Clonal Fitness of Attached Bacteria Predicted by Analog Modeling

J. L.S. Murray
Peter Jumars
University of Maine - Main, jumars@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/sms_facpub

Repository Citation
Murray, J. L.S. and Jumars, Peter, "Clonal Fitness of Attached Bacteria Predicted by Analog Modeling" (2002). Marine Sciences Faculty Scholarship. 25.
https://digitalcommons.library.umaine.edu/sms_facpub/25

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Marine Sciences Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Microbial ecology is undergoing a revolution of phenomenological discoveries and methodological advances that bring resolution down toward the level of the individual and highlight the role of chemical exchanges in bacterial communities. Recent work shows that inter- and intraspecific chemical signaling, leading to coordinated, density-dependent behavior (termed quorum sensing) (Fuqua et al. 1994), is commonplace among bacterial species (Fuqua et al. 1996, Kaiser and Losick 1997) and is relevant in natural habitats (McLean et al. 1997, Bachofen and Schenk 1998). Density-dependent phenomena, first identified in bioluminescence (Wilson and Hastings 1998), where the induced behavior is visible, have since been implicated in general foraging and defensive behaviors such as production of extracellular enzymes and antibiotics (Givskov et al. 1997, Chernin et al. 1998, Srinivasan et al. 1998).

An additional development is the recognition of the tremendous importance of surface-attached bacteria in nature (Costerton 1995). Increased acquisition of nutrients has been proposed as one explanation for attachment (Ben-Ari 1999). Surfaces are also habitats for microbial consortia, or groups of bacterial species whose interdependent metabolic reactions are required for the decomposition of certain complex substrates (Wolfardt et al. 1994, Paerl and Pinckney 1996).

Improvements in molecular techniques for identifying taxa, phylogenetic relationships, and differential genotypic and phenotypic expression are accelerating (Pace 1997, Tunlid 1999). It is arguable that measurement capability has surpassed predictive expertise, particularly at the clonal level. Other authors have hypothesized that evolutionary processes operating at multiple taxonomic levels result in widespread cooperative behavior in bacteria, as exemplified by quorum sensing (Caldwell et al. 1997). Coevolution has been proposed to explain the close associations among consortial bacteria (Caldwell et al. 1997). In contrast to the progress being made in empirical microbial ecology, few theoretical treatments of these topics exist (Brookfield 1998).

Using a physically implemented electrical analog for nutrient transport, we predict that maximal fitness of a clonal population of attached bacteria may occur when the population covers only a small fraction of the surface.

An exciting result of the rapid progress in microbial ecology is that methodologies and incentives now exist to treat bacteria like larger (i.e., easier to visualize) organisms, gaining from the application of existing general ecological theory to microbial problems. General ecology, on the other hand, is poised to benefit from applying such theory to microbial systems. Bacteria can be modeled almost perfectly in terms of morphologies, motilities, and growth, and they can be tested experimentally with billions of organisms and over many generations.

J. L. S. Murray (previously published as J. L. Schmidt) (schmidt@nceas.ucsb.edu) is a postdoctoral researcher at the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara, CA 93101. Her research interests include the microbial ecology of marine sediments, including chemical communication and foraging strategies of bacteria. Peter A. Jumars (jumars@maine.edu) is a professor in the School of Marine Science at the University of Maine, Walpole, ME 04753. His research focuses on identifying and quantifying important mechanisms by which marine organisms interact with their physical and chemical environments. © 2002 American Institute of Biological Sciences.
Articles

One major difficulty is predicting performance of bacterial individuals, a key step in gaining understanding of most metazoans. For example, the relationships between individual foraging and local habitat are central to predicting the abundance of organisms in time and space. Additionally, quantifying the relationships between fitness and genetic relatedness is essential for understanding the evolution of cooperation (Dugatkin 1997). For bacteria, which are 0.2–2.0 μm in diameter and are often studied in samples of 10^10 organisms, these relationships have been difficult to elucidate. Theoretical treatments have thus far been limited to individual organisms and simple geometries (Koch and Wang 1982, Karp-Boss et al. 1996, Vetter et al. 1998, Dusenbery 1999, Ploug et al. 1999).

Here we quantify foraging by individual attached bacteria in those porous media where mass transport is dominated by diffusion. In particular, we focus on surficial marine sediments, where 99.9% of bacteria are attached to grain surfaces (Steward et al. 1996), forming sparse biofilms. Specifically, we quantify the cost of attachment in the currency of nutrient uptake and, given attachment, how uptake is influenced by sediment-grain microtopography. Additionally, we describe the impact of near-neighbor bacteria and initiate a foraging theory appropriate for clonal populations.

These issues require solutions to Fick’s laws of diffusion for complicated geometries (see Box 1). Analytical solutions do not exist, and numerical estimates would require daunting boundary and grid specifications. Instead, we implement an electrical model, inspired by Berg’s (1993) theoretical treatment, to quantify steady-state diffusive uptake by benthic bacteria.

Electrical analogs, based on mathematical equivalence among disparate systems, were used to solve transport problems before affordable digital computing became available (Karplus and Soroka 1959, Welty et al. 1984). Physically implemented electrical analogs had not been used previously to solve complex diffusion problems (except for a brief treatment in Segall et al. 1985, app. A), nor had they been used in ecological contexts. The method described here is accurate, economical, rapid, and flexible. It holds promise in contemporary education, as well, because a hands-on approach involving analogous thinking can greatly improve physical intuition, particularly regarding mass and energy transfer. Developing this understanding is especially important in biology, where interactions between organisms and their environments are often constrained physically. Furthermore, the analogy is well suited to interdisciplinary efforts emphasizing comprehension across multiple time and space scales (Rutherford and Ahlgren 1989, Moreno 1999).

Microbial foraging

Bacteria are osmotrophs (osmosis + nutrient): They acquire nutrients via the uptake of small dissolved molecules across the cell membrane. Thus, their foraging relies on the diffusion of nutrients to the cell surface. The thermal energy of a solute (or any) molecule is manifested as kinetic energy (the definition of which contains a velocity term), which propels the molecule. Molecules move rapidly and collide with myriad other (mostly solvent) molecules, which randomize the motion. The repeated starting and stopping, with random directional realignment at each step, is diffusion on a microscopic scale. At a macroscopic scale, diffusion is the resulting exchange between parcels of differing solute concentrations. Both solute and solvent diffuse, but transport of solvent is described as osmosis. Macroscopic transport (Figure 1a) is the sum of the microscopic “random walks” of individual molecules (Berg 1993, p. 17). Random walk is a statistical term, first presented in 1905 by Karl Pearson (Kaye 1989), who is known by most biologists in reference to the Pearson correlation coefficient. A random walk is a process consisting of a sequence of discrete steps of fixed length; the randomness requires that the direction of each step is governed by chance independent of preceding steps (Weisstein 2000, “Random Walk”). Kaye (1989) presents a humorous and intuition-building approach to random walks that extends their application to many problems. Weisstein (2000) provides an excellent source of hyperlinked mathematical terms and definitions. From here forward, we use diffusion to describe the macroscopic process of solute transport.

Diffusive transport to a cell occurs when a concentration gradient surrounds the surface, and Fick’s laws of diffusion can be used to calculate the diffusive transport (Box 1, Figure 2). In three dimensions, at steady state, diffusion follows Laplace’s equation

\[\nabla^2 C = 0, \]

which says that the second spatial derivative of the concentration \(C \) [mol m\(^{-3}\)] is equal to 0 (symbols defined in Table 1). (See Box 1, note a, for a discussion of the Laplacian operator, \(\nabla^2 \).) To predict diffusion to a microbe, Laplace’s equation is solved for \(C \) under given boundary conditions. The differential flux \(I_{\text{Diff}} \) [mol m\(^{-2}\) s\(^{-1}\)], or transport rate per unit area, and the diffusional transport rate \(I_{\text{Diff}} \) [mol s\(^{-1}\)] are then calculated from the function \(C \) (Box 1, Figure 2).

Analytical and numerical solutions of Laplace’s equation have modeled steady-state diffusion to single (Koch and Wang 1982, Berg 1993, Karp-Boss et al. 1996) and colonial (Ploug et al. 1999) planktonic osmotrophs of simple shapes. Their models, as well as those developed here, generally include two assumptions. First, they assume that the cell’s uptake rate is equal to the diffusional transport \(I_{\text{Diff}} \) to the surface. This rate can be limited by either the rate of diffusion supply to the cell surface or the rate of transport across the cell membrane (Pasciak and Gavis 1974, Koch 1990, Karp-Boss et al. 1996). In either case, the rate corresponds to a constant substrate concentration at the cell surface. In the former case, the cell acts as a “perfect absorber” with the surface concentration equal to 0. The second assumption is that nutrient uptake is in steady state, implying that the time to reach steady-state absorption is generally much shorter than the time in which the environment changes. That is, concentration in the medium far from the cell also is assumed constant. The analog approach works by implementing the constancy in con-
centration in the medium and at the cell surface, thereby setting the gradient that drives diffusion.

Unfortunately, analytical solutions, pursued as above, do not exist for most real-world problems, particularly in porous media. Numerical approaches (“Laplace solvers”) employ iteration on a specified grid in a problem space where boundary conditions are given by known functions. This approach is not feasible for complex grain surfaces and multiple cells, especially in three dimensions.

Another method of solution is to measure the process of interest in a physical model. When dimensional relationships are understood, length scales can be manipulated to make microscopic processes macroscopic. Diffusion of dye through gelatin (used to reduce the inevitable mixing by convection in aqueous solutions) can be used for simple situations (Berg 1993), but it is not a reasonable technique for complex problems because of difficulties in maintaining boundary conditions, measuring quantities, and waiting for steady state. The time for a molecule to diffuse a distance x is

$$t[s] \equiv \frac{x^2}{2D},$$

where $D [m^2 s^{-1}]$ is the molecular diffusion coefficient (Berg 1993). Magnifying a microbial problem 10^4–10^5 times in length (e.g., modeling a bacterium of 0.1 µm radius as an object of 1 mm to 1 cm radius) would require scaling by factors

Table 1. Symbols used throughout the text and figures.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>SI units(^a) (alternate form(^b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
<td>m(^2)</td>
</tr>
<tr>
<td>σ</td>
<td>Conductivity</td>
<td>A V(^{-1}) m(^{-1})</td>
</tr>
<tr>
<td>C</td>
<td>Concentration</td>
<td>mol m(^{-3})</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
<td>m(^2) s(^{-1})</td>
</tr>
<tr>
<td>F</td>
<td>Fitness(^c)</td>
<td>mol s(^{-1})</td>
</tr>
<tr>
<td>I_{Diff}</td>
<td>Diffusive transport or electric current(^d)</td>
<td>mol s(^{-1}) or A(Cs(^{-1}))</td>
</tr>
<tr>
<td>J_{Diff}</td>
<td>Solute flux or electrical flux (current density)</td>
<td>mol m(^{-2}) s(^{-1}) or A m(^{-2})(C m(^{-2})s(^{-1}))</td>
</tr>
<tr>
<td>M</td>
<td>Metabolic cost(^e)</td>
<td>mol s(^{-1})</td>
</tr>
<tr>
<td>N_b</td>
<td>Number of bacteria(^k)</td>
<td>mol</td>
</tr>
<tr>
<td>r</td>
<td>Radial distance(^f)</td>
<td>m</td>
</tr>
<tr>
<td>V</td>
<td>Electric potential(^g)</td>
<td>V</td>
</tr>
<tr>
<td>x</td>
<td>Linear distance(^h)</td>
<td>m</td>
</tr>
</tbody>
</table>

a. Units include ohms (Ω), amperes (A), coulombs (C), meters (m), seconds (s), volts (V), and kelvins (K).

b. Included for clarity in dimensional analyses of transport processes.

c. Subscripts “Ind” and “Clone” refer to processes for individual cells or clonal populations, respectively.

d. Subscript “Max” refers to the maximum transport measured or predicted. Subscripts “Free” and “Flat” describe transport to a bacterium that is freely suspended and to one that is abutted to a surface, respectively. Subscript “Full” refers to that obtained with a full monolayer of bacteria.

e. Subscript “Full” refers to the number required for a full monolayer.

f. Subscripts “In,” “Out,” “B,” and “G” refer to inner, outer, bacterium, and grain, respectively.

g. Synchronous with “voltage” in older texts. Electric potential V always refers to a potential difference, either between the point of interest and a known reference point (ground) or between two points of interest. Because $(V_i - V_{ground}) - (V_f - V_{ground}) = V_i - V_f$, the distinction is not usually pointed out.

h. Subscripts “L,” “H,” “S,” and “F” refer to length, height, separation, and fluid (boundary), respectively.
of 10^{8}–10^{10} in time. A molecule of sugar in water at room temperature ($D \approx 1.0 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$) diffuses 1 µm in 5 \times 10^{-6} seconds, but travels 1 cm in 14 hours, far too slow for practical experiments (Figure 1b).

Analogy and similitude

Many authors (Gebhart 1993, Cussler 1997) show that problems described by the diffusion equation are interchangeable with problems described by the heat conduction equation (known as Fourier’s law),

$$\frac{\partial v}{\partial t} = \kappa \nabla^2 v,$$

with thermodynamic temperature v [K] and thermal diffusivity $\kappa [\text{m}^2 \text{s}^{-1}]$. Thus, a solution of the heat equation (e.g., those found in Carslaw and Jaeger 1959) can be applied directly to an analogous diffusion problem by replacing v with C [mol m$^{-3}$] and κ with $-D$ [m2 s$^{-1}$]. At steady state, heat conduction is governed by Laplace’s equation for temperature, $\nabla^2 v = 0$. Diffusion of mass and heat both result from random motions of molecules; diffusion changes the molecular distribution, and heat conduction changes the thermal energy distribution. The terminology is similar, and boundary conditions compare easily (e.g., constant solute concentration versus constant temperature). Both transport rates depend not on absolute magnitudes but on gradients (of concentration or temperature).

We stress here that every physical process that obeys Laplace’s equation is analogous to, or has similitude to, diffusion (Table 2). Vaux (1961), Johnson (1999), and Narasimhan (1999) developed in-depth analogies among transport processes. These analogies are based on linear responses to spatial gradients, generally resulting from random walks or random walks with drift (due to an applied force). They also rely on steady state. Biologists can readily apply “analogous thinking” (Johnson 1999) to conceptualize and quantify physical processes, providing immediate benefits in physical intuition from more familiar systems.

Berg and Purcell (1977) and Berg (1993) presented a theoretical electrical analog, based on Laplace’s equation for electrostatic potential in charge-free space, to solve challenging diffusion problems. Berg (1993) presented a second, more accessible theoretical analog, based on Ohm’s law for electric current, to solve some of the same problems. Although not stated explicitly, the analog relies on Laplace’s equation for the electric potential V [V] in a steady-state conductor, which results in direct correspondence between electric potential V and concentration C, electrical current I_{Elec} and diffusive transport I_{Diff}, and diffusivity D and conductivity σ. To illustrate the analogy between diffusive transport rate and electric current, we compared the simple, familiar examples of steady-state diffusion through a rectangular volume (Box 1, Figure 2a) and steady-state current in metal wire (Box 2, Figure 2b).

Table 2. Examples of transport processes governed by Laplace’s equation.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mass diffusion</th>
<th>Current flow</th>
<th>Heat conduction</th>
<th>Flow in porous media</th>
<th>Flow between parallel plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow law</td>
<td>Fick</td>
<td>Ohm</td>
<td>Fourier</td>
<td>Darcy</td>
<td>Poiuseuille</td>
</tr>
<tr>
<td>Potential</td>
<td>Concentration</td>
<td>Voltage</td>
<td>Temperature</td>
<td>Energy</td>
<td>Pressure</td>
</tr>
<tr>
<td>Conductance</td>
<td>Diffusivity</td>
<td>Conductivity</td>
<td>Thermal conductivity</td>
<td>Permeability/viscosity</td>
<td>Separation²/viscosity</td>
</tr>
<tr>
<td>Zero-flux surface</td>
<td>Coated surface or mass-flow line</td>
<td>Insulated surface or current-flow line</td>
<td>Insulated surface or heat-flow line</td>
<td>Impermeable boundary or streamline</td>
<td>Impermeable boundary or streamline</td>
</tr>
<tr>
<td>Normal-flux surface</td>
<td>Equiconcentration surface</td>
<td>Equipotential surface</td>
<td>Isothermal surface</td>
<td>Equienergy surface</td>
<td>Equipressure surface</td>
</tr>
<tr>
<td>Continuity equation</td>
<td>∇ Mass flux = 0</td>
<td>∇ Current = 0</td>
<td>∇ Heat flux = 0</td>
<td>∇ Velocity = 0</td>
<td>∇ Velocity = 0</td>
</tr>
<tr>
<td>Laplace’s equation</td>
<td>∇^2 Concentration = 0</td>
<td>∇^2 Voltage = 0</td>
<td>∇^2 Temperature = 0</td>
<td>∇^2 Energy = 0</td>
<td>∇^2 Energy = 0</td>
</tr>
</tbody>
</table>

Note: Adapted from Vaux (1961).
Box 1. Fick’s laws of diffusion.

Macroscopic diffusion follows Fick’s first law,

\[J_{\text{Diff}} = -D \frac{dC}{dx} \]

(1)

with solute flux due to diffusion \(J_{\text{Diff}} [\text{mol s}^{-1} \text{m}^{-2}] \) proportional to the spatial gradient, or derivative \(d/dx \), of solute concentration \(C [\text{mol m}^{-3}] \). The constant of proportionality is the diffusion coefficient \(D [\text{m}^2 \text{s}^{-1}] \), and the negative sign reflects that \(J_{\text{Diff}} \) is in the direction of lower concentration (down gradient) (Figure 1). The transport rate due to diffusion \(I_{\text{Diff}} [\text{mol s}^{-1}] \) is found by multiplying equation 1 by the cross-sectional area \(A [\text{m}^2] \),

\[I_{\text{Diff}} = -DA \frac{dC}{dx} \]

(2)

Solute concentration \(C \) increases or decreases over time \(t [\text{s}] \), based on the conservation of mass (of solute),

\[\frac{dC}{dt} = \frac{dI_{\text{Diff}}}{dx} \]

With substitution from equation 1, yielding Fick’s second law:

\[\frac{dC}{dt} [\text{mol m}^{-3} \text{s}^{-1}] = -D \frac{d^2C}{dx^2} \]

(3)

This result is satisfying intuitively: Over time, if the flux of solute into a parcel of length \(dx \) is smaller than the flux out, solute will accumulate. A key feature of equations 1 and 3, and of nature itself, is that \(J_{\text{Diff}} \) and \(dC/dt \) depend not on the magnitude of concentration but on the spatial gradient (Figure 1). At steady state, or equilibrium, solute neither accumulates nor declines (although molecules are still in constant motion), and

\[\frac{dC}{dt} = 0 = -D \frac{d^2C}{dx^2} \]

(4)

If \(D \) is constant (not changing with \(C \) or \(x \)), then

\[\frac{dC}{dt} [\text{mol m}^{-3} \text{s}^{-1}] = 0 = \frac{d^2C}{dx^2} \]

which is usually applicable for the dilute solutions of ecological interest (Cussler 1997).

A simple application of Fick’s laws calculates diffusion through a rectangular volume in steady state, with constant concentrations at each end and concentration varying in only the \(x \) dimension (Figure 2a). The crucial question is the transport rate by diffusion \(I_{\text{Diff}} \) through the volume. It is answered by finding the solution of equation 4, or an expression for \(C(x) \). Integrating both sides of equation 4 with respect to \(t \) gives

\[\int C(x) dx = \int (Gx + H) dt \]

(5)

where \(G_1 \) and \(G_2 \) are constants of integration. Summing the constants into a third constant \(G \) gives \(\frac{dC}{dt} = \frac{d}{dx} (Gx + H) \). Integrating both sides again, \(Gx + H = C = C_L \). Summing the constants \(H_L \) and \(H_L \) into \(H [\text{mol m}^{-3}] \) and solving for \(C \) provides the general solution

\[C(x) [\text{mol m}^{-3}] = \frac{C_L - C_0}{x_L} \frac{x}{x} + C_0 \]

(6)

(Figure 2a). The flux along the \(x \)-axis is obtained from Fick’s first law, equation 1,

\[J_{\text{Diff}} [\text{mol m}^{-2} \text{s}^{-1}] = -D \frac{dC}{dx} \frac{d^2C}{dx^2} \]

(7)

and the quantity of typical interest, the transport \(I_{\text{Diff}} \), is

\[I_{\text{Diff}} [\text{mol s}^{-1}] = -DA \frac{dC}{dx} \]

(8)

This problem was described in one spatial dimension, \(x \), but many real problems vary in three dimensions. In Cartesian coordinates, Fick’s second law is

\[\frac{dC}{dt} [\text{mol m}^{-3} \text{s}^{-1}] = -D \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2} \right) = -DN^2C \]

(9)

where \(N^2 \) is the Laplacian operator\(^a\). At steady state in three dimensions,

\[\nabla^2 C [\text{mol m}^{-3} \text{s}^{-1}] = 0 \]

(10)

The result and notation in equation 10 hold true in any coordinate system. Equation 10, applied to functions other than \(C \), is so familiar in physics that it has a name, Laplace’s equation, and is indexed in many math and physics books.\(^b\)

\(^a\) The symbol \(\nabla \), or del, is shorthand for the gradient “operator,” which requires that the first partial derivative in space be applied to a function. The symbol \(\nabla^2 \), or del squared, is shorthand for the Laplacian operator, which requires that the second partial derivative in three dimensions be applied. Other familiar operators include +, −, x, and \(\int \). The Laplacian appears different among coordinate systems (Weisstein 2000), but the operation (second derivative) is the same.

\(^b\) Laplace’s equation is also indexed under “Dirichlet problems” when boundary conditions are stated in terms of the function’s value (e.g., \(C \) specified on a cell surface), and “Neumann problems” when boundary conditions are stated in terms of flux (e.g., \(J_{\text{Diff}} \) specified on a cell surface).
Model implementation
To implement the physical model, we created electric circuits of relevant geometries from conductive material immersed in electrolytic baths. Dimensions were scaled up to macroscopic proportions and nondimensionalized by reference to bacterial radii. Analogs for pore-fluid concentrations were made from disposable aluminum cookware (pie pans and baking sheets) and copper pipe, and analogs for bacteria were steel slingshot ammunition. They were all electrodes whose distributions of electric charges were uniform at each surface. Nonconductive boundaries were made from plastic tubs and plates, modeling clay, and adhesive shelf paper placed over aluminum surfaces. Electrolytic baths, made from sodium bicarbonate (chosen to reduce electrochemical plating on metal surfaces) dissolved in water (concentration adjusted to obtain appropriate current flow), constituted the resistance. Circuits were completed with 22-gauge, insulated copper wire using solder or alligator clips to steel (using stainless-steel soldering flux) and aluminum, respectively.

Circuits were driven with direct current (DC, via two D cell batteries) or alternating current (AC, via a signal generator limited to ~100 mA output). In the terminology of diffusion, the power source maintained constant “concentrations” at the boundaries by applying a constant voltage across the electrodes. These power supplies ensured the experimenters’ safety and provided signals of sufficient magnitude and stability. Plating and bubble generation occurred but did not significantly influence the results. The DC power supply was simpler, but the AC power supply gave higher precision and reduced plating. Digital and analog multimeters were used to measure potential difference V [V] and current I [mA] in the circuits. All distances were measured to ±0.5 mm, and manipulations were made by hand.

Model validation
The physical model was tested against problems with known analytical solutions for the corresponding diffusion problems. We first tested the concentration–voltage analog by modeling steady-state diffusion from an outer cylinder to

Box 2. Ohm’s law.

For a typical metallic conductor such as wire, Ohm’s law states that the electric current $I\text{Elec}$ is proportional to the electric potential difference V [V] measured along it, that is,

$$I\text{Elec}[A] = \frac{V}{R},$$

where the constant of proportionality is the resistance R [Ω]. Note that nonitalicized “A” represents the dimension Amperes (Table 1). Resistance is a property defined by an object’s geometry and its resistivity ρ [Ω m], or conductivity σ [1/Ω m]. For a wire of length x_L [m] and cross-sectional area A [m²] (Figure 2b), $R = \sigma \frac{A}{x_L}$. The current is then

$$I\text{Elec}[A m^{-2}] = \sigma \frac{V}{x_L},$$

similar to equation 8. Dividing by the area A gives the current density

$$I\text{Elec}[A m^{-2}] = \sigma \frac{V}{x_L},$$

similar to equation 7. The formal equivalence between the linear functions in equations 7 and 11 implies that equations derived from one system hold true for the other, given consistent replacement of variables. Thus, in differential form,

$$I\text{Elec}[A m^{-2}] = \sigma \frac{\partial V}{x_L},$$

as in equation 1. In three dimensions,

$$\frac{\partial V}{\partial x} = \sigma \left(\frac{\partial V}{\partial x} \frac{\partial V}{\partial y} \frac{\partial V}{\partial z} \right) = \sigma \frac{\partial V}{\partial x},$$

as in equation 9, and at steady state

$$\nabla^2 V[V m^{-2}] = 0,$$

as in equation 10. Because circuits of general interest usually involve one-dimensional transport along wires, this equation is not common in texts, but it is appropriate for describing circuits involving three-dimensional electrolytic baths.

Note: See Halliday and Resnick (1978) for an alternate definition of Ohm’s law. Ohm’s law, like Fick’s law, is not valid for materials that do not behave linearly. Non-Ohmian electrical conductors include semiconductors, in which the conductivity (and thus the current) does depend on the magnitude of the electric potential. Analogously, in non-Fickian materials, the diffusion coefficient (and thus flux) does change with concentration.

Figure 2. Schematic of diffusion–electric current analog (Boxes 1 and 2). (a) Steady-state diffusion through a rectangular volume of cross-sectional area A and length x_L, with constant concentrations C_0 and C_L at either end. (b) Steady-state current flow through a wire of cross-sectional area A and length x_L, with constant electric potential V_0 and V_L at either end.
an inner cylinder (Figure 3a; Crank 1975, eq. 5.2). The outer cylinder was made from a disposable aluminum cake pan (with vertical sides) with a 10 cm radius \(r_{\text{Out}} \). To insulate the bottom of the pan, adhesive shelf paper was glued to the bottom. To facilitate measurements, plain paper with printed radial coordinates was taped to the insulating paper. The inner cylinder was made from copper pipe, with a 1.0 cm external radius \(r_{\text{In}} \), taped to the bottom of the pan with double-sided foam tape. Because in this case diffusion is entirely radial, in cylindrical coordinates \(C \) varies only with radial distance \(r \). Using a voltage probe oriented vertically and spanning the fluid depth (1 cm), we measured the electric potential averaged along the \(z \) axis for a given radius \(r \) and angle from the center point. We measured \(V \) along four orthogonal radii and averaged the values (Figure 3b).

The electric potential \(V \) increased from the surface of the inner cylinder outward along the radial axes. The electrical data matched closely the general analytical solution

\[
C(r) = G + H \ln(r),
\]

where \(G \) [mol m\(^{-3}\)] and \(H \) [mol m\(^{-3}\)] are constants dependent on boundary conditions. With the boundary conditions \(C(r_{\text{In}}) = C_{\text{In}} \) and \(C(r_{\text{Out}}) = C_{\text{Out}} \),

\[
C(r) = \frac{C_{\text{In}} \ln\left(\frac{r_{\text{Out}}}{r}\right) + C_{\text{Out}} \ln\left(\frac{r}{r_{\text{In}}}\right)}{\ln\left(\frac{r_{\text{Out}}}{r_{\text{In}}}\right)}.
\]

In this problem, the modeled boundary conditions were \(C_{\text{In}} = 0 \) [mol m\(^{-3}\)] and \(C_{\text{Out}} = 5.04 \) [mol m\(^{-3}\)], taken directly from the measured \(V_{\text{In}} \) and \(V_{\text{Out}} \), respectively.

We then tested the relationship of real interest, that is, the current–diffusion analog, by using the geometry as described above while increasing the inner radius \(r_{\text{In}} \) from 0.1 to 6 cm. The inner cylinder was made from a strip of aluminum cut from a flat baking sheet, rolled into a cylinder, and secured with an alligator clip. At each step, the cylinder was unrolled, trimmed, and resecured. The experiment was completed twice (once each with AC and DC power). The current \(I_{\text{Elec}} \) was scaled to the maximum \(I_{\text{Max}} \) and the scaled values were averaged for the two experiments. The electrical data matched the analytical solution (from Crank 1975, eq. 5.5 divided by \(r \)) closely (Figure 3c):

\[
I_{\text{Diff}}(r_{\text{In}}) = 2\pi D \left(\frac{C_{\text{Out}} - C_{\text{In}}}{(\ln(r_{\text{Out}}) - \ln(r_{\text{In}}))} \right).
\]

Given the boundary conditions and \(r_{\text{Out}} \) from above, we fit this equation to the data using the function Nonlinear Fit in Mathematica 4.1 (Wolfram Research), thereby estimating the parameter \(D \). Note that in the cylindrical geometry here, diffusive transport \(I_{\text{Diff}} \) is not a linear function of the inner radius \(r_{\text{In}} \), as it is in the spherical problem. These initial tests instilled confidence that we could use this easily implemented physical model of circuits on unsolved problems of steady-state diffusion. Though it is possible to use electrical analogs for time-dependent problems (Karplus and Soroka 1959), in-

Figure 3. Model validation for the diffusion–electric current analog. (a) Schematic diagram of circuit used to solve problem of transport from an outer cylinder to an inner cylinder. (b) Concentration–electric potential analog. Line represents analytical solution and crosses represent electric potential measured along radial axis \(r \). (c) Diffusive transport–electric current analog. Line represents analytical solution and diamonds represent electric current measured as the inner cylinder radius \(r_{\text{In}} \) increased.
vestment in apparatus and protocols may compare with that required for numerical modeling.

Diffusive flux to attached bacteria

We used the analog model to investigate how a surface-attached bacterium fares in obtaining nutrients by diffusive transport compared with a planktonic bacterium. The model mimicked a bacterium of radius \(r_B \) (here 0.5 cm) attached to an inert sediment-grain surface with a constant-concentration pore-fluid boundary parallel to the grain surface, at a fixed distance away from the bacterium (20 \(r_B \); Figure 4a). The bacterium was assumed to be a perfect absorber, that is, \(C = 0 \) [mol m\(^{-3}\)] at the cell surface. With the bacterium and pore-fluid boundary fixed in place, the current \(I_{\text{Elec}} \) flowing through the circuit was measured as the insulating grain surface was moved a separation distance \(x_S \) [cm] away from the bacterium's outer surface (Figure 4a). We scaled the resulting current to that obtained without a grain surface present (\(I_{\text{Elec}} \rightarrow I_{\text{Free}} \), dimensionless) and scaled the separation distance to the bacterium radius (\(x_S / r_B \), dimensionless). This problem is analogous to the heat-transfer problem of a buried heat sink abutted against an adiabatic surface, a problem that has not yet been solved analytically (“exactly”) with consensus (Hahne and Grigull 1974, Small and Wechs 1977).

When the bacterium was tangential to the rigid surface, that is, \(x_S = 0 \), the current was about 80% of that of the unattached cell (Figure 4b). Thus, the cost of attachment in terms of lost access to diffusive transport was about 20% of the cell’s potential gross uptake. In diffusively constrained settings, the reason for attachment cannot be simple gain in nutrient acquisition. Rather, attached bacteria can be thought of as employing the feeding strategy of sessile marine invertebrates—that is, they let food come to them. When fluid advection (flow relative to the surface) is present, the diffusive sublayer over the grain surface will thin, thereby increasing nutrient supply as the same concentration difference is divided by a shorter distance. This complication illustrates the difficulty of comparing two distinct foraging strategies over ecological and evolutionary time scales. Who wins? The attached bacterium isolated in the diffusive sublayer, which may be thinned by flow, or the motile suspended bacterium that can spend more time in high-concentration fluid (Mitchell et al. 1996, Dusenbery 1999, Konopka 2000)? In porous environments with significant advection and periodic sediment suspension, attachment may be the only way to exploit the habitat over long time periods.

Attachment cost dropped to about 5% when the bacterium was one cell diameter away from the grain surface (Figure 4b). The rapid amelioration of uptake cost with increasing separation suggests that attached bacteria capable of maintaining a distance of at least one radius away from a solid surface would have a distinct advantage over those abutted directly to the surface. This result immediately prompts speculation about the role of extracellular material in microbial ecology. Extracellular polysaccharide (EPS) is often produced in large volume by attached bacteria in plump and sparse biofilms (Figure 5; Underwood et al. 1995, Heissenberger et al. 1996, Bennett et al. 1999, Ransom et al. 1999). As a first approximation, EPS and water have identical transport properties for the diffusion of small molecules, that is, \(D_s \) for small molecules in the two media are not substantially different (Koch 1990, Cussler 1997). These results suggest that EPS may act in part to hold cells a fixed distance from a surface in order to improve diffusive transport of nutrients.

Sediment-grain topography

Uncovering relationships between foraging and habitat relies on characterizing spatial effects at the organism’s scale. For example, sediment grains display a wide range of microtopography, typically expressed in bulk as the surface area per unit of volume. Rounded sand grains are often modeled as Euclidean surfaces, but silt and clay grains can contain up to two orders of magnitude more surface area per unit of volume because of a higher surface-to-volume ratio and increased surface relief. On a given grain, bacterial attachment can occur at topographic highs (bumps) or lows (pits) (Figure 6a). Attachment at a topographic low might provide refuge from...
grazing (DeFlaun and Mayer 1983), but this benefit could involve a substantial tradeoff in terms of nutrient flux.

Using the same setup as before, with a malleable, non-conductive surface (modeling clay), we investigated the effects of sediment features, such as pits and bumps, on diffusive flux. We changed the grain topography (feature radius \(r/r_B \) and relief \(x_H/r_B \)) and measured the resulting current \(I_{\text{Elec}} \) passing through the circuit (Figure 6b). The current, scaled to that received by the cell on a flat surface (\(I_{\text{Elec}}/I_{\text{Flat}} \), dimensionless), increased slightly for the bacterium on bumps and decreased severely for the bacterium in pits (Figure 6c). The uptake varied sixfold over the range of topography examined. Thus, deep, narrow pits may be excellent places to survive predation, but they are not good foraging locations. DeFlaun and Mayer (1983) noted a lack of bacteria in bacteria-sized pits on sediment grains. For attachment in bacterium-sized pits (\(x_H/r_B = 2 \) and \(r/r_B = 1 \), the modeled uptake of limiting nutrient was reduced by about 50% (Figure 6c).

Multiple cells and clonal fitness

Because cell signaling by bacteria can involve coordinated and perhaps cooperative behavior, bacteria have been suggested to function like modular (Andrews 1998) or multicellular (Shapiro 1998) organisms and to evolve at multiple levels of...
selection (Caldwell et al. 1997). As in the ecology of higher organisms, however, observing cooperative behavior is insufficient to establish higher-order (kin) selection. Studies of marmot warning calls illustrate the arduous task of quantifying the fitness costs and gains and the “genetic relatedness” that is required to posit the evolution of a cooperative behavior (Blumstein and Armitage 1998, Hauber and Sherman 1998).

We conjecture that in a small volume of sedimentary habitat (10–100 μm³), most of the bacteria of a particular species may be members of the same clone, having nearly 100% of their DNA in common and thus genetic relatedness close to 1. As an initial step in understanding whether typical benthic bacteria have evolved under clonal selection (as the first level of higher-order selection), we sought to develop predictive theory for clonal foraging by surface-attached bacteria.

We began with a theory based on individual fitness (reproductive success by the succeeding generation), using solute uptake as a proxy for energy gain. Because of differing metabolic costs tied to foraging strategies, the gross nutrient uptake rate is insufficient to predict fitness. Rather, the net nutrient uptake rate is often suggested to correlate with individual fitness. As above, we assumed that all solute transport was due to diffusion and that uptake equaled diffusive transport to the individual cell surface, that is, the cells were perfect absorbers. Thus, individual fitness was the net rate of gain

\[F_{\text{Ind}} \left[\text{mol s}^{-1} \right] = I_{\text{Ind}} - M_{\text{Ind}} \]

where \(M_{\text{Ind}} \left[\text{mol s}^{-1} \right] \) is the metabolic cost of maintaining the organism.

We then defined clonal fitness \(F_{\text{Clone}} \left[\text{mol s}^{-1} \right] \) as the net uptake rate of all the bacteria belonging to the clone

\[F_{\text{Clone}} \left[\text{mol s}^{-1} \right] = I_{\text{Clone}} - M_{\text{Clone}} \]

where the metabolic gains and costs equaled the sums of the individual rates. In this equation, \(I_{\text{Clone}} \) is the clonal uptake, and \(M_{\text{Clone}} \) is the metabolic cost of maintaining the clone. As a first approximation, we assumed uniform basal metabolic costs among the clone members, such that

\[F_{\text{Clone}} \left[\text{mol s}^{-1} \right] = I_{\text{Clone}} - N_{\text{B}} M_{\text{Ind}} \]

where \(N_{\text{B}} \) is the number of bacteria in the clone.

The uptake, or transport \(I_{\text{Clone}} \), is not a simple linear function of cell number because of competition for nutrients among neighbors. To solve this problem, we followed the arguments that Berg and Purcell (1977) and Berg (1993) developed to model the uptake by multiple receptors on a single cell, based on the analog of “diffusive resistors” in parallel (Figure 7a, 7b). As a first step, we followed their approach theoretically to calculate the clonal uptake \(I_{\text{Clone}} \) by disk-shaped bacteria attached to sediment grain of radius \(r_G \) (with the origin at the center of the grain). The dissolved limiting nutrient was assumed to be at a constant concentration at \(r = \infty \) (Figure 7a). In fact, staring at Berg’s (1993) cartoon of multiple receptors on a cell, after peering at bacteria on sand grains through a microscope, stimulated this research. Following Berg (1993), while scaling the number of bacteria \(N_{\text{B}} \) to the maximum possible for a complete monolayer of bacteria,

\[
I_{\text{Clone}} = \frac{1}{1 + \frac{\pi N_{\text{B}} r_B}{4 N_{\text{B}} r_G}}
\]

The number of bacteria \(N_{\text{B}} \) for a complete monolayer coverage of the grain was calculated as the grain surface area \((4\pi r_G^2) \) divided by the area per bacterium \((\pi r_B^2) \), without correcting for the empty space between projected circles (an error of 10% at most) (Weisstein 2000, “Circle Packing”).

Berg and Purcell (1977) and Berg (1993) showed that a very small number of receptors is needed on a cell’s surface before it receives nearly all that it would have by having the entire surface covered with receptors. For geometry representative of bacteria on a sand grain \((r_G/r_B = 100) \), scent coverage of the surface was needed before \(I_{\text{Clone}}/I_{\text{Full}} \) reached 0.90, or 90% of what it would get if the entire grain surface were covered by bacteria (Figure 7c). This function, similar in form to the Michaelis-Menten equation for saturating enzyme kinetics, increased steeply and leveled off to approach \(I_{\text{Clone}}/I_{\text{Full}} = 1 \) asymptotically as the fraction of surface area covered by bacteria increased. We improved our physical intuition for the problem by employing physical models that included adhesive paper, with holes punched out, attached to aluminum surfaces.

To improve the realism of the theoretical model, we predicted clonal uptake by spherical bacteria with the constant-concentration boundary at a finite, rather than infinite, distance away. We interpreted the characteristic length \(x_F \) as half the distance to a neighboring sediment grain, where in a symmetrical pore (space between grains) lined by absorbing bacteria, the concentration would be highest. We modeled the bacteria attached to a flat plate in order to simplify the mathematics and because the curvature of a large grain should not be influential at the bacterium’s scale. The “diffusive resistance” of each bacterium was estimated using the “shape factor” put forth by Hahne and Grigull (1974), resulting in an effective radius equal to \(2r_B \). Uptake was then calculated as

\[
\frac{I_{\text{Clone}}}{I_{\text{Full}}} = \frac{A x_F N_{\text{B}}}{2\pi r_B^2 (1 + 2x_F N_{\text{B}}/N_{\text{Full}})}
\]

where \(A \) is the area of the surface. Uptake increased more rapidly, compared with disk-shaped bacteria, as the fraction of surface covered by bacteria increased (Figure 7d). It is also worth noting that, unlike coverage by transport sites in a cell membrane, it is possible to have more than 100% coverage of the grain surface by bacteria by stacking them in various arrangements more than a single bacterium thick. We did not go to these lengths because of the obviously diminishing nutrient returns at well short of what we termed 100% coverage.

We calculated clonal fitness based on idealized metabolic costs (low, medium, and high) (Figure 7d, 7e). Thus, whereas costs increased linearly as clone mates were added (near-neighbor progeny produced), gross uptake approached an asymptote, and the difference, or clonal fitness \(F_{\text{Clone}} \), reached a maximum at well below 100% coverage. The higher the
metabolic costs (relative to a fixed nutrient supply), the more pronounced were the optima in coverage. In Berg’s (1993) analysis of the receptors on a single cell, he stated that the paucity of coverage required to approach \(I_{\text{full}} \) leaves room for all of the different receptor types that a cell needs. This analogy should extend to microbial consortia on grain surfaces, where there would be room for multiple types of cells involved in the breakdown of complex substrates, as suggested by Koch (1990).

Depending on the metabolic cost-to-nutrient-supply ratio, a clone may decrease its fitness by producing near neighbors. Reduced fitness for high-density clones was predicted with parameter values attainable in surficial sands (Figure 7f). In such cases, attached bacteria may be predicted to produce motile progeny rather than near neighbors. Though greatly simplified, this type of modeling allows development of quantitative predictions for conditions favoring allocation of resources to dispersal (Caldwell and Lawrence 1986, Lawrence and Caldwell 1988).

For a given strain, cell size, cost per cell, and bulk solute concentration, one way that the nutrient supply changes in nature is by advective thinning of the diffusive boundary layer over a surface. This method gives a way to predict quantitatively how thinning of the boundary layer over a grain surface should result in denser bacterial populations. Laboratory experiments could be used to test the hypothesis that clonal bacterial foraging is explained better by maximizing clonal rather than individual fitness. Implicit in the hypothesized density-dependent foraging strategy is inclusion of quorum sensing. We emphasize that quorum sensing is the use of signals to determine a combination of population density (signal accumulation) and hydrodynamic conditions (signal depletion). We also note that the modeling described here, both theoretical and analytical, could be adapted to investigate bacteria as sources, rather than sinks, of solute molecules. Brookfield (1998) showed theoretically how quorum sensing may be a stable strategy under certain conditions. In an experiment tracing the evolution of Myxococcus xanthus over 1,000 generations, Velicer and colleagues (1998) found that the evolution of social behaviors, coordinated by chemical signaling, depended on the hydrodynamics of the habitat.

Summary

We implemented an electric-circuit analog to the diffusive process, which was successful for examining issues of nutrient uptake by attached bacteria. We used the formal equivalence of Ohm’s and Fick’s laws to provide quantitative solutions to mi-
microbial foraging questions that have been intractable with analytical and introductory numerical techniques. The technique is applicable to any system governed by Laplace's equation, which describes many forms of mass or energy transfer at steady state. The technique is easy and inexpensive. Furthermore, the solutions are real and exact and do not rely on definable gridding or boundary conditions.

The benefits of this physical model are many. It rapidly approaches steady state (instantaneous to the observer) and provides real-time feedback during manipulations. For microbiologists, it builds intuition of organism-scale processes while working at a macroscopic scale. Boundary conditions are physical rather than symbolic (as in analytical models) or digital (as in numerical models) and so can be grasped both literally and visually. The method could easily be adapted, for example, to investigate uptake by single cells with complex shapes (such as diatoms and dinoflagellates), complex geometries of diagenetic reactions, and diffusion-like transport of populations through complex habitat. The electrical model can also be used in the implementation of curricula apt for “hands- and minds-on” learning (Lynch 1997, Moreno 1999).

Many engineering texts on transport processes (Karplus and Soroka 1959, Welty et al. 1984) contain brief discussions of experimental methods for two-dimensional experiments, using carbon paper and silver paint to create desired geometries. Using the electrical analog, we found that a cell attached to a flat surface loses about 20% of its potential uptake. This cost all but vanishes when the bacterium is maintained at a single bacterial diameter away from the surface, generating the hypothesis that one role of bacterial EPS is to maintain a fixed distance from the surface. Conversely, protection in a bacterium-sized pit comes at a cost of 50% of an attached cell’s potential nutrient uptake.

When multiple bacteria were attached to a planar surface, the combined diffusion current increased steeply with the percentage of surface covered by bacteria and reached 90% of that possible with 100% coverage with less than 2% of the surface occupied. We calculated that, depending on specific metabolic costs, the combined net gain of multiple cells can be maximal at well below 100% coverage. In benthic systems, approximately 0.1%–2% of sediment-grain surfaces are covered by bacteria; a clonal population using a dissolved resource therefore might better partition growth to progeny that disperse (i.e., motile cells) than to producing near neighbors.

Acknowledgments
The authors wish to thank Peter Rhines, David Dusenbery, Daniel Grubau, and the participants in Friday Harbor Lab’s 1999 Marine Chemosensory Ecology Course for productive discussions; Fritz Star, Christian Sarason Parker, and Christopher Krembs for critical reviews of earlier drafts; and Eric Lindahl, Michael O’Donnell, and Rex Johnson for help with the model implementation. This work was conducted with support from the Office of Naval Research and Friday Harbor Labs, University of Washington.

References cited

