increased by ten percent, from 820 m yr−1 to 900 m yr−1 from December 2005 to February 2007, a time when two large subglacial lakes in the zone of converging flow were draining, producing a flood of water that would have reduced ice-bed coupling beneath Byrd Glacier during this time. Previous attempts to model basal thermal conditions along Byrd Glacier led to the conclusion that the bed was largely or wholly frozen, a condition that would prevent drainage of these lakes [Scofield, 1988; Scofield et al., 1991; Whillans et al., 1989; Van der Veen, 1999, p. 43]. Using a holistic approach, Reusch and Hughes [2003] calculated a “floating fraction” of ice that decreased from 1.0, where Byrd Glacier became fully afloat, in an irregular way to a minimum of 0.4 near the fjord headwall, before climbing to 0.6 in the zone of converging flow where the subglacial lakes were located.

[3] We review the database for Byrd Glacier and previous modeling approaches. Then we further develop the modeling approach by Reusch and Hughes [2003] that showed the most promise for allowing subglacial lake drainage. We apply the treatment to Byrd Glacier and the findings by Stearns et al. [2008]. We conclude with recommendations for future research.

2. Background

[4] Byrd Glacier was recognized as an important ice stream because of its size and velocity [Swithinbank, 1963], relatively simple geometry [Hughes, 1977], and proximity to McMurdo Station, the hub of American logistical operations in Antarctica (Figure 1). Swithinbank [1963] used surface surveying techniques and aerial photogrammetry to map a longitudinal velocity profile across the floating part of Byrd Glacier. These techniques were then employed along the full length of Byrd Glacier; the zone of converging flow at it is head and where it merged with Ross Ice Shelf at its foot [Hughes and Fastook, 1981]. Surveying stations were located along the fjord walls and artificial surveying targets were placed on the glacier. Fixed and moving targets were observed in aerial photos. The surface survey located a narrow grounding zone halfway up the fjord, across which tidal motion vanished. The aerial photogrammetric survey measured 1467 ice elevations and 601 ice velocities from moving patterns of surface crevasses [Brecher, 1986]. Velocity data showed that side drag increased from a minimum as ice entered the fjord to a maximum halfway to the ungrounding

1Department of Earth Sciences, Climate Change Institute, University of Maine, Orono, Maine, USA.
2Department of Computer Sciences, Climate Change Institute, University of Maine, Orono, Maine, USA.

Copyright 2011 by the American Geophysical Union.
0148-0227/11/2010JF001896
by lateral rifts under Whillans et al. [1989]; Zhao, 1990; Van der Veen, 1999, Figure 3.6].

5. Katabatic winds blowing down Byrd Glacier produce a surface "ablation" zone inside the fjord due to sublimation. Most surface meltwater refreezes in crevasses, so melting is not true ablation. Stakes close to the centerline yielded "ablation" rates that increased from 0.1 m yr\(^{-1}\) at the fjord entrance to 0.3 m yr\(^{-1}\) at the fjord exit during the 1978–1979 austral summer, with surface accumulation replacing surface "ablation" as katabatic winds died out on Ross Ice Shelf [Hughes and Fastook, 1981]. About halfway through the fjord, near the ungrounding line, surface ice took the appearance of a dried-out streambed, with polygonal "platforms" of ice some 10 m to 30 m across surrounded by crevasses about 20 m deep. When this ice reached the lower end of the fjord, about 50 km downstream, surface "ablation" had converted the platforms into conical hills about 5 m high and the crevasses were gone. Centerline ice velocity averaged 800 m yr\(^{-1}\) over this 50 km distance, giving a surface "ablation

Figure 1. The ice catchment area of Byrd Glacier in East Antarctica. The ice elevation contour interval is 0.1 km. BEDMAP surface and bed profiles are used along the flowline/flowband shown. Modified from Drewry [1983] [see Hughes, 1998, Figure 3.35].
rate” of 20 m in 50 years, or about 0.3 to 0.4 m yr⁻¹. Basal melting rates under floating ice inside the fjord were true ablation. Using the Brecher [1986] data for surface velocities and elevations, and calculating ice thickness from surface elevations and the buoyancy condition for floating ice, Kenneally and Hughes [2004] calculated basal melting rates of 12 ± 2 m yr⁻¹ over this 50 km floating length.

Scofield [1988] and Scofield et al. [1991] used surface data to calculate profiles of the vertical variation of ice velocity inside an ice flowband that bracketed the radar flightline in Figure 2 along which a bed reflection was obtained. A flowband lies between adjacent flowlines, which are lines of surface ice flow drawn normal to surface elevation contour lines (see Figure 2). For ice sliding on a thawed bed, a basal melting rate of 8 ± 3 m yr⁻¹ satisfied mass balance continuity. This rate is an order of magnitude higher than could be produced by a reasonable geothermal heat flux and strain heating of ice when basal sliding velocities equal measured surface velocities. For ice creeping over a frozen bed, ice velocities decrease from measured surface values to zero at the bed, depending on vertical variations of ice temperature and ice crystal orientations, both of which are unknown. However, ice warms with depth and tends to develop an “easy glide” ice fabric near a frozen bed. Vertical profiles of horizontal ice velocity were therefore constructed that preserved mass balance continuity in the flowband at distance of 4.5, 9.6, 16.5, 32, and 41 km upslope from the grounding line. Basal sliding velocities requiring a partly thawed bed were obtained for a linear increase of ice temperature with depth at distances of 4.5, 9.6, and 32 km. Some internal ice deformation due to creep above a frozen bed was required in addition to basal sliding on a thawed bed for mass balance continuity to be preserved at these locations. For a frozen bed with no basal sliding, ice temperatures and fabrics were adjusted within acceptable limits in order to obtain creep velocity variations that preserved mass balance continuity.

Whillans et al. [1989] used the force-budget approach developed by Van der Veen and Whillans [1989a, 1989b] to calculate stresses and velocities for Byrd Glacier in three dimensions, assuming bed topography mapped along the flightline in Figure 2 did not vary laterally across the glacier. They used surface elevations and velocities mapped by Brecher [1986] and the flow law of ice to calculate changes in velocities and stresses with depth through the thickness of both grounded and floating ice. The gravita-

Figure 2. The only radio echo flightline giving a nearly continuous bottom reflection for Byrd Glacier. (a) The flightline (solid line) is shown in relation to a near-central ice flowband (dashed lines). GZ is the grounding zone according to Scofield [1988]. (b) Top and bottom reflections along the radio echo flightline [from Reusch and Hughes, 2003].
and thawed regions, but Van der Veen [1999, p. 43] concluded the bed was frozen.

3. Theory

[8] Calculating a “floating fraction” along Byrd Glacier began with Reusch and Hughes [2003]. They employed a geometrical approach to the longitudinal force balance in the direction of ice flow that gave an ice stream “pulling power” linked to the “floating fraction” of ice [Hughes, 1992]. Pulling power is the product of the gravitational pulling force and the ice velocity, so it is a measure of the ability of an ice stream to draw down interior ice. Downward gives ice streams their concave profile, in sharp contrast to the convex profile generated by slower sheet flow. Pulling power requires a bed similar to the one shown in Figure 3. The floating portions of ice in basal area \(A_I \) sum to give area \(A_F \), where \(A_F = 0 \) when ice is fully grounded and \(A_F = A_I \) when ice is fully floating. In general, these are the respective conditions for sheet flow and shelf flow, so \(0 < A_F < A_I \) in streamflow represents a transition from sheet flow to shelf flow. The physical basis for a “floating fraction” is elusive. Is it parts of the bed where bedrock bumps that control basal friction? We do not know, but the important point is the “floating fraction” of the bed is the region where the bed provides no resistance to ice flow owing to the concentration of basal water that effectively uncouples ice from the bed.

[9] In the geometrical force balance along ice flow, floating fraction \(\phi \) of ice is formally defined at any location \(x \) along a flowband of ice where \(w_I \) is the floating part of width \(w_I \) in Figure 3 so \(\phi = A_F/A_I \) in area \(A_I = w_I \Delta x \) becomes

\[
\phi = \frac{w_F}{w_I} = \frac{h_F}{h_I} = \frac{(\rho_w/\rho_i)h_W - \rho_w g h_W \rho_I gh_I}{P_W \rho_I} \tag{1}
\]

Here \(P_W = \rho_I g h_W \) is an “effective” basal water pressure “produced” by an “effective” water height \(h_W \) above the bed that would float ice of height \(h_I \), is the sum of side shear stresses and gradients in the longitudinal and transverse directions. These were converted into stresses that resisted gravitational flow using the flow law. The force-budget approach allows resisting stresses to be calculated at depth, with the basal shear stress obtained from the difference between the driving stress and the sum of side shear stresses and gradients in the longitudinal and transverse directions. Vertical strain rates were obtained from the incompressibility of ice, so that longitudinal, transverse, and vertical strain rates sum to zero. Ice stiffness was assumed to be constant throughout Byrd Glacier, so softening of ice caused by higher temperatures at depth and by development of “easy glide” ice fabrics caused by basal and side drag were ignored. With these constraints, results were most reliable along the flowline in Figure 2. The basal shear stress was effectively zero for floating ice, as expected, and high for grounded ice, with the highest values locating basal “sticky spots.” These results indicated a bed having frozen strain rates were obtained from the surface slope of ice. Surface strain rates were obtained from vertical strains.

\[
\Delta x = w_I \Delta x
\]
Here P_W is the gravitational driving stress, a is ice surface slope, $\partial(\sigma, h)/\partial x$ is the longitudinal force gradient, τ_o is the basal shear stress, and τ_S is the side shear stress, all at x. Table 1 from Hughes [2009a] shows how all these stresses depend on ϕ at x, where flotation stress $\sigma_F = \sigma_W + \sigma_T$ for water stress σ_W, defined by the force balance $\sigma_Wh_I = \overline{P}_Wh_W$, and tensile stress σ_T that provides pulling power. Here $\overline{P}_W = 1/2 \rho g h_W$ is the average “effective” water pressure in “effective” water height h_W. When $\phi = 1$, \overline{P}_W is the actual average water pressure and h_W is the actual water height.
because ice is fully afloat. Figure 5 plots the stress equations in Table 1, as fractions of P_{T} or $P_{I} = 1/2 P_{h}$ over the range $0 \leq \phi \leq 1$.

4. Consider a Flowband Having the Nearly Constant Width of Byrd Glacier

[11] In Figure 4 for constant w_{I}, flotation, water, and tensile stresses σ_{F}, σ_{W}, and σ_{T}, respectively, resist gravitational driving forces represented by triangular areas 3, 4, 3, and 4, respectively, of triangular area $1 + 2 + 3 + 4$ that represents total gravitational driving force $F_{G} = P_{I}A_{A}$, where $P_{I} = 1/2 P_{I}$ is ice pressure averaged through h_{I} and acting on area $A_{A} = w_{I}h_{I}$. Compressive stress $\sigma_{C} = P_{I} - \sigma_{T}$ at x resists the gravitational driving force represented by areas 1, 2, and 3. Here σ_{C} at x is a proxy for all downstream resistance to ice flow caused by average basal and side shears τ_{O} and τ_{S} along x, effective and actual average basal water pressure $P_{w} = P_{I}$ at $x = 0$ where $\phi = 1$, and buttressing force F_{B} caused by a confined and pinned ice shelf floating beyond the ungrounding line at $x = 0$. Basal and side resisting shear stresses τ_{O} and τ_{S} at x are respectively linked to gravitational driving forces represented by the differences between areas 5 and 1 for τ_{O} and areas 6 and 2 for τ_{S} as $\Delta x \to 0$ in Figure 4. The ϕ dependence of these stresses, given in Table 1, are derived by Hughes [2009a].

[12] A first approximation for ϕ at x is obtained from the linear geometrical force balance alone and is [Hughes, 2009a]

$$\phi \approx h_{O}/h_{I} \quad (3)$$

where h_{O} is h_{I} at $x = 0$ and h_{D} at $x = 0$ substitutes for h_{F} at $x > 0$ in equation (1). In equation (3), ϕ and h_{O} are determined by ice-bed uncoupling beneath and beyond ice streams, respectively. An increase in h_{O} increases the gravitational driving force $F_{G} = P_{w}h_{O} = 1/2 \mu gw_{I}h_{O}$ at $x = 0$ needed to balance “buttressing” force F_{B} resulting from ice-bed coupling of an ice shelf confined in an embayment, pinned to islands and shoals, or both. If the ice stream ends on land, F_{B} is caused by ice-bed coupling of its terminal ice lobe. Equation (3) requires a finite h_{O} at $x = 0$ and finite values of ϕ at $x > 0$ for stream flow. For sheet flow, $h_{O} = h_{I}$ and $\phi = 1$ [Weertman, 1957b].

[13] Illustrating the gravitational driving force by the area of the big triangle at x and its change in area at $x + \Delta x$ in Figure 4 (bottom) in the longitudinal force balance requires assigning resisting forces and their associated stresses to specific areas of the big triangles: τ_{O} to triangle 1, τ_{O} to triangle 5 minus triangle 1, τ_{S} to rectangle 2, τ_{S} to rectangle 6 minus rectangle 2, σ_{T} to triangle 4, σ_{W} to triangle 3, and σ_{C} to the sum of triangle 1, triangle 3, and rectangle 2, so that $P_{I} = \sigma_{T} + \sigma_{C}$ at x. Here τ_{O} and τ_{S} are averaged downstream from x. Sectioning the large triangle at x in Figure 4 (middle) and Figure 4 (bottom) into smaller triangles 1, 3, and 4, and rectangle 2, in this way shows that
\[\sigma_T \text{ "pulls" upstream ice, whereas } \sigma_c \text{ "pushes" downstream ice and is a proxy for all downslope resistance to ice flow, specifically downslope resistance from basal drag causing } \tau_O, \text{ resistance from side drag causing } \tau_S, \text{ resistance due to mean water pressure } (\overline{P}_w)_{O} \text{ at } x = 0, \text{ and resistance due to a buttressing ice shelf caused by side grounding along length } L_S \text{ and basal grounding beneath ice rises of circumference } C_R \text{ and ice ripples of area } A_g \text{ in Figure 4 (top). Figure 4 also shows that } \sigma_C = \sigma_W \text{ at } x = 0, \text{ where } \sigma_w h_O = \overline{P}_w h_w. \]

[14] Equation (3) is obtained by balancing the gravitational force with resisting forces: basal and side drag along \(x \), water butressing at \(x = 0 \), and ice-shelf butressing beyond the ice stream. The greater the resistance the higher \(h_I \) becomes, and the greater the buttressing the higher \(h_O \) becomes. Equation (3) provides a “snapshot” of ice-bed coupling linked to \(\phi \) at any location \(x \) along a flowband. To obtain a “motion picture” over time, the force balance must be combined with the mass balance [Hughes, 2009b]. This is now done.

5. Formulating the Mass Balance

[15] A more accurate determination of \(\phi \) variations along \(x \) is obtained by combining the linear force balance with a linear mass balance, so the “defining” equation for \(\phi \), equation (1), replaces equation (3) as the “working” equation. Figure 6 shows the mass balance for a linear ice stream that lies on a horizontal bed and supplies a floating ice shelf, both of constant width \(w_I \), with \(x = 0 \) at the (un)grounding line where \(h_I = h_O \) is ice thickness and \(u_O \) is ice velocity, and \(x \) is positive upstream where ice thickness is \(h_I \) and ice velocity is \(u_c \). Average ice surface accumulation rate \(\overline{a} \) and ice creep thinning rate \(\overline{r} \) along \(x \) are obtained from known rates \(a \) and \(r \) at \(x \). As shown by Figure 6, the mass balance equation for ice flow beginning at \(x = L \) where \(h_I = h_L \) and \(u_c = u_L = 0 \) is

\[(\overline{a} - \overline{r})(L - x) = h_I u_c \]

(4)

All quantities in equation (4) are positive.
Basal shear stress τ_o linked to surface slope α_G for grounded ice is obtained from equations (6) and (8):

$$\tau_o = \rho_gh_o \alpha_G = B/(\alpha - \tau)(L - x)^{1/m}$$

Substituting equation (8) for h_i into equation (9) gives τ_o, for ice grounded on a flat horizontal bed. Solving for ice surface slope $\alpha_G = (dh_i/dx)_G$ gives α_G along x without h_i:

$$\alpha_G = \frac{dh_i}{dx}_G \approx \frac{\tau_o}{\rho_gh_i} = \left(\frac{B}{\rho_gh_i}(\alpha - \tau)(L - x)^{1/m}\right) \left(\frac{2m + 1}{m + 1}\right) \left[B(\alpha - \tau)^{1/m}/\rho_gh_i\right]^{1/m}$$

(10)

[17] Now consider linear shelf flow using the flow law for floating ice at x. For shelf flow extending between $x = S$ where $h_i = h_0$ and $u_x = h_0$ to $x = 0$ where $h_i = h_0$ and $u_x = u_0$, the mass balance equation from Figure 6 is

$$(\alpha - \tau)(S - x) = h_0u_x - h_3u_S$$

(11)

Writing equation (11) so $(a - r)$ at x replaces $(\alpha - \tau)$ averaged along x:

$$(a - r) = \partial(h_0u_x)/\partial x = h_0\partial u_x/\partial x + u_x\partial h_i/\partial x = h_0\tilde{e}_{xx} + u_x\alpha_F$$

(12)

Here $\tilde{e}_{xx} = \partial u_x/\partial x$ is the longitudinal strain rate and $\alpha_F = (dh_i/\partial x)_F$ is the ice thickness gradient for floating ice. Combining equations (11) and (12), and solving for α_F at x for floating ice:

$$\alpha_F = \frac{dh_i}{dx}_F = \frac{(a - r) - h_0\tilde{e}_{xx}}{u_x} \approx h_0(\alpha - r) - h_0^2\tilde{e}_{xx}/h_{0x} + (\alpha - \tau)(S - x)$$

(13)

Strain rate \tilde{e}_{xx} is linked to tensile “pulling” stress σ_T through the flow law of ice for linear flow in ice floating above the bed [Weertman, 1957b]:

$$\tilde{e}_{xx} = \left(\tau^{n-1}/A\right)\sigma_T^\phi = R(\sigma_T/\Delta)^\phi = (\sigma_T/2A)^\phi$$

(14)

where τ is the effective stress, A is an ice hardness parameter, n is a viscoplastic exponent, σ_T is the longitudinal deviator stress, and R is a scalar that converts τ into strain rate ratios. Taking x horizontal against ice flow, y horizontal transverse to flow, and z vertical and positive upward, linear flow in floating ice requires that $\tilde{e}_{xy} = \tilde{e}_{xz} = \tilde{e}_{yx} = \tilde{e}_{yz} = \tilde{e}_{zx} = \tilde{e}_{zy} = 0$ for incompressible ice. Then [Hughes, 1998, pp. 169–170],

$$R = \left[1 + (\tilde{e}_{xy}/\tilde{e}_{xx}) + (\tilde{e}_{yy}/\tilde{e}_{xx})^2 + (\tilde{e}_{yx}/\tilde{e}_{xx})^2 + (\tilde{e}_{xy}/\tilde{e}_{xx})^2\right]^{1/2} = 1$$

(15)

$$\sigma_T = \sigma_{xx} - \sigma_{yy} = (\sigma_{xx} + P_l) - (\sigma_{yy} + P_l) = \sigma_{xx} - \sigma_{yy} = (\sigma_{xx} + \sigma_{yy}) = 2\sigma_{xx}$$

(16)

The longitudinal force balance for ice thickness h_i floating in water of depth h_w and density ρ_w and buttressed by force σ_B because partial grounding causes tensile stress σ_T to be partly overcome by back or buttressing stress σ_B at $x = 0$ where $h_i = h_o$ and $\rho_gh_i = \rho_gh_w$:

$$\sigma_T h_i = (P_i h_i - P_w h_w) - \sigma_{yy} = 1/2 \rho_gh_i^2 - 1/2 \rho_gh_w^2 - \sigma_{yy}$$

Solving for longitudinal pulling stress σ_T that gives longitudinal strain rate \tilde{e}_{xx}:

$$\sigma_T = 1/2 \rho_i g h_i(1 - \rho_i/\rho_w) - \sigma_B$$

(18)

Since σ_B is determined at $x = 0$ where $h_i = h_o$:

$$\sigma_B = f_b(1/2 \rho_i g h_o(1 - \rho_i/\rho_w))$$

(19)

Here f_b is a buttressing fraction such that $f_b = 0$ for no buttressing and $f_b = 1$ for full buttressing. Using equations (14) through (19) to get \tilde{e}_{xx}, equation (13) is solved to get ice thickness gradient $\alpha_F = (dh_i/\partial x)_F$ for ice floating just above a flat horizontal bed:

$$\alpha_F = \frac{dh_i}{dx}_F = \frac{h_0(a - r) - h_0^2[(\rho_gh_i/A)(1 - \rho_i/\rho_w)(h_i - f_b h_o)]^\phi}{h_0 u_x + (\alpha - \tau)(S - x)}$$

(20)

[18] Now consider streamflow at x using floating fraction ϕ as a “tuning parameter” to satisfy mass balance continuity. From Table 1, ignoring terms containing $\epsilon_0\phi/\epsilon_x$, the longitudinal force balance given by equation (2) applied to ice streams, along which $0 < \phi < 1$, is satisfied when:

$$P_l = 1/2 \rho_i g h_i$$

$$\sigma_B = \sigma_{yy} + \tau_0 = P_l(\rho_i/\rho_w)\phi^2 + P_l(1 - \rho_i/\rho_w)\phi^2 = P_l\phi^2$$

(21)

$$\tau_0 \approx P_l(1 - \phi)^2\alpha$$

(23)

$$\tau_3 \approx P_l(w_1/h_i)\phi(1 - \phi)\alpha$$

(24)

$$\partial(\sigma_T h_i)/\partial x = P_l\phi^2 \partial h_i/\partial x + P_l h_i \partial \phi^2/\partial x \approx P_l\phi^2 \partial h_i/\partial x$$

(25)

where $\epsilon_0\phi/\epsilon_x = 2\phi\partial \phi/\partial x$ and terms containing $\epsilon_0\phi/\epsilon_x$ are ignored. Substituting these equations into equation (2), with ice surface slopes ($\Delta h_i/\Delta x)_f$ for floating ice and ($\Delta h_i/\Delta x)_G$ for grounded ice both just above a flat horizontal, and solving over discrete surface slope $\Delta h_i/\Delta x$ in incremental length Δx:

$$\Delta h_i/\Delta x = \frac{\Delta h_i}{\Delta x} + \frac{\Delta h_i - \Delta h_i}{\Delta x} + \tau_0 + 2\tau_3 h_i/w_1$$

$$\approx 1/2 \rho_i G h_i^2/\rho_gh_i^2$$

$$+ (1 - \phi)^2 \frac{\Delta h_i}{\Delta x} + 2\phi(1 - \phi)\frac{\Delta h_i}{\Delta x}$$

(26)

where h is ice height above sea level and h_i is ice height above the bed.
Equation (2) is valid in general for linear flow, so equation (26) applies for variable bed topography. Let the bed be represented by an up-down staircase, with ice columns having incremental horizontal length Δx on steps, so that $\Delta h/\Delta x = \Delta h_p/\Delta x$. Then changes in bed depth below sea level or height above sea level take place between ice columns. Substituting equation (20) for $(\Delta h_p/\Delta x)_F$ where ice is floating and equation (6) for $(\Delta h_p/\Delta x)_C$ where ice is grounded, both along an ice stream, with h_I now including bed topography, and collecting terms containing ice surface slope $\Delta h/\Delta x$:

$$
\frac{\Delta h}{\Delta x} = (1 - 2\phi + 2\phi^2) - \frac{h_I(a - r) - h_I'}{h_I} \left[\frac{B}{\rho g} \left(\frac{(\frac{S - x}{L} - 1) - 2\phi + 2\phi^2}{h_I'} \right) \right] - \frac{\Delta h}{\Delta x} = C_1(1 - 2\phi + 2\phi^2) = C_1(1 - 2\phi + 2\phi^2) = 0
$$

Here C_1 through C_3 are terms in square brackets. Writing equation (27) as a quadratic equation:

$$
(2C_1 - 2C_3)\phi^2 - (2C_1 - 2C_3)\phi + (C_1 - C_3) = 0
$$

The solutions of equation (28) are

$$
\phi = \frac{(2C_1 - 2C_3) \pm \sqrt{(2C_1 - 2C_3)^2 - 4(C_1 - C_3)(2C_1 - 2C_3)}}{2(2C_1 - 2C_3)}
$$

[20] Ice height h_I above the bed in equation (8) and ice thickness gradient dh/dx in equation (10), with h_I ignored, both vary with surface condition $(\pi - \tau)$, mean accumulation minus thinning rates, raised to the $1/5$ power for $m = 2$ in basal sliding equation (5). This dependence is very weak compared to the dependence on floating fraction ϕ in equation (27) and confirms the first-order condition that ice-shear heights above the bed are determined by the strength of ice-bed coupling, quantified by the floating fraction of ice, much more than by the surface mass balance.

6. Solution for a Flowline Down the Centerline of Ice Streams

[21] Side shear stresses vanish along the centerlines of ice streams, but side drag still elevates the ice surface. The radar flightline in Figure 2 is close to the centerline of Byrd Glacier where side shear stresses vanish. The effect of side drag on elevating the ice surface can be included by modifying the geometrical longitudinal force balance so it applies along the central flowline of an ice stream. Basal shear stress τ_o is augmented to carry resistance from side shear stress τ_s because $\tau_s = 0$ along the centerline. In Figure 4 gravitational driving force F_G is the areas $5 + 6$ at $x + \Delta x$ minus the areas 1 + 2 at x when side shear (6–2) is added to basal shear (5–1):

$$
F_G = [(5 + 6) - (1 + 2)] - [(5 + 6 + 7 + 8) \quad \ldots \quad -(7 + 8) - (1 + 2 + 3 + 4) - (3 + 4)]
$$

where resisting force $F_R = \tau_o \Delta x$ on ice surface ϕ. Solving for τ_o,

$$
\tau_o = \frac{h_I}{\Delta h} \frac{\Delta h}{\Delta x} = \phi \frac{(\frac{\Delta h}{\Delta x})}{\phi} \quad \frac{(\frac{\Delta h}{\Delta x})}{\phi} = 1\quad \frac{(\frac{\Delta h}{\Delta x})}{\phi} = 1
$$

Rewriting equation (32) in terms of coefficients C_1 through C_3:

$$
C_1 - C_2 \phi^2 - C_3(1 - \phi^2) = (C_1 - C_2)\phi^2 - (C_3 - C_1) = 0
$$

Solving for ϕ, using the solution for which $0 \leq \phi \leq 1$,

$$
\phi = \frac{C_3 - C_1}{C_3 - C_2}
$$

7. Applications to Byrd Glacier

[22] In applying equations (29) and (34) to Byrd Glacier, we first show that surface profiles produced by specified ϕ variations along a flat horizontal bed can be used as input to get the same ϕ variations as output. Then we apply these equations to published surface and bed topography to calculate the actual ϕ variations. Two data sets are used, BEDMAP data from the grounding line to the ice divide, and radar data for Byrd Glacier itself that has higher resolution.

[23] We produced our test solution of equations (29) and (34) for a flat horizontal bed, using selective data from Byrd Glacier. At the ungrounding line where shelf flow begins, $x = 0$, $h_O = 1.3$ km, and $u_O = 820$ m yr$^{-1}$. Streamflow begins at $x = 0$ where $h_I = h_S$ and $u_x = u_S = u_O$ at h_O/h_S for steady state flow. Sheet flow begins at the ice divide, where $x = L = 1250$ km, $h_L = 3$ km, and $u_L = 0$. Values of h_O, u_O, and L are those for the Byrd Glacier ice drainage system. Constant quantities in equation (29) are $g = 9.81$ m s$^{-2}$, $A = 8$ bars yr$^{-1/3}$ = 250 MPa s$^{1/3}$, $n = 3, B = 0.02$ bar yr$^{1/2}$ m$^{1/2}$, $m = 2, \rho_i = 917$ kg m$^{-3}$, and $\rho_w = 1028$ kg m$^{-3}$ for seawater.

[24] Flowband width W_2 ≈ 25 km across Byrd Glacier does not appear in equation (29), but W_2 is needed to obtain $(\pi - \tau)$ and $(\Delta h/\Delta x)$. The ice drainage system for Byrd Glaciers is 115×10^4 km2 in area, and begins at an ice divide that connects
three ice domes in East Antarctica (see Figure 1). Ice crosses the ungrounding line at a flux \(u_O \omega_O h_O = 26.6 \text{ km}^2 \text{ yr}^{-1} \). The average ice thickening rate from ice accumulation rates and ice thinning rates is \((\overline{a} - \tau) = (26.6 \text{ km}^2 \text{ yr}^{-1})/(115 \times 10^4 \text{ km}^2) = 23 \times 10^{-3} \text{ m yr}^{-1} \). A flowband 25 km wide and 1250 km long has area \(3.12 \times 10^4 \text{ km}^2 \). The ice thickening rate in equation (29) for all ice confined to the flowband is \((\overline{a} - \tau) = (23 \times 10^{-3} \text{ m yr}^{-1})[(115 \times 10^4 \text{ km}^2)/(3.12 \times 10^4 \text{ km}^2)] = 0.85 \text{ m yr}^{-1} \).

Figure 7 is a plot of \(h_I \) along \(x \) obtained from equations (29) and (34) for a flat horizontal bed. In Figure 7 (top), \(\phi \) decreases linearly from \(\phi = 1 \) at \(x = 0 \) to \(\phi = 0 \) at \(S \leq x \leq L \) in Figure 6 for ice flowing over a flat horizontal bed. Variations \(\phi \) (solid line) produce the ice surface (dashed curve) that, in turn, produces the \(\phi \) variation. (top) Comparing a flowband profile using equation (29) and \(S = 60 \text{ km} \) with a flowline profile using equation (34) and \(S = 200 \text{ km} \). (bottom) Comparing profiles using \(S = 200 \text{ km} \).

results in a lower flowband profile. Ice velocity decreases after it crosses the ungrounding line halfway up Byrd Glacier fiord, and then increases after ice leaves the fjord [Brecher, 1986]. Therefore, side drag is against the fjord walls and the inertia of Ross Ice Shelf buttress ice crossing the ungrounding line. For example, buttressing fraction \(f_B = 0.765 \) gave \(\phi = 1 \) at \(x = 0 \) in equation (29). The ice surface profile is concave almost to \(x = S = 200 \text{ km} \) and convex onward to the ice divide, with \(\phi = 0 \) for \(S \leq x \leq L \). Using ice height \(h_I \) above the bed calculated from equation (29) for the flowband using this \(\phi \) variation, the identical \(\phi \) variation is retrieved. However, 20,000 \(\Delta x \) steps are required to remove a “spike” in \(\phi \) at the surface inflection line for the flowline because here \(C_3 - C_2 \) in equation (34) is very small (see Figure 8).
Obtaining a concave ice surface by decreasing ϕ along x, and then retrieving ϕ from the ice surface, gives us confidence in equations (29) and (34), especially equation (29), which includes side shear.

[26] Applying equations (29) and (34) to a flowband or flowline in the Byrd Glacier ice drainage system shown in Figure 1 is confronted with two conflicting data sets, one for Byrd Glacier itself, shown in Figure 2 along the central portion of the glacier, and one shown in Figure 9 using BEDMAP data along the flowline in Figure 1 from the ungrounding line of Byrd Glacier to the East Antarctic ice divide ($h_O = 463$ m, $L = 1352$ km, and $h_S = 3255$ m). The subglacial lakes begin at $x = S = 200$ km, where $h_S = 1.7$ km and $u_S = u_O(h_O/h_S)$. When they drained, velocity u_O at $x = 0$ increased from 820 m yr$^{-1}$ to 900 m yr$^{-1}$ [Stearns et al., 2008]. Figure 9 shows how ϕ changes along x, using equation (29) and the BEDMAP data for surface and bed profiles. Two variations of ϕ are shown, one for $u_O = 820$ m yr$^{-1}$ and $S = 200$ km before the subglacial lakes drained, and one for $u_O = 900$ m yr$^{-1}$ and $S = 65$ km after they drained. Drainage would recouple ice above the lakes to the bed, and thereby cause length S of streamflow to decrease. We took $S = 65$ km from the ungrounding line to the region of strongly converging ice flow above the fjord entrance. Streaming ice tributaries in this region converge to produce Byrd Glacier [Jezek, 2008]. Some recoupling of ice to the bed is shown by the lower ϕ variations for $S = 65$ km compared to $S = 200$ km. No data are available to show if there was a corresponding change in the ice surface elevation.

[27] Figure 10 shows how ϕ varies along x when equations (29) and (34) are solved using surface and bed reflections along the radar-sounding flightline in Figure 2. We call this the Swithinbank flightline because it was arranged by Charles Swithinbank, who participated in our 1978–1979 field investigation of Byrd Glacier [Hughes and Fastook, 1981]. The LC-130 Hercules aircraft flew only 100 m above the heavily crevassed ice surface to obtain the nearly continuous bed reflection in Figure 2. Surface and bed profiles over this 100 km length are significantly different from the BEDMAP profiles, and are more reliable (BEDMAP data points are 25 km apart). In Figure 10, the solid line shows variation of ϕ using equation (29) for flowbands; the dotted line shows variation of ϕ using equation (34) for flowlines. The ϕ variations along x are more “choppy,” especially for the flowline solution, and include patches where $\phi \approx 0$, allowing the possibility of a frozen bed at these places. Ice-shelf buttressing at $x = 0$ is specified by $f_B = 0.507$ to give $\phi = 1$ in equations (29) and (34). In general ϕ decreases along x to minimum values in the foredeepened upper end of the fjord, and then increases to $\phi \approx 0.6$ at the top of the headwall, before dropping to $\phi \approx 0.3$ beyond the headwall. These results are compatible with the fjord headwall acting partly like a “dam” that impounds basal water in the vicinity of the subglacial lakes, which suddenly drained in 2006, as reported by Stearns et al. [2008]. Figure 10 was plotted using $x = 463$ m from the BEDMAP ungrounding line, $h_O = 1283$ m, $u_O = 820$ m yr$^{-1}$, $S = 100$ km, $h_S = 1400$ m, and $u_S = u_O(h_O/h_S) = 751$ m yr$^{-1}$, putting the beginning of streamflow just beyond the fjord headwall and the fjord entrance, but short of the subglacial lakes in the vicinity 200 km $< x < 250$ km.

[28] Figures 9 and 10 present numerical solutions of equations (29) and (34). Although exact solutions exist using exact surface slopes α at points x along the flowline, average slopes $\Delta h/\Delta x$ were used for incremental steps of constant length Δx along x, and $\Delta h/\Delta x$ was calculated for a running mean of three steps. Results for 86 and 1275 steps from the ungrounding line to the ice divide using BEDMAP data show length Δx has no significant effect on how ϕ varies along x. Equation (34) is more sensitive than equation (29) to large local changes in surface slope unrelated to ice-bed
coupling. Not having a mechanism for these changes causes ϕ to exceed the limits $0 \leq \phi \leq 1$ at these locations.

[29] Not resolved by BEDMAP data is a series of wave-like terraces on the surface of Byrd Glacier (see Figures 2 and 10) with slopes α changing by an order of magnitude from the fronts to the tops of terraces. These major slope changes cause major changes in ϕ which may be unrelated to changes in ice-bed coupling. Hughes [1975] found that similar wave terraces on Meserve Glacier were produced by differential ablation rates. Higher ablation rates on the steeper sun-facing fronts of a slightly wavy surface transformed the gentle waves into relatively flat terraces separated by steep fronts. The steep wavefronts on Byrd Glacier also face the sun. If differential surface ablation rates produce the wave terraces on Byrd Glacier, it is necessary for incremental length Δx in equation (27) to “step over” regions of rapidly changing surface slope, or to employ a running mean for surface slopes so these rapid changes are smoothed. Otherwise they will cause rapid changes in ϕ that give a false record of changes in ice-bed coupling.

[30] The variation of ϕ along x in Figure 10 is similar to that found by Reusch and Hughes [2003], but ϕ is generally smaller. In spots $\phi = 0$, which is compatible with a frozen bed, but not as extensively frozen as in the studies by Scofield [1988], Scofield et al. [1991], and Whillans et al. [1989]. The simple first-order ϕ variations obtained from the geometrical longitudinal force balance alone [Hughes, 2009a], and given by equation (3), lie between the variations by Reusch and Hughes [2003] and the variations in Figure 10.
The ϕ variations along x for Byrd Glacier obtained by Reusch and Hughes [2003] used the following expression, in which a basal sliding “law” gave $\tau_B = B u_S^{1/m} (1 - \phi)^2$:

$$\frac{\Delta h}{\Delta x} = \frac{w_e h_i^2}{w_0 h_i \rho_O} \left(\frac{\rho_I g h_i}{4A} \right) \left(1 - \frac{\rho_I}{\rho_W} \right)^{n+1} \phi^{2n+2} + h_i \left(1 - \frac{\rho_I}{\rho_W} \right) \phi \frac{\Delta \phi}{\Delta x} + \frac{2\tau_s}{\rho_I g w_i} + B u_S^{1/m} (1 - \phi)^2$$

Equation (35) was derived by using σ_T instead of σ_E in equation (2). As seen in Table 1, this does not satisfy the longitudinal force balance given by equation (2) and introduces the quantity $(1 - \rho_I/\rho_W)$ into equation (35) at places where it does not belong. In addition, their expression for the longitudinal pulling stress was $\sigma_T = 1/2 \rho_I g A (1 - \rho_I/\rho_W) \phi^2$ instead of equation (18), so the reduction of σ_B by σ_B was accomplished by a reduction of ϕ. However, σ_B is applied only at $x = 0$ where $\phi = 1$. Changes in ϕ occur when $x > 0$. These differences reduced $\Delta h/\Delta x$ in equation (35) by at least 90 percent, since $(1 - \rho_I/\rho_W) \approx 0.1$. Also, the dependence of $\Delta h/\Delta x$ on $C_a \phi^2$ in equation (27) is a dependence on ϕ^{2n+2} = ϕ^8 in equation (35). With $\Delta h/\Delta x \propto \phi^8$ in the first term of equation (35), the pulling power of ice streams decays much too rapidly with distance x from the ungrounding line, so it has very little reach into the ice sheet. To match the observed ice surface profile produced by the actual reach, substantially higher values of ϕ along x are required in equation (35) compared to equation (29). These flaws also appear in earlier work [e.g., Hughes, 1998].

8. Including “Floating Fraction” ϕ in Holistic Basal Sliding

[33] To complete our holistic treatment, we now derive a holistic sliding “law” for glacial ice that allows smooth transitions from slow sheet flow through fast streamflow to unconfined shelf flow. We keep the law simple so floating fraction ϕ that quantifies these transitions is the only “tuning” parameter used to satisfy mass balance continuity. These goals are attained by including ϕ in the sliding law.

[34] Glacier sliding theory was pioneered by Weertman [1957a, 1964] with his “tombstone” model in which bed roughness is approximated by equally spaced cubes of various sizes, and by Lliboutry [1958a, 1958b] who used a “washboard” bed of sinusoidal ridges and troughs transverse to ice motion. Nye [1969] and Kamb [1970] later decomposed basal structure into a roughness spectrum that could accommodate any condition of bed roughness. Schoof and Hindmarsh [2010] have developed a much more rigorous treatment of glacial sliding that allows variations in ice-bed coupling. We also allow these variations, but we begin with the Weertman [1957a, 1964] approach in which the sliding velocity is controlled by bedrock bumps of a critical size that penetrate basal ice and thereby impede slow sheet flow. We incorporate floating fraction ϕ of ice into a sliding “law” by replacing cube-shaped bumps with rectangular-based
Changes for cubical bumps. This is the only reason for bed coupling, as quantified by force balance for basal shear stress pyramids and normal to ice moving in direction thawed because then near pyramid tops where With bumps represented by pyramids, regelation is fastest for basal water or supersaturated sediments and till, both of increasing thickness λ.

Pyramids tilted in the direction of ice flow to account for erosion by plucking on the lee side and by abrasion on the stoss side (see Figure 11). When pyramids become progressively submerged by basal meltwater or supersaturated sediments and till that offer no resistance to ice flow, the unsubmerged pyramid cross section normal to ice flow retains the same height-to-width ratio, whereas this ratio changes for cubical bumps. This is the only reason for replacing cubes with pyramids. Submergence reduces ice-bed coupling, as quantified by ϕ.

Weertman [1957a] found a critical bump size for cubes allowed equal rates of sliding by ice melting on the stoss side and meltwater freezing on the lee side, a process called regelation, and sliding by enhanced ice creep due to a higher ice pressure on the stoss side caused by ice motion. For bumps shaped like pyramids, the processes of regelation and enhanced creep are equal at a critical cross section between the pyramid base where enhanced creep dominates and the pyramid peak where regelation dominates (see Figure 11).

Taking λ as the average height and width of bedrock pyramids and λ′ as their average spacing, a longitudinal force balance for basal shear stress τO over area λ′2 when the bed is frozen is equated with longitudinal compressive stress σC over area λ′2 normal to ice flow when the bed is thawed because then τO = 0 and must be replaced by σC:

\[τOλ′ = σCλ′^2 \]

(36)

With bumps represented by pyramids, regelation is fastest near pyramid tops where Ac is the cross-sectional area normal to ice moving in direction x and λc is the mean bump length along x. Ice pushing against Ac melts due to increased basal pressure PO + ΔPO that reduces melting point temperature TM by the amount

\[ΔT_M = (\partial T_M/\partial P)ΔP_O = Cσ_C = C(λ'/λ)^2τ_O \]

(37)

where τO = POρ0 basal ice pressure PO times ice surface slope α is the gravitational driving stress, (∂T_M/∂P) = C is constant for small ΔT_M, and ΔP_O = σ_C. Meltwater flows around the pyramid top, refreezes where ice pressure is reduced to PO − ΔP_O on the lee side, and latent heat of freezing is conducted through rock distance λc to provide latent heat of melting H_M. If K is the thermal conductivity of rock, so that sensible heat is conducted through λc at rate K(ΔT_M/λ_c)Ac, regelation rate ur is obtained by equating the rate of sensible heat conduction with rate urAcρH_M of latent heat production. This gives

\[ur = \frac{K(ΔT_M/λ_c)Ac}{ρcH_Mλ_c} = \frac{KΔT_M}{ρcH_Mλ_c} = \frac{KC(λ'/λ)^2τ_O}{ρcH_Mλ_c} \]

(38)

Enhanced creep velocity uc occurs in a volume of ice having cross-sectional area Ac normal to x and length λc along x, where \(\dot{ε}_c = ucAc \) is the compressive strain rate. Ice near the base of pyramids will be most affected by \(\dot{ε}_c \). From the flow law of ice \(\dot{ε}_c = (σ_C/\lambda_c)^n \):

\[uc = \dot{ε}_cλ_c + (σ_C/λ_c)^nλ_c = \left[(τ_O/λ_c)(λ'/λ)^2 \right]^nλ_c \]

(39)

where \(λ_c \) is the ice hardness parameter for ice at its melting point, called “temperate” ice, and n is the visco-plastic parameter for temperate ice.

Notice that uc varies directly with \(λ_c \), whereas ur varies inversely with \(λ_c \). This means that bedrock bumps...
retard sliding most for an intermediate distance \(\Lambda_O \) that avoids “runaway” regulation at the top of pyramids and “runaway” enhanced creep at the bottoms of pyramids. Equating equations (38) and (39), and solving for \(\Lambda_O \) where \(\Lambda_r = \Lambda \):

\[
\Lambda_O = \left(\frac{\Lambda}{\lambda} \right)^{n-1} \left(\frac{KCA_t}{\rho H M \tan \theta} \right)^{1/2} \tag{40}
\]

where \(\Lambda/\lambda \) is a “bed roughness factor” that is assumed to be constant for sheet flow. All other quantities except \(\tau_O \) are constant, so \(\Lambda_O \) varies inversely with \(\tau_O \) for \(n = 3 \).

[39] Weertman [1957a] sets sliding velocity \(u_S = u_r = u_c \) but Weertman [1964] sets \(u_S = u_r + u_c \) without explaining why. It remains unknown whether sliding velocity \(u_S \) is the sum of \(u_r \) and \(u_c \) or is equal to each one separately at \(\Lambda_o \). This is the expense of \(u_c \) or not? Taking \(u_S = f_S(u_r + u_c) \), where \(f_S = 1 \) if they are added and \(f_S = 1/2 \) if they are equal:

\[
\begin{align*}
\alpha_S &= \frac{\alpha_S}{\alpha} = \frac{f_S}{f_S} = \frac{2f_S + u_r + u_c}{2f_S} = \frac{2f_S + u_r + u_c}{2f_S} = \frac{2f_S}{2f_S}, \\
\tau_O &= \frac{\tau_O}{\tau_O} = \frac{f_S}{f_S} = \frac{2f_S}{2f_S}, \\
\end{align*}
\]

where \(B = (\rho H M A_t / 4 \sqrt{K C})^{1/2}, B = B (\Lambda / \lambda)^2, \) and \(m = (n+1)/2 \).

[39] Equation (41) applies for sheet flow in which basal water only wets bedrock bumps but does not drown bumps. Length \(\Lambda_O \) along \(x \) can also be linked to the distance \(\Lambda_S \) below pyramid peaks, from symmetry (see Figure 11). As basal water begins to drown the smaller pyramids, basal sliding is still resisted by larger pyramids having an undrowned height \(\Lambda_S \) or higher. The same applies to burial of pyramids by supersaturated sediments or till that cannot support shear stress \(\tau_O \). As this process continues in the flow direction, sheet flow becomes stream flow. Stream flow becomes shelf flow when all pyramids become drowned except for very large pyramids that produce ice ripples or ice rises on the ice shelf. Progressive drowning or burying of pyramid bumps then allows a holistic treatment of basal sliding from sheet flow to stream flow to shelf flow.

[40] As pyramids of all sizes become progressively drowned by basal water or buried by supersaturated basal sediments and till that have no shear strength, the Weertman [1957a] sliding mechanism can be modified to give the dependence of basal sliding on floating fraction \(\phi \) of ice for stream flow [Hughes, 1998, chap. 4]. In the Weertman [1957a] treatment of basal sliding for sheet flow, basal water exists as a thin film that coats bedrock bumps having average height \(\Lambda \) and spacing \(\lambda \). For sheet flow, basal water or supersaturated sediments and till having no cohesion and thickness \(\lambda \) drowns or buries more bumps as \(\lambda \) thickens. Theories of subglacial hydrology provide a measure of \(\lambda \) [e.g., Johnson, 2002; Johnson and Fastook, 2002]. When bumps are pyramids and \(\Lambda_S \) is the distance below pyramid peaks where equal regulation and creep rates exert maximum resistance to sliding, average spacing \(\lambda' \) of pyramids increases to \(\lambda_S' \) as \(\lambda \) increases. The bed roughness factor decreases from \(\Lambda/\lambda' \) to \(\Lambda_S/\lambda_S' \). Since \(\Lambda - \lambda \) is the average undrowned or unburied bump height, \((\Lambda_S/\lambda_S') \) is an effective bed roughness factor for streamflow such that \(\lambda_S' = \lambda \) when \(\lambda = 0 \) and \(\lambda_S' = \infty \) when \(\lambda = \Lambda \). Then, taking \(\lambda_S = \Lambda \) when \(\lambda_S' \) becomes the variable as \(\lambda \) increases:

\[
\frac{\lambda_S}{\lambda_S} = \frac{\lambda_S}{\lambda_S} \left(\frac{\Lambda - \lambda}{\lambda} \right) = \frac{\Lambda}{\lambda} \left(1 - \frac{\lambda}{\lambda} \right) = \frac{\Lambda}{\lambda} (1 - \phi)^c \tag{42}
\]

where exponent \(c \) allows variations in size distributions of pyramids, \(\phi = \Lambda/\Lambda \), and \(\Lambda/\lambda' \) is the bed roughness factor for sheet flow [Weertman, 1957a]. Keeping \(\Lambda_S \) constant while increasing \(\lambda_S' \) is the same as keeping \(\lambda' \) constant while increasing \(\lambda \). Then streamflow becomes sheet flow when \(\lambda_S/\lambda_S' \rightarrow \lambda/\lambda' \) as \(\phi \rightarrow 0 \), and streamflow becomes shelf flow when \(\lambda_S/\lambda_S' \rightarrow 0 \) as \(\phi \rightarrow 1 \). Basal shear stress \(\tau_O \) in the Weertman [1957a] sliding law includes sheet flow, stream flow, and shelf flow if:

\[
\begin{align*}
\tau_O &= B_0 (\Lambda_S/\lambda_S)^2 u_S^m / B_0 (\Lambda/\lambda)^2 (1 - \phi)^2 c u_S^m, \\
&= B (1 - \phi)^2 c u_S^m, \\
\end{align*}
\]

where \(B_0 \) collects physical constants, \(B = B_0 (\Lambda/\lambda)^2 \) is a sliding parameter, \(c \) is a sliding exponent, \(m = (n+1)/2 \) is a viscoplastic exponent that includes \(n \) in equation (39) for creep in temperate ice, and \(u_S \) is the sliding velocity.

[41] Equation (43) reduces to the Weertman [1957a] form when \(\Lambda \ll \Lambda \) is small so \(\phi \ll 1 \). The value of \(c \) depends on the size distribution of bumps (see Figure 12). For an ice stream, \((\Lambda_S/\lambda_S') \) depends on the fraction of pyramids that are at least \(\Lambda_S \) higher than thickness \(\Lambda \) of basal water or supersaturated sediments and till. As thickness \(\lambda \) increases in Figure 12, the undrowned or unburied height \(\Lambda - \lambda \) and spacing \(\lambda_S' \) change slowly initially if large pyramids predominate, so \(c < 1 \), but the initial change is fast and \(c > 1 \) if small pyramids predominate. The change is linear when the size distribution is unbiased and \(c = 1 \). Taking \(c = 1 \) gives \(\tau_O \propto (1 - \phi)^2 \) in equation (43), just as in equation (23), so that taking \(P_I = P_O \) gives

\[
\frac{u_S}{\alpha/B} = \frac{P_O}{\alpha/B} \tag{44}
\]

which is the Weertman [1957a] sliding law for sheet flow, \(\phi = 0 \), given by equation (41).

[42] Taking \(c = 1 \) gives \(\tau_O \propto (1 - \phi)^2 \) in equation (43), just as in equation (23). Using \(\phi \) defined by equation (1), sliding velocity \(u_S \) in equation (43) can be written for \(c = 1 \),

\[
\begin{align*}
u_S &= \left[\frac{\alpha}{B(1 - \phi)^2} \right]^{m} = \left[\frac{P_O \alpha}{B(1 - \omega h w / \rho_h h_I)}^{m} \right] = \left[\frac{\rho g h I \alpha}{B(1 - h_I h_F)} \right]^{m}, \\
\end{align*}
\]

Here \(h_I - h_F \) is ice height \(h_I \) above the bed in excess of ice height \(h_F \) that would be floated by effective water height \(h_w \) and effective basal water pressure \(P_w = \rho g h_w \) with \(h_I, h_F, \) and \(h_W \) shown in Figure 4. Quantity \(h_I - h_F \) appears in
of ice from past and present ice sheets [Hughes, 2009a]. This approach is based on three postulates: (1) the height of ice above the bed is determined primarily by the strength of ice-bed coupling, (2) uncoupling takes place primarily along ice streams which can discharge up to 90 percent of the ice, and (3) because of the first two postulates, ice sheets are the only component of Earth’s climate system that can rapidly self-destruct and thereby trigger rapid changes in climate and sea level [Hughes, 2009b]. The primary variable in this treatment is the floating fraction of ice along ice streams.

[45] A hypothesis based on the three postulates is applied to Byrd Glacier, the largest and fastest Antarctic ice stream supplying Ross Ice Shelf, before and after rapid drainage of two large subglacial lakes in the zone of converging flow just beyond the head of Byrd Glacier, accompanied by a ten percent increase in ice discharge velocity [Stearns et al., 2008]. The geometrical force balance was applied to a simple mass balance along a flowband for Byrd Glacier. Measurable ice-bed recoupling above the lakes and decoupling downstream was obtained using the flowband and flowline models along the discharge route of flooding water. The exact discharge route is unknown because the Swithinbank flightline giving radar-derived surface and bed profiles is neither continuous nor directly intersects the subglacial lakes. Record of surface and bed profiles is along a single radar flightline that does not cross the subglacial lakes. Equation (29) and (34) can provide “motion pictures” of changing ice surfaces over time, provided that accumulation/ablation rates \(r \) and \(\tau \) are known so thinning/thickening rates \(\sigma \) and \(\tau \) can be calculated over time. Ideally, \(h_1 \), \(\alpha \), and \(a \) should be determined in the map plane.

[46] Hughes [2009b] compares our approach with more rigorous approaches [e.g., Marshall, 2005; Schoof, 2007a, 2007b; Sayag and Tziperman, 2008; Hindmarsh, 2009; Katz and Worster, 2010; Schoof and Hindmarsh, 2010]. For Byrd Glacier, we were unable to calculate ice thinning/thickening rates \(\sigma \) and \(\tau \) in equation (27) because accumulation/ablation rates \(a \) and \(\bar{a} \) are unreliable. Radar mapping of basal conditions in the map plane [e.g., Oswald and Gogineni, 2008; Paden et al., 2010] may link our floating fraction of ice to subglacial hydrology. Using floating fraction \(\phi \) to quantify ice-bed coupling beneath ice streams might be questioned because water is in direct contact with a vertical face of ice only at the calving front of ice shelves where \(\phi = 1 \), so the back-pressure of water is direct, giving \(\sigma = P_{h_f} - P_{h_f} \) for back-stress \(\sigma \) in ice, see Figure 4. However, \(\sigma \) also exists at the grounding lines of ice shelves, where the buoyancy requirement \(\rho_w h_f = \rho_f h_f \) still applies, so \(\phi = 1 \) in equation (1) even though water is no longer in direct contact with a vertical face of ice [see Hughes, 2009a]. Furthermore, \(\phi \) remains just below unity hundreds of kilometers upstream from the grounding line of Wilkins Ice Stream [Engelhardt and Kamb, 1997]. This is also the case for Kamb Ice Stream [Robin et al., 1970], and for Mercer Ice Stream [Fricker and Scambos, 2009], observations which now span four decades. This is why these ice streams have the long concave profiles observed for linear freely floating ice shelves, for which \(\phi = 1 \), and not the convex profiles of ice ridges between these ice streams that are produced when \(\phi \) decreases toward zero very quickly upslope from grounding lines [see Hughes [2009a, Figures 4 and 9]]. These ice streams have concave profiles where they are in extending flow. Flow is resisted

9. Conclusions

[44] A geometrical force balance along flow was developed to include ice streams that discharge up to 90 percent of ice.
mainly by longitudinal tension and side shear. Tension is inferred from the observed concave profile, whereas side shear produces a convex profile, see Van der Veen [1999, Figure 6.12]. Modeling Byrd Glacier or any other ice stream in the map plane faces these requirements, and these models should ideally include subglacial hydrology [e.g., Johnson, 2002] and all stresses that resist ice flow [e.g., Sargent, 2009].

A sliding law of the Weertman [1957a] type used in equations (29) and (34) can be modified to include ϕ so the ice surface changes from convex to concave as slow shear flow becomes fast stream flow, with ϕ used as a tuning parameter that satisfies mass balance continuity. Our sliding velocity includes resistance from a basal shear stress where ice is grounded and a longitudinal pulling stress where ice is floating, both under ice streams. These regions correspond to the thin layer of basal ice allowing two kinds of motion, slow shearing flow over a coupled bed and fast extensional flow over an uncoupled bed. Indeed, these two processes have been included in the recent sliding model by Schoof and Hindmarsh [2010].

Acknowledgments. This manuscript was prepared and submitted by Beverly Hughes. Our work was supported by the NSF and NASA through a subcontract from the Center for Remote Sensing of Ice Sheets (CRSIS), University of Kansas. Two reviewers were invaluable in getting this published. Johannes Weertman and Richard Hindmarsh have encouraged our approach, with reservations. We dedicate this paper to Charles Swithinbank, who made our work possible.

References

