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Omobot, a cost-effective autonomous mobile robot designed for indoor environments,

focuses on fall detection and response for elderly care. The thesis presents the design,

development, and evaluation of Omobot’s potential for aiding elderly people by combining

mechanical and electronics design, software development, and improving fall detection accuracy.

The robot’s design includes 3D printed structure and Mecanum wheels that allow it to

move easily in indoor environment. It is powered by NVIDIA’s Jetson Nano, which helps

it to process data from sensors in real-time for navigation and fall detection. The software

framework built on Robotic Operating System (ROS) helps in sensor integration, real-time

data processing, and provide an open-source platform. System identification modelling is

used to simplify control system complexity.

The system includes a fall detection system that uses images captured from the robot’s

camera perspective and improves detection accuracy through homography transformation

that simulates human sight levels. It uses the YOLOv8-Pose, which is a single-stage detector

model, to detect the presence of humans, track movements, and identify falls. Once a fall is

detected, the system sends emails to designated responders.



Omobot surpasses traditional fall detection systems in accuracy, usability, and reliability,

demonstrating significant potential for real-world application. The robot’s ability of autonomously

navigation contributes to safer living environments for the elderly. The open-source design of

Omobot ensures it can be continually updated and improved by the research community for

future assistive technologies. The low-cost build can aid in removing the economic barriers

that typically limit the deployment of advanced assistive technologies without compromising

reliability.
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CHAPTER 1

INTRODUCTION

1.1 Fall Detection

The percentage of people aged over 65 is increasing in the OECD countries, with growth

from 11.36% in 1990 to 17.96% in 2022(OECD, 2024) [1,2]. This demographic shift highlights

the growing importance of fall prevention and management in addressing the challenges

associated with an aging population, especially in healthcare and social support systems.

Since the 1990s, there has been increasing recognition of the challenges posed by fall prevention

and management among the elderly. Research by Tinetti [3] and Doughty [4] has analyze

the risks and management of falls in older adults.

Fall detection systems are essential for older people. These systems help to quickly notice

if someone falls and help them promptly. These systems keep an eye on older people all the

time and give them help right when they need it. This makes older people safer and more

independent, and it means they don’t need as much help from caregivers or healthcare.

1.2 Related Work

K. Doughty et. al [4] discusses the evolution of telecare systems from manual emergency

response to automatic sensing and health monitoring, predicting future advancements with

broadband communication for enhanced elderly care. User-activated alarm systems by S

Chaudhuri et al. [5] require the person to press a button to request help from community

responders. One limitation of this approach is that it requires the fallen person to be

conscious and decide to call for help. The hesitancy of the elderly to ask for help under

such circumstances has pushed researchers to develop passive fall detection systems that do

not require any action from the patients themselves.
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Literature on passive fall detection systems has been reviewed multiple times in the

last two decades While preventing falls is the first line of defense, the second line of defense

managing falls by reducing the response and rescue time [6]. P Rajendran et al. [6] emphasizes

fall prevention and detection technologies, such as automated wearable detectors and environmental

modifications, that use advanced sensing and data analysis to reduce fall risks for the elderly.

The survey by X Wang et al. [7] looks into various approaches and challenges in developing

effective fall detection systems, emphasizing the use of multiple sensors to enhance detection

accuracy and reduce false alarms by integrating data from different sensors potentially that

leads to higher system robustness and reliability. Z Zhang et al. [8] categorizes existing fall

detection approaches into sensor-based and vision-based, with an emphasis on non-intrusive,

camera-based systems that enhance elderly care by a real-time monitoring without physical

contact. In summary, these passive fall detectors can be classified based on the location of

sensors as wearable or ambient. A wearable fall detector is worn by the person to be tracked.

It typically uses IMU (Inertial Measurement Units) and health sensors to detect falls. An

ambient fall detection technology is usually installed in the person’s home. These systems

typically use pressure sensors, vibration sensors, or cameras to detect a fall and alert the

caregivers.

While wearable sensors have become less conspicuous, they can easily lead to false alarms.

On the other hand, ambient sensors, while more accurate, are more costly. Admittedly, these

sensors can be combined to complement each other. One limitation of all camera-based

systems is that some consider them to invade the privacy of the individual being monitored.

These technologies have complementary strengths and weaknesses, and a hybrid system can

be customized based on the user’s needs and preferences. These limitations, combined with

advances in deep learning and autonomous robots, have led to a new type of ambient fall

detectors: mobile robots as fall detectors. L Ciabattoni et al. [9] explored fall detection

systems in smart homes, integrating smartphone-based acceleration data and Kinect sensors
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for precise location tracking to monitor elderly movements. Z A Mundher et al. [10] employs

a Kinect sensor on a mobile robot that detects falls and initiates emergency communication

through SMS and calls. These are ambient-mobile sensors, contrasting with the previous

generation of ambient-static sensors.

Many mobile devices have been proposed for fall detection as a classification problem.

This requires classifying images as either "fall" or "no fall". W H Chin et al. [11] integrated

approach combining a lightweight deep learning model with an assistive mobile robot to

enhance fall detection and support for the elderly focusing on a vision-based fall detection

using a low-cost 2D camera and a mobile robot equipped to perform autonomous navigation

and assistance tasks. C Menacho et al. [12] focuses on developing an efficient Convolutional

Neural Network (CNN) model for fall detection, optimized for performance on a mobile

robot equipped with limited computational resources, like the Nvidia Jetson TX2. However,

the reliance on Optical Flow in the system’s performance could degrade in complex dynamic

backgrounds or under variable lighting conditions, which are common in real-world environments.

Extensive research has been carried out in the field of intelligent autonomous mobile

robots to develop advanced features such as obstacle avoidance, object detection, path

planning, and map creation. In one such effort, Andruino-R2, a mobile robot, was developed

and implemented by F M Lopez-Rodriguez et al. [13] with line-following navigation combining

Arduino and Java-based ROS. A A S Gunawan et al. [14] developed an integrated system

named BeeButler that combines a flutter-based multi-platform mobile app and a robot to aid

hotel guests in ordering amenities. It solves the previous problem of external devices by using

onboard Jetson Nano and Arduino Mega 2560 to control the robot. Still, it uses a line follower

and RFID tag for localization, which is unsuitable for navigating an unknown environment

without setting additional lines and RFID tags. A two-wheel home-assistive robot featuring

a combination of omnidirectional wheels with differential driving was developed by P. He et

al. [15]. The author used an STM32 microcontroller and NVIDIA Jetson Nano to control the
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robot and demonstrated successful 2D and 3D SLAM experiments, autonomous navigation,

and obstacle avoidance. X. Tan et al. [16] developed a ROS-based omnidirectional robot with

mapping, localization, and navigation capabilities using a multisensor fusion on Raspberry

Pi 4B, emphasizing accuracy and efficiency.

G. Chen et al. [17] utilized a vision-based detection method that utilizes the NanoDet-Lite,

a derivative of the NanoDet model optimized for small devices like the Raspberry Pi 4

Model B. This model achieves high accuracy on low-cost hardware without a dedicated

hardware accelerator. There have been significant improvements in the accuracy of object

detection algorithms such as YOLO by A. Wong et al. [18] by formulating fall detection

as an object detection problem instead of an image classification problem, multiple persons

can be identified in the same image and classify each as fallen or not. This is especially

useful when a dummy or statue is present in the same image as the elderly person that the

robot is supposed to watch. However, in terms of cost, these robots are high, and a low-cost

implementation was not prioritized which can be a barrier for potential scalability in the

future. To address the issue, a custom low-cost mobile robot, Omobot has been designed

and prototyped that is intended expressly for the purpose of periodically surveying an area

and checking for persons who have fallen.

While most mobile robots depend on camera-based fall detection, some users prefer

them over ambient camera-based systems. Because mobile robots perform only periodic

monitoring as opposed to ambient systems’ continuous monitoring. A mobile robot system

can be configured to check on a person at regular intervals, such as every 30 minutes, and be

triggered by wearable sensors or loud noises. The mobile robot can then search for the person

in the house. If the person is found and identified as being in a fallen position, then an alert

is generated. The advantage of this approach over ambient cameras is that a mobile robot

checking on an elderly person is periodic, and the person being checked on is reminded of the
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robot’s presence, providing a sense of physical interaction. As a supplementary advantage,

the requirement to keep the floor clear for the robot’s passage can also help prevent falls.

1.3 Organization

The thesis paper is organized into four main chapters, each dedicated to a different aspect

of the research and development of an efficient robotic system designed to assist in elderly

care by detecting falls autonomously.

Chapter 1 starts introducing the challenges of fall prevention and management among

older people, a critical issue given the increasing proportion of aged populations worldwide.

It reviews existing technologies, such as user-activated alarms and passive detection systems,

and positions mobile robots as an innovative solution. The chapter outlines the structure of

the entire thesis and establishes the context for Omobot’s development.

The hardware design, software, and assembly of Omobot are provided in Chapter 2.

This includes comprehensive coverage of the hardware setup and software design. Experimental

results validating design choices through tests on load capacity, battery life, and navigation

accuracy are also presented at the end of the chapter. In Chapter 3, control system designs

are elaborated in detail with results that show the effectiveness of the control system.

Chapter 4 dives into the fall detection system implemented within Omobot. It describes

the smart pre-processing techniques for enhancing the accuracy of the Fall detection model.

Detailed experiments and results assess the effectiveness of the fall detection mechanisms

under varied conditions. Also, a demonstration of Omobot in a real-world scenario is shown

at the end of the chapter.

The concluding chapter, Chapter 5, summarizes the key findings and suggests directions

for future research to further enhance the capabilities and applications of mobile robots in

assistive care technologies.
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This thesis work has been published in a peer-reviewed conference, 2024 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM) in July 2024, and

much of the writing mirrors the content of the published paper. A significant contribution

to the fall detection section 4 was made by my co-author, Masoud Ataei who played a crucial

role in both the conceptualization and implementation of this part of the study. Additionally,

the research was guided and mentored by Dr. Vikas Dhiman and Dr. Vijay Devabhaktuni.

Their support was invaluable throughout the entire research process.
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CHAPTER 2

ROBOT MODELLING AND DESIGN

2.1 Introduction

The comprehensive design of the robot, incorporating its mechanical, electronic, and

software components, has been thoroughly discussed in this chapter. For a demonstration

video, fall detection dataset, and instructions for using the robot, please consult the GitHub

repository.1 . The overall hierarchy of system design is presented in Figure 2.1. One of the
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Figure 2.1: System Design

objectives is to develop a resilient, dependable, and economical robot with components priced

at less than $1000. The final build-up cost of the robot is $693, and the cost breakdown of

1https://github.com/shihab28/omobot_js
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Table 2.1: Cost Breakdown

Components Cost (USD)

Jetson Nano (Dev-4GB) with accessories, and Camera 300
DC gear motor (12V) with encoder and mecanum wheels 90
Arduino (Nano RP2040) 42
LiDAR (LD19) 99
IMU (MPU-6050) 3
LiPo Battery (5200mAh) 29
Power supply and charging module (12V) 39
PCB Board (Dual Layer-Through Hole) 15
Wireless charging system (12V-2A DC) 36
3D printed parts 30
Misc (wire, bolts, nuts, connectors, etc.) 10

Total 693

all the parts is displayed in Table I, which illustrates how the complete robot is built for a

budget of under $700, ensuring affordability without compromising quality. The items were

purchased and priced based on market price between November 2022 and December 2023.

The cost breakdown is shown in the Table 2.1.

2.2 Hardware Design

The hardware design is composed of the detailed mechanical and electronic components

design and assembly. Initially, the skeleton of the robot was designed using the Solidworks

model. The device’s design, as shown in Figure 2.2, shows the trimetric view of the robot’s

design. Afterward, the four DC gear motors with encoders and the four Mecanum wheels [19]

are mounted to the bottom aluminum chassis following the correct orientation and parameter

defined in the design (Distance from the origin of the robot’s base-footprint to center of the

wheel’s origin along X-axis; l=118.5mm, distance from the origin of the robot’s base-footprint

to center of the wheel’s origin along Y-axis; w=82.5mm). Aside from the motor mounts and

bottom chassis, all other bases, mounts, and joints are individually designed and 3D printed

using Polyethylene Terephthalate Glycol (PETG) and Polylactic Acid (PLA) filament. A
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Figure 2.2: Trimetric View of the Robot

12-volt Li-Po battery is mounted below the chassis to lower the center of mass. The wireless

charging coil is covered in a 3D printed cover and mounted at the center below the battery

mount. Jetson Nano is located on the top of the base. The Jetson Nano is the robot’s

brain, processing data and executing tasks. Beside the Jetson Nano, the printed circuit

board (PCB) is located. Figure 2.3 shows the schematic diagram used for the PCB. The two

Arduino Nano RP2040 microcontroller is placed on the PCB along with the two H-bridge

motor controllers LM298N; the DC-DC switching 12V-3A buck-boost converter to supply

constant 12V supply to the motor; the DC-DC 5V-4A buck power converter to supply power

to the Jetson Nano and Arduino; the charging module and battery management system

(BMS).

2.2.1 Robot’s Base Chassis

The base chassis or frame provides structural support and holds together all essential

components of the robot. The base is designed using Solidworks as shown in Figure 2.4a.

While designing the base, the following design requirements are followed,
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Figure 2.3: Schematic of the printed circuit board (PCB)

10



• The base should withstand physical stress and external forces during movement, collisions,

or heavy payload carrying. PETG filament ensures the durability and robustness which

is required from the robot [20]. A symmetrical design is adopted to keep the center

of mass relatively lower and at the center of the robot frame to avoid rollover during

motion.

• The base should provide a secure integration platform for the components such as

motors, wheels, jetson nano, Light Detection and Ranging (LiDAR), PCB board,

wireless charger, and power systems. According to research necessity, there should

be sufficient options to integrate extra components securely in a later stage. As shown

in the F 2.4a, multiple anchor points are kept in the design for extending attachments

in the future.

• The base should have easy access to internal components, simplifying maintenance,

repair, and replacement of parts if necessary. Designing a flat robot rather than

adopting a vertical design ensured easier access to the components.

(a) 3D model (b) 2D drawing from top and side view.

Figure 2.4: CAD model of robot’s base frame

After many design modifications, the final design is selected as Figure 2.4b. The base’s size,

frame, and coordinate information are summarized in Table 2.2.
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Table 2.2: Specifications of the Frame Base

Property Value

Frame base
Length (mm) 288
Width (mm) 288
Height (mm) 60
Weight (gram) 546
Coordinates [x, y, z] (mm) [0.0, 0.0, 40.50]

The square-shaped base base-chassis has a length and width of 288 mm. For integrating

components, sufficient symmetrical holes with multiple sizes are kept. The symmetry in the

designs ensures that the weight distribution is even and that the center of mass (COM) lies

in the geometric center of the base. To access the components mounted below the base,

the detachable side cover is attached using eight M3 bolts instead of making the sides a

single body merged with the main frame. It ensures that the Battery and wireless can be

maintained without flipping the robot and avoids small objects going inside, hampering the

wheel movement.

The chassis is printed with PETG filament, and the primary printing parameter is given in

Table 2.3. Printing the base with PETG filament ensures robustness and provides enhanced

durability [20] and impact resistance compared to other options like PLA. Also, it exhibits

Table 2.3: Printing parameters for base frame

Property Value

Printer Creality CR-10S5
Filament Size (mm) 1.75
Nozzle Diameter (mm) 0.4
Bed Temperature (◦C) 75
Extruder Temperature (◦C) 245
Infill Density (%) 35
Layer Height (mm) 0.16

higher temperature resistance, ensuring more excellent stability for specific robot applications

under elevated temperatures.
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2.2.2 Jetson Nano

NVIDIA’s Jetson Nano 4GB Developer Edition A1 Kit [21] has been used as the robot’s

central brain. It is a compact yet powerful AI computer tailored for robotics and AI

development. Featuring a quad-core ARM Cortex-A57 CPU and 128-core NVIDIA Maxwell

GPU, it offers real-time AI processing and supports popular AI frameworks like TensorFlow

and PyTorch. With Robot Operating System (ROS) compatibility and GPIO pins for sensor

integration, it’s an accessible platform for robotics experimentation and development. These

features make it ideal for autonomous navigation, obstacle avoidance, and object recognition

in an omnidirectional mobile robot [22]. With ROS Melodic support, the LiDAR LD19,

IMU MPU6050, and Sony IMX219 Stereo cameras have been seamlessly integrated into

the system. The Figure 2.5a shows the 3D modeling and assembly. A Samsung FIT

(a) 3D trimetric view of the model (b) 2D drawing from top and side view

Figure 2.5: CAD model of Jetson Nano

Plus USB 3.1 64GB Flash Drive is used for storage, and the ARM64-based Ubuntu-1804

is installed using JetPack-4.5.1 software development kit (SDK). JetPack SDK 4.5.1 is an

NVIDIA development kit offering enhanced features, optimizations, and AI development and

deployment tools on Jetson platforms. The size, static frame, and coordinate information

are summarized in Table 2.4. For wireless communication, the Waveshare AC8265 Wireless

NIC Module has been installed, which supports 2.4GHz / 5GHz dual band WiFi and
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Table 2.4: Size, frame, and coordinate of the Jetson Nano

Property Value

Frame Jetson
Length (mm) 112
Width (mm) 112
Height (mm) 60

Weight (gram) 340
Coordinates [x, y, z] (mm) [0.00, -76.88, 68.00]

Bluetooth-4.2. Jetson supports several communication protocol methods to communicate

between devices and sensors, including universal asynchronous receiver transmitter (UART),

universal serial bus (USB), I2C, Internet Protocol (IP), secure shell protocol (SSH), serial

peripheral interface (SPI), Camera Serial Interface (CSI), etc. Table 2.5 shows the device

connection and protocol used for communication. A Samsung FIT Plus USB 3.1 64GB

Flash Drive is used for storage, and Ubuntu-1804 based on ARM64 is installed using the

JetPack-4.5.1 software development kit (SDK). JetPack SDK 4.6.1 [23] is an NVIDIA development

kit that offers enhanced features, optimizations, and AI development and deployment tools

on Jetson platforms.

Table 2.5: Jetson nano’s connection with other devices and sensors

Device and Sensor Connection

Arduino Nano (Encoder) UART
Arduino Nano (Motor) USB

LiDAR-LD19 USB
Sony IMX219 Cameras CSI

IMU MPU-6050 I2C
Oled-Display I2C

Wireless Controller Wifi, IP

2.2.3 Arduino Nano

Arduino Nano RP2040 is a member of the Arduino Nano series. It features the RP2040

microcontroller, offering a clock speed of 133 MHz, 264KB of SRAM, 16 Pulse Width
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Modulation (PWM) pins, 20 external hardware interrupt pins, and a USB interface. It

provides a versatile platform for embedded projects requiring robust processing power and

extensive I/O capabilities. Its compact form factor, measuring only 45 x 18mm, makes it

suitable for space-constrained applications like robotics. Two Arduino Nano RP2040 are

used for secondary microcontrollers. One of the dedicated microcontrollers is used to control

motors, and the other is used to get feedback from the encoders. Eight encoder feedback

is coming from the four motors to one of the Arduinos, and the 20 Interrupt pins help to

read and process the feedback pulse without delay. The second Arduino is dedicated to

controlling the robot by receiving motor speed from Jetson Nano to drive the motors using

control signals. Figure 2.6 shows the schematic diagram with the encoder and motor driver

connections. Figure 2.6a shows the encoder connections. the encoder pins are connected

(a) Encoder Controller (b) Motor Controller

Figure 2.6: Schematic of Arduino Nano Connection

from the microcontroller’s digital pin4 (D4) to digital pin11 (D11). The UART pins (RX,

TX) are connected to the UART pins of the Jetson nano, respectively, to establish serial

communication. The battery voltage and current drawn by the robot are monitored using the

analog pin0 (A0) and analog pin1 (A1), respectively. The measured speed of the four-wheel

(pulse/sec), battery voltage level (V), and current (mA) are sent to Jetson Nano as an
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array. Analog pin2 (A2) and pin3 (A3) are kept for future use. Similarly, Figure 2.6b shows

the connection for the motor. Twelve connections are required to control the motor: three

connections (two for assigning the rotational direction and one for controlling the speed using

8-bit PWM) for each motor. The ten connections go from digital pin2 (D2) to digital pin11

(D11), and the rest of the two are connected to analog pin0 (A0) and analog pin1 (A1).

The Arduino receives the desired motor speed from Jetson Nano via USB communication.

Analog pin2 (A2) and pin3 (A3) are kept for future use.

2.2.4 DC-gear Motor with Encoder and Mecanum Wheel

Four DC-gear motors equipped with an encoder are used to move the robot. DC-gear

motors are perfect for mobile robots due to their high torque output, providing sufficient

power to move them swiftly across various paths. The encoders provide real-time feedback

about the motor’s position and speed [24], enabling precise control and navigation. This

feedback loop allows for accurate distance and direction calculations, providing better path

planning and obstacle avoidance, which is crucial as the robot moves indoors. Mecanum

wheels offer omnidirectional movement, enabling a robot to move in any direction without

changing its orientation. The mecanum wheel, as shown in Figure 2.7, has angled rubber

rollers around its edge that rotate at 45 degrees to the wheel plane and axle line. These

rollers let the wheel move in any direction by creating force perpendicular to their axis [19].

The wheel design allows for omnidirectional movement on a 2D surface. As shown in Figure

2.8, the four motors and wheel are mounted in the vertex of the rectangle, keeping the origin

of the base frame as its circumcentre, meaning that the distance of the four wheels’ origin

is constant. Then, coordinate frames are attached to each of the wheels, which helps to

define the position and orientation of the wheel, aiding in accurate odometry calculations

for determining the robot’s movement and position. Additionally, it assists in the motion

planning algorithms by providing the relationship between its wheels’ movements and control
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Figure 2.7: Mecanum Wheel

(a) 3D trimetric view of the model (b) 2D drawing from bottom and side view.

Figure 2.8: CAD model of the motor and wheel assembly

signal. Table 2.6 shows the frame, speed range, encoder pulse per rotation, and coordinates

of individual wheels. The diameter (r) of each wheel is 80 mm, the thickness (tW ) of the

wheel is 32.5 mm, and the mass (mW ) is 68 grams. All the rotational axis of the wheels are

Y-axis aligned with the Y-axis of the base frame.

2.2.5 LiDAR

To perceive the environment, the robot uses LiDAR scans to measure distances and

create a 2D point cloud, which can be converted into a grid map. LiDAR is crucial in

robotics for providing accurate environmental mapping for navigation, obstacle detection,

and localization, perceiving surroundings effectively [25]. This helps robots move autonomously
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Table 2.6: Frame, speed, and coordinate of the wheels assembly

Frame Maximum
Speed
(rad/sec)

Minimum
Speed
(rad/sec)

Pulse Per
Rotation
(pulse/rot)

Coordinates [x, y, z] (mm)

wheel1 2.38 1.20 3264 [ 82.5, 118.5, 0.0]
wheel2 2.38 1.20 3264 [ 82.5, -118.5, 0.0]
wheel3 2.38 1.20 3264 [-82.5, 118.5, 0.0]
wheel4 2.38 1.20 3264 [-82.5, -118.5, 0.0]

while navigating or exploring new places. For this robot, LiDAR LD19 has been used and

mounted on the front section of the base frame, as shown in Figure 2.9a. The LiDAR LD19

(a) 3D trimetric view of the model (b) 2D drawing from top and side view.

Figure 2.9: CAD model of the LiDAR and LiDAR mount

sends out an infrared laser and records the time of travel for reflection from objects, using

this time to calculate distances. It combines these distances with angle measurements to

create a 2D map of points representing the surroundings. This map is sent to the Jetson

Nano via USB communication while the LiDAR adjusts its movements through a control

system to work steadily. The ROS-Melodic-SLAM package then uses this map from the

LiDAR to localize the robot and any objects it detects in the map. The frame, technical

specifications, and coordinate information are summarized in Table 2.7.
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Table 2.7: Size, frame, technical specification, and coordinate of the LiDAR LD19

Property Value

Frame LiDAR
Dimensions (mm) 38.6, 38.6, 33.5
Measuring Range (m) 0.02-12
Sweep Frequency (Hz) 10-13
Scanning Range (°) 360
Coordinates [x, y, z] (mm) [97.60, 0.00, 126.40]

2.2.6 Camera

For visual perception, two Sony IMX219 cameras are configured to be used as a stereo

camera. At first, the cameras are calibrated, which includes correcting lens distortions,

adjusting camera intrinsics and extrinsic, and determining the relative position and orientation

between the two cameras. For the stereo calibration, OpenCV-Python Stereo-Calibration [26]

is used to find the intrinsic and extrinsic parameters of the cameras. A stereo camera can be

used for depth perception by capturing a scene simultaneously from two distinct viewpoints,

mimicking the human eyes’ binocular vision. The disparities between the viewpoints allow

the system to compare points in the images to calculate depth and make a 3D visualization of

the scene using triangulation method [27]. The Figure 2.10 shows the stereo camera assembly.

(a) 3D trimetric view of the model (b) 2D drawing from top and side view.

Figure 2.10: CAD model of the camera and camera mounts
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The Sony IMX219 camera is cheaper than other stereo cameras in the market but offers good

imaging capabilities. The stereo camera has two mono cameras kept 60mm apart, and one of

the captured images from the cameras is used for fall detection as, currently, stereo vision is

not required for the fall detection problem. The cameras are connected to the Jetson Nano

using the two CSI interfaces. The frame, technical specifications, and coordinate information

are summarized in Table 2.8. The next is to celebrate the cameras.

Table 2.8: Size, frame, technical specification, and coordinate of the IMX219 stereo camera
configuration.

Property Value

Frame Camera
Baseline Length (m) 80
Focal Length (m) 2.6
Resolution (Megapixels) 8
Angle of View d/h/v (◦) 83/73/50
Coordinates [x, y, z] (mm) [132.50, 0.00, 69.00]

2.2.7 Battery

Choosing the right battery for a robot is crucial. It depends on power needs, weight

limits, and how long it should operate. Lithium Polymer (LiPo) batteries seem ideal for

2.11a, mobile robots due to their low weight, high energy density, and discharge rate,

providing sufficient power while keeping the robot’s weight minimal [28]. A 3-cell, 12.6V,

25C, 5200mAh LiPo battery is used to power the the robot. As shown in Figure The

Table 2.9: Size, frame, and coordinate of the Battery

Property Value

Frame Battery
Length (mm) 138
Width (mm) 38
Height (mm) 46
Weight (gram) 398
Coordinates [x, y, z] (mm) [0.00, 0.00, 17.25]
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(a) 3D trimetric view of the assembly (b) 2D drawing from top and side view.

Figure 2.11: CAD model of the battery and battery mounts

Battery is mounted below the base to keep the robot’s center of mass as low as possible.

The battery holder is mounted to the robot base using four 47mm solid extenders that are

3D-printed using PETG and M3 bolts. The size, static frame, and coordinate information

are summarized in Table 2.9. The robot is estimated to run for 80 minutes on a single

charge. The battery can be installed and removed by detaching the side cover and sliding it

between the mounts. During the testing process, this easy installation allows you to swap

the Battery with a pre-charged battery, reducing the downtime required for charging.

2.2.8 Power and Battery Management System

One of the most important parts of a mobile robot is its power system, which controls

its operational capacity, longevity, safety, and overall performance. The robot has three

different charging options; the first uses a 12.6V DC power supply directly to the input

power jack, the second uses the USB-C charging port, which converts the 5V DC power to

12.6V, and the third uses the output from the wireless charger. As shown in Figure 2.12,

the USB-C charging module is integrated with the PCB, and the output from the wireless

charger and DC power supply are connected to the ports on the PCB, which goes to the

3cell charging module and BMS. The BMS ensures even charging of each cell, over-discharge
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(a) 3D trimetric view of the model (b) 2D drawing from top and side view.

Figure 2.12: CAD model of the power supply, charging, and battery management system
(BMS)

protection, over-current protection, over-charge protection, and over-temperature protection.

The output of the Battery is connected to the DC-DC converter. The 12V DC-DC buck-boost

converters ensure contact 12V irrespective of the input voltage; this ensures that the motor

driver is always getting constant 12V. The high-power 5V DC-DC buck converter dedicately

converts the 12V to 5V to run the Jetson Nano. While running the ROS and ML algorithms

in Jetson Nano, it becomes very power-hungry. A dedicated power supply for the Jetson

Nano ensures that it can operate at maximum processing speed. Figure 2.13 shows the

connection of the power flow in the PCB assembly

(a) PCB designed view (b) PCB after the assembly of the components

Figure 2.13: Printed Circuit Board (PCB)
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2.2.9 Wireless Charging System

A wireless charging system is integrated with the robot to enable uninterrupted operation

of the robot. This is achieved by using a 3cell 12.6V wireless charging module. The ideal

voltage of a fully charged battery is 12.6V, which is charged using a Constant Current

/ Constant Voltage (CC/CV) charging system. Until the charger reaches its maximum

voltage(VB,max = 4.2V) per cell with a minimum voltage rating (VB,min) of 3.7V, it will keep

the charging rate steady. The battery’s current capacity (CB) given current-voltage (VB %)

can be calculated using the (2.1). The Arduino-Nano for the encoder reads

CB = (VB − VB,min) ∗ 100/(VB,max − VB,min) (2.1)

the current-voltage of the Battery using analog voltage sensor module and analog pin A0

(Battery-Voltage) of MCU_Encoder as shown in 2.6a. Then the MCU_Encoder sends the

voltage to Jetson Nano; when the voltage level drops below threshold capacity CB,th the

robot looks for the map’s wireless charger docking station location, localizes the docking

station, and attempts to dock itself for recharge. The charging system has to separate

coils (transmitter and receiver) in 3D-printed cases. The transmitter coil is kept inside the

docking station and is connected to a 12.6v power supply. As shown in Figure 2.14, the

(a) 3D trimetric view of the model (b) 2D drawing from bottom and side view.

Figure 2.14: CAD model of the wireless charger receiver and mounts

wireless charging receiver coil and circuit are mounted below the base and Battery to keep
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the minimum distance from the coil for maximum power transmission. The output from

the receiver module is connected to the charging module and battery management system,

which are responsible for charging the Battery.

2.2.10 Final Assembly

Figure 2.15 shows the final assembly of the robot. As shown in Figure 2.15a, the top

components are assembled according to the design. Figure 2.15b shows the components

mounted below the base. The components were assembled using M3 and M4 bolts of lengths

6mm, 10mm, 15mm, and 25mm.

Jetson Nano 5V/4A Buck Converter

12V/3A Buck-
Boost Converter

PCB

USB Hub

Motor & Wheel

Lidar

Right Camera
Left Camera

IMU

Charging Dock

(a) Top View of the Assembly

Wheels
Front Motors

Wireless Power
Receiver Circuit

Rear Motors

Wireless Power
Receiver

Battery

Encoder

Power Switches

(b) Bottom View of the Assembly

Figure 2.15: Final-assembly of the robot
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2.3 Physical Experiment and Results

These experiments provide valuable insights into the robot’s physical capabilities and

limitations, guiding future improvements and deployments in real-world applications. Two

comprehensive experiments were conducted to evaluate the robot’s payload capacity and its

runtime under a single battery charge.

2.3.1 Payload Capacity

The first experiment aimed to determine the maximum payload capacity the robot could

handle. The methodology involved incrementally adding weight to the robot and testing

its ability to move. Initially, a baseline weight was placed on the robot, and the robot

was commanded to move. If the robot successfully achieved a non-zero velocity, the weight

was increased. This process involved adding 200g increments to the robot and retesting its

movement capabilities. This step-wise addition continued until the robot could no longer

achieve a non-zero velocity, indicating it had reached its payload limit. Through this process,

it was determined that the robot could carry a maximum payload of at least 5.4 kg, excluding

the robot’s own mass. This finding demonstrates the robot’s robust design and its ability

to handle substantial weights, making it suitable for various applications that may require

transporting objects over short distances.

2.3.2 Battery Runtime

The second experiment focused on evaluating the robot’s battery capacity and determining

its runtime on a single battery charge. For this experiment, the robot was programmed to

navigate to random goal points within a pre-built map of a room. This continuous movement

simulation was designed to mimic real-world operating conditions, ensuring that the battery

usage data collected would be representative of typical usage scenarios. The battery voltage

was continuously recorded using a rosbag file, a standard logging format used in ROS for
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recording and storing data. The experiment began with the battery charged to 90% of its

total capacity. The robot was allowed to operate until the battery charge level dropped

to 30%. This lower threshold was chosen to prevent deep discharge, which can negatively

impact battery lifespan. The recorded data showed that the robot operated for 1 hour and

33 minutes before the battery charge decreased from 90% to 30%. This runtime is significant

for a mobile robot equipped with a 5200mAh battery, indicating that the robot can perform

tasks for a considerable duration before requiring a recharge. The information gathered from

this experiment is crucial for planning the operational schedules and charging cycles for the

robot in various deployment scenarios.

2.3.3 Summary of Findings

• Maximum Payload Capacity: The robot can carry a maximum payload of at least

5.4 kg, excluding its own mass.

• Battery Runtime: Under continuous operation from 90% to 30% battery charge, the

robot runs for approximately 1 hour and 33 minutes with a 5200mAh battery.
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CHAPTER 3

SOFTWARE AND CONTROL SYSTEM DESIGN

3.1 Frame Attachment

For a 4-mecanum wheel robot, each wheel has its local coordinate frame attached to the

center of the robot. A rectangular wheel configuration is used around the robot’s center such

that the origins of the robot and the four wheels are located in the same XY plane as shown

in Figure 3.1.

Figure 3.1: Cordinate frame modelling

The origins of the robot and wheels are defined as follows:

• Or = [or,x, or,y, or,z]
T ∈ R3×1; Coordinates of the robot
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• Ow1 = [ow1,x, ow1,y, ow1,z]
T ∈ R3×1; Coordinates of the front-left wheel.

• Ow2 = [ow2,x, ow2,y, ow2,z]
T ∈ R3×1; Coordinates of the front-right wheel.

• Ow3 = [ow3,x, ow3,y, ow3,z]
T ∈ R3×1; Coordinates of the rear-left wheel.

• Ow4 = [ow4,x, ow4,y, ow4,z]
T ∈ R3×1; Coordinates of the rear-right wheel.

Let the radius of the entire wheel with roller be r, which is the sum of roller radius (r1) and

the distance (r0) of the origin of wheel OW from the center of the roller P as shown in Figure

3.1. As the robot and wheel’s origin lie in the same XY plane and the wheels are arranged

in a rectangle, the absolute distance (L) between each wheel and origin is also equal. So, to

simplify the modeling, the following information can be used:

• ow1,z = ow2,z = ow3,z = ow4,z = or,z

• ||ow1,xx̂− or,xx̂|| = ||ow2,xx̂− or,xx̂|| = ||ow3,xx̂− oxx̂|| = ||ow4,xx̂− or,xx̂|| = lx

• ||ow1,yŷ − or,yŷ|| = ||ow2,yŷ − or,yŷ|| = ||ow3,yŷ − or,yŷ|| = ||ow4,yŷ − or,yŷ|| = ly

• L =
√

l2x + l2y

• R = lx + ly

For manufacturing efficiency, cost-effectiveness, and simplifying analysis process, the offset

angles (δ) between the roller axis and lateral axis are uniformly set to the same value. Here,

the value of δ is kept at 45◦.

3.2 Inverse Kinematics

The control signal of the robot is defined with the robot’s velocity matrix, V = [vx, vy, ωz]
T ∈

R3×1, where vx is the magnitude of longitudinal velocity of the robot along the X-axis of
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the robot, vy is the magnitude of lateral velocity of the robot along the Y-axis of the robot,

and ωz is the magnitude of angular velocity of the robot along the Z-axis of the robot. The

angular velocity of wheels along the Y-axis is given as Ω = [ω1, ω2, ω3, ω4]
T ∈ R4×1. Now,

for a given desired velocity (V), the corresponding angular velocity (Ω) of the wheel can be

written as follows [29]: 

ω1

ω2

ω3

ω4


=

1

r



1 −1 −R

1 1 R

1 1 −R

1 −1 R




vx

vy

ωz

 (3.1)

The compact form of equation (3.1) can be expressed as:

Ω = JVV (3.2)

where, JV ∈ R4×3 is the Jacobian matrix, and V the command velocity matrix.

3.3 Forward Kinematics

From the (3.1), the forward kinematics for the given angular velocity of the motor, Ω,

the corresponding robot’s velocity matrix V, can be found as follow:

V = JV
†Ω (3.3)

Here, the JV
† ∈ R3×4 represents the pseudo inverse of the Jacobian matrix JV and given as:

JV
† = (JV

TJV)
−1JV

T (3.4)
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Now, following the convention of the forward kinematics of (3.1), the expanded form of (3.3)

can be written as follows:


vx

vy

ω0

 =
r

4


1 1 1 1

−1 1 1 −1

−1
R

1
R

−1
R

1
R





ω1

ω2

ω3

ω4


(3.5)

3.4 Motor Driver Control

Two L298N motor drivers are used for the robot. The L298N motor driver is a dual

H-bridge module capable of controlling two DC motors with up to 2A per channel, featuring

built-in diodes for back EMF protection [30]. Its ease of use with Arduino and better power

Table 3.1: Motor Driver Connection

Component Connection Pin

Motor Driver 1 IN1 to pinMotRF1 Digital pin 3
(Motor A Front IN2 to pinMotRF2 Digital pin 4

right- RF) ENA to pinMotRFpwm Digital pin 2
OUT1 and OUT2 Motor A terminals

Motor Driver 1 IN4 to pinMotLF1 Digital pin 7
(Motor B Front IN3 to pinMotLF2 Digital pin 5

Left- LF) ENB to pinMotLFpwm Digital pin 6
OUT1 and OUT2 Motor B terminals

Motor Driver 2 IN2 to pinMotLB1 Digital pin 10
(Motor C Rear IN1 to pinMotLB2 Digital pin 8

Left- LB) ENA to pinMotLBpwm Digital pin 9
OUT1 and OUT2 Motor C terminals

Motor Driver 2 IN4 to pinMotRB1 Analog pin A1
(Motor D Rear IN3 to pinMotRB2 Analog pin A0

right- RB) ENB to pinMotRBpwm Digital pin 11
OUT1 and OUT2 Motor D terminals

Power VCC of Driver +12V
Gnd of Driver GND

handling capacity makes it ideal for motor control applications for the robot. The motors

30



are controlled using input pins (IN1, IN2, IN3, IN4) that determine the direction, and PWM

pulses in the enable pins (ENA, ENB) determine the speed of the connected motors. To

control motor direction, set IN1 HIGH and IN2 LOW for one direction and IN1 LOW and

IN2 HIGH for the opposite; both HIGH or LOW stop the motor, IN3 and IN4 control motor

B. For speed control, PWM signals on ENA and ENB adjust the speeds of motors A and B,

respectively.

3.5 Motor Controller Model

At the motor controller level, an 8-bit PWM signal is used to control the motors, Ω by

controlling the input voltage of the motors, VM ∈ R4×1 shown in (3.6),

VM = [vM1, vM2, vM3, vM4]
T (3.6)

from the corresponding PWM value, Ωpwm ∈ Z4×1 shown in (3.7),

Ωpwm = [ωpwm,1, ωpwm,2, ωpwm,3, ωpwm,4]
T (3.7)

The relation between VM and Ωpwm is shown in (3.8).

VM = Ωpwm · vmmax − vmmin

ωpwmmax − ωpwmmin

(3.8)

where vmmax , vmmin
, ωpwmmax , ωpwmmin

are maximum motor input voltage, minimum motor

input voltage, maximum PWM value, and minimum PWM value respectively. Initially, by

looking at the data of Ω vs Ωpwm curve, it seemed that it followed a hyperbolic relation.

So, to estimate VM from a desired motor speed Ω, a hyperbolic function is used as shown

in (3.9).

Ωpwm = (Ω−B)C† (3.9)

where C = [c1, c2, c3, c4]
T ∈ R4×1, and B = [b1, b2, b3, b4]

T ∈ R4×1 are hyper-parameters to

control the hyperbolic function. The objective is to find the optimized value of B and C
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for n number of samples, for which the least square mean (LSM) objective function(E =

[e2, e2, e3, e4]
T ∈ R4×1) is minimum.

E =
1

n

n∑
i=0

((Ωi −B)C† −Ωpwm,i)
2 (3.10)

Combining (3.2) and (3.9), the desired PWM values(Ωpwm) for control velocity(V) is expressed

as (3.11)

Ωpwm = (JVV −B)C† (3.11)

The final Ωpwm is calculated from control velocity(V) sent to the motor driver, which

generates the corresponding motor input voltage(VM).

3.6 Motor System Identification

For identifying the motor model, the PWM signal(Ωpwm) of the four motors is sent to

the Arduino-motor microcontroller as string data using serial port and corresponding motor

speed(Ω) from the Arduino-encoder is recorded. This step is repeated for PWM values

ranging from -255 to 255. For [−55 < ωpwm,i < 55], the input voltage is not enough to start

the motor, and these values are excluded from the sample dataset. As for these values, the

corresponding ωi is zero, so it makes it impossible to calculate C. To solve these, the dataset

is defined as the union of the positive PWM values ranging from 55 to 255 and negative

PWM values ranging from -255 to -55, where ωpwm,i ∈ [−255,−55] ∪ [55, 255]. To simplify

more, the data is sampled at an increment of 5, making a total number of samples(n) 80,

and the B and C are calculated for positive and negative velocity individually. Table 3.2

shows the optimized hyperparameters for positive rotation and Negative rotation.
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Table 3.2: Hyper Parameters for the Motor Model

Parameters (B, C) Positive Speed (ωpwm > 0) Negative Speed (ωpwm < 0)

b1 130.63 -129.32
b2 132.61 -133.68
b3 137.10 -130.08
b4 129.74 -132.54

c1 -4096.39 -4089.71
c2 -4446.28 -4585.02
c3 -4431.14 -4080.27
c4 -3954.66 -4167.72

3.7 Effectiveness of motor system identification

To evaluate the effectiveness of the motor system identification (described in Section 3.6),

the robot was instructed to follow a constant angular velocity while tracing a desired circular

trajectory with a radius of 0.65 m. The performance of two controllers was assessed based

on their accuracy in tracking the desired trajectory:

• Controller incorporating system identification.

• Controller operating without system identification.

In the case of the controller with system identification, the robot controller used the estimated

parameters bi and ci from Table 3.2, and the robot’s position per second was recorded. In the

case of controller without system identification, the robot controller used a linear model from

ωi to upwm,i with the slope estimated from the range of wheel velocities and corresponding

range of the PWM signal. The trajectories followed by the robot are shown in Figure 3.2. The

Top figure is the trajectories of the robot, and the Bottom figure is the deviation from the

expected trajectory with and without using the parameters from motor system identification.

The root mean squared (RMS) deviation of the trajectory without system identification is

0.297 m, which is 5.6 times higher than the deviation obtained using our controller model

with system identification (0.053 m). In comparison to the expected trajectory’s radius of
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Figure 3.2: Robot’s trajectory and path deviation with and without motor system
identification.

0.65 m, the deviation accounts for 8.15% with our controller model and 45.69% without

using system identification. This demonstrates that system identification has enabled us

to accurately track desired paths while minimizing errors that a high-level feedback loop

can offset. Another option that wasn’t incorporated is to use a feedback controller, where

the PWM signal is adjusted based on feedback from wheel encoders. One disadvantage of

not utilizing a feedback controller is that if the motor’s internal parameters or the robot’s

parameters change over time, the model may not perform as well as the estimated parameters.

3.8 Software System

Software design is crucial for making our robot autonomous. This section details the

software environment, framework, and specific components utilized in the Omobot project.

The software is installed on NVIDIA’s Jetson Nano, using the latest Linux kernel supported

by Jetson Nano, NVIDIA L4T 32.7.1, which is part of NVIDIA’s JetPack-4.6.1. This

setup includes the ARM64-based Ubuntu-18.04 Linux distribution. The primary software

34



framework used is the Robotic Operating System (ROS) Melodic [31], which is the latest

version of ROS supported by Ubuntu-18.04. Jetson Nano supports several communication

protocols to interface with peripheral devices and sensors, including UART, USB, I2C,

IP, and CSI. The overall ROS-based software framework interacting with sensors, motors,

joystick, and internet is shown in Figure 3.3.

ros_move_base
Controller

Odometry

Input
MUX

Joystick

Serial 
Node

Camera

Lidar

IMU

Sensor
Inputs

Map

ros_AMCL

Email
Notification ROS Nodes on Jetson Nano

Controller
Input

aruco_detector

Fall_Detector
Rotary
Encoder

DC Motor

Email
Text 

Motor

Figure 3.3: Communication among sensors and devices with ROS nodes running on Jetson
Nano.

3.8.1 Installation and Setup

The first step is setting up the Jetson Nano with its JetPack image, followed by the

installation of ROS Melodic. This process involves configuring the system to accept software

from packages.ros.org and setting up the necessary GPG keys. The ROS Desktop package,

which includes tools like rqt and rviz, is then installed. It is recommended that ROS

environment variables are loaded automatically during new shell sessions by updating the

.bashrc script.

Additionally, the rosdep tool is installed and initialized to manage system dependencies

for ROS packages. A catkin workspace is then created and configured, which is necessary for
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running and developing ROS packages. This workspace allows the installation of other ROS

packages from the source, enabling further customization and functionality of the robot.

3.8.2 ROS Topic Flow

The ROS topic flow shown in the diagram represents a comprehensive system for autonomous

navigation, localization, and perception. Each topic plays a specific role in ensuring the robot

can navigate safely and effectively within its environment.

/map /amcl/map-server

/initialpose

/Scan/LD19

/cmd_vel_out

/joy

/cmd_vel_key

/cmd_vel

/encoder_feedback

/wheel_pwm_str

/twist_marker

/motor_node

/twist_mux

/joy_node

/keyboard_node

/encoder_node

/aruco_single

/arduino_serial

/Camera_0

/odom

/move_base

/joystick_node

/image/fall_detector

/exploration_node

/charger_pose

/pwm_node

/move_base_simple
/move_base_simple/goal

/move_base

/move_base/goal

/move_base/local_costmap/

/move_base/global_costmap/

/camera

/camera/image_raw

Figure 3.4: ROS Topics Graph

The use of sensors like LiDAR, cameras, and encoders, combined with advanced algorithms

like Simultaneous Localization and Mapping (SLAM) and Adaptive Monte Carlo Localization

(AMCL), enables the robot to build maps, localize itself, perceive its surroundings, and

navigate towards goals autonomously.
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3.8.2.1 Localization:

• /scan: This topic is used for publishing laser scan data from the LiDAR. The scan

data is used for SLAM and obstacle detection.

• /map: The map topic is used to publish the map of the environment. This map

is generated during the mapping phase and is used by the localization system to

understand the robot’s position within the environment.

• /amcl: AMCL uses laser scans and the map to provide accurate localization data of

the robot in the environment.

3.8.2.2 Perception:

• /camera/image_raw: This topic publishes raw image data from the camera. It is used

for detecting falls and the pose of wireless charger.

• /aruco_single: This topic is used for detecting ARUCO marker, which is utilized for

localization and identification of wireless charger.

3.8.2.3 Navigation:

• /odom: This topic publishes odometry information, which includes the robot’s position

and velocity over time. It is used to track the robot’s movement inside the map.

• /move_base: The move_base node provides the navigation capabilities to the robot. It

takes in goals (/move_base_simple/goal, /odom, local_costmaps, and global_costmap)

data to generate the safe path to navigate the robot in the environment.

• /cmd_vel: This topic publishes velocity commands generated by the move_base

navigation stack to control the robot’s movement.
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• /move_base_simple/goal: This topic is used to send simple poses as navigation goals

to the robot.

3.8.2.4 Input/Output, Control, and Fall Detection:

• /joint_states: This topic publishes the state of the robot’s joints, which are used for

kinematic calculations and motion planning.

• /encoder_feedback: This topic publishes feedback from the wheel encoders, which are

used to calculate odometry.

• /pwm_node: This node is used for generating the PWM values for all the wheels.

• /motor_node: This node is used to send the motor’s PWM values to the arduino_motor

using serial communication and to monitor the motor’s state.

• /fall_detector: This ROS node subscribes to the camera/image_raw topic to receive

image messages. Upon receiving an image, it converts the ROS image message and

uses the image for fall detection.

• /exploration_node: This node is used to control the intermediate exploration, fall

detection, and charge monitoring. Depending on the situation, the exploration either

explores, stops to send fall detection data, or docks for charging.

• /joy_node: This node is used to receive the data from the joystick to manually control

the robot.

• /keyboard_node: This node is used to receive the data from the keyboard to manually

control the robot.
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3.9 Operational Experiment and Results

3.9.1 Odometry Accuracy Experiment

The experiments conducted demonstrate the robot’s capabilities in mapping and odometry

accuracy using low-cost components. The use of ros-slam_toolbox proved effective in

correcting odometry errors and maintaining accurate mapping. The mapping experiments

were performed in a 12.45× 9.95 sq m room at the University of Maine (Barrows Hall, Rm

201). The room was first mapped using the ros-slam_toolbox library. The ros-slam_toolbox

utilizes LiDAR observations along with the robot’s position derived from wheel odometry to

create a 2D map, continuously updating it to ensure accuracy. The loop closure technique

is employed to correct errors and ensure the map accurately represents the environment.

This method corrects the odometry to align the observed LiDAR scans with the expected

LiDAR scans from the map. Figure 3.5 illustrates the mapping process and the trajectories

of the robot and its odometry. The Top part of the figure shows the robot’s trajectory in

green arrows, indicating the origin of the robot while creating the map. The red arrows

represent the trajectory of the odometry’s origin. The Bottom part of the figure displays

the deviation of the robot’s and odometry’s pose (translation in XY axis, orientation with

respect to the Z axis) from the map’s origin.

To compare the accuracy of wheel odometry with the trajectory provided by ros-slam_toolbox,

the robot was navigated in a complete loop around the room, ensuring it returned to

the starting point. The map and the trajectories are depicted in Figure 3.5. In the

grid map, black represents space occupied by obstacles, white indicates free space, gray

represents areas yet to be updated, and the purple dots correspond to the LiDAR scans.

The LiDAR scans align closely with the walls and obstacles, demonstrating the accuracy of

the ros-slam_toolbox trajectory. The wheel odometry trajectory is shown in red, and the

corrected ros-slam_toolbox trajectory is shown in green. The odometry’s estimated pose
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Figure 3.5: Mapping using LiDAR, Wheel Odometry, and ros-slam_toolbox.
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at the end of the trajectory deviated from the starting pose by 5.64 meters in translation

and 1.66 radians in orientation.

From this experiment, it was found that using an inexpensive LiDAR does not adversely

affect performance. However, the odometry data generated using the inexpensive wheel

encoder exhibited notable errors. Despite these errors, the ros-slam_toolbox was able

to mitigate them, maintaining mapping accuracy in the room. It is well understood that

LiDAR-based mapping does not perform well in environments with long featureless corridors.

In such situations, reliance on wheel odometry increases, highlighting the trade-offs of using

low-cost wheel encoders. The room where the map was generated had numerous features,

reducing dependency on wheel odometry. However, in environments like long straight

corridors with limited features, the robot’s performance in mapping and localization may

be compromised.

3.9.2 Obstacle Avoidance Efficiency

For this experiment, a detailed map of the room was constructed and manually annotated

with landmark locations as described in Section 3.9.1. The primary goal was to evaluate the

robot’s efficiency in navigating to random landmark locations while detecting and reporting

any falls observed during the exploration. The robot was tasked with navigating to various

randomly selected landmarks on the map. During this process, it was also required to detect

any falls and report them accurately. The flowchart detailing the map exploration, fall

detection, and reporting workflow is shown in Figure 3.6. The landmark locations (A-G)

and the trajectories of the robot during 30 minutes of operation are shown in green in

Figure 3.7. The robot’s performance was meticulously monitored to assess its obstacle

avoidance efficiency and overall navigation robustness. During the 30-minute experiment,

the robot encountered only one collision. This collision incident can be attributed to the

inherent limitations of the 2D map created by the LiDAR scan, which may not perfectly
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represent the 3D reality of obstacles in the environment. For example, the LiDAR might

capture the narrow stem of an office chair as an obstacle, but the robot may collide with the

wider feet of the chair, which extend beyond the stem captured by the LiDAR. The results

indicate that the robot’s obstacle avoidance system is highly efficient, given that it only

encountered a single collision in 30 minutes. The black pixels in the occupancy grid map

indicate static obstacles, the white pixels represent accessible areas, and the purple pixels

denote inflated obstacles. The landmarks (A-G) are manually marked locations, and the

green lines show the robot’s trajectories during the robustness of the autonomous navigation

experiment. The robot’s ability to navigate and avoid obstacles efficiently is critical for

ensuring its reliability and safety in real-world applications. The single collision observed

highlights a potential area for improvement in the obstacle detection system, particularly in

differentiating between the 2D and 3D aspects of obstacles.

3.9.3 Summary

While the robot’s performance in this controlled environment was promising, certain

limitations were observed. The reliance on a 2D LiDAR scan means that certain obstacles,

particularly those with significant 3D features, may not be adequately represented. This

can lead to occasional collisions, as seen in the experiment. Additionally, the effectiveness

of the obstacle avoidance system in more complex and cluttered environments remains

to be tested. Environments with fewer distinguishable features, such as long, featureless

corridors, may pose more significant challenges for the robot’s navigation system. In such

scenarios, the robot’s reliance on wheel odometry may increase, potentially affecting its

overall performance.

The experiment demonstrated that the robot’s obstacle avoidance system is highly efficient,

with only one collision occurring during 30 minutes of operation. This indicates a robust

design capable of navigating and avoiding obstacles in a typical indoor environment. However,
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the observed limitations suggest areas for future improvement, particularly in enhancing the

robot’s ability to detect and navigate around 3D obstacles.
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CHAPTER 4

FALL DETECTION SYSTEM

4.1 System Overview

The fall detection system in Omobot is a crucial component aimed at ensuring the safety of

elderly individuals by identifying falls and notifying caregivers promptly. This system utilizes

advanced techniques in image processing for accurate fall detection. The following sections

provide a comprehensive overview of the system, including mathematical formulations, algorithms,

and implementation details. The fall detection system consists of three main stages:

• Pre-processing: Transforming the raw input images to enhance detection accuracy.

• Person Detection and Pose Estimation: Using YOLOv8-Pose for identifying

individuals and estimating their body poses.

• Fall Detection: Determining if a detected person has fallen based on their pose.

4.2 Pre-processing

The robot uses YOLOv8-Pose [18] for pose estimation. This model is trained on the

MS-COCO dataset [32]. Like most photographs found online, images in the MS-COCO

dataset are taken from the human point of view (POV). Given the extremely low POV of

The robot (0.15m from ground), this reduces the accuracy of The robot’s ability to extract

pose. The Experiment in Section 4.5.2 confirms this intuition. One way to address this

problem is by data augmentation during the model’s training [33]. In this work, instead

transforming images from the robot point of view (POV) to an average human POV before

pose estimation are adopted. This has the advantage of avoiding the additional step of

retraining the model. An example of this transformation is shown in Figure 4.4.
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4.2.1 Using homography for Converting robot viewpoint images to human viewpoint

To transform robot viewpoint images into human viewpoint Homography is used. Homography

is the transformation of images from one perspective projection into another. A homography

transform preserves straight lines as straight lines but parallel lines may not be preserved as

parallel.

To perform this transformation, consider a 3D location x ∈ R3 in space. Let the plane

P , on which the points x1 lie, be described by a unit normal vector n̂ ∈ R3 and the distance

h ∈ R from the origin so that the plane is defined as P = {x ∈ R3 | n̂⊤x = h}. Let any point

x1 ∈ P on the plane projected to two cameras λ1u1 = K1x1 and λ2u2 = K2(
2R1x1 +

2t1).

where K1 ∈ R3×3 and K2 ∈ R3×3, are the intrinsic matrices of the cameras and 2R1 ∈ SO(3)

and 2t1 ∈ R3 are relative rotation and translation from camera 1 to camera 2. Then, the

homography matrix 2H1(n̂, h) can be computed that maps a point u1 in image 1 to image 2

αu2 =
2H1u1 as,

2H1(n̂, h) = hK2
2R1K

−1
1 +K2

2t1n̂
⊤K−1

1 . (4.1)

The proof of above equation is provided in the next section. Since the homography depends

on the location of the plane, therefore, multiple homographies corresponding to different

distances h between minimum and maximum of the LiDAR scan are sampled. Then the

tomography that gives the highest confidence detection by YOLOv8 is picked.

4.2.2 Homography from equation of a plane

From pinhole camera projection equations for camera 1 (Robot’s POV) and 2 (Human’s

POV) the following equation can be defined [34]:

λ1u1 = K1x1, λ2u2 = K2 (
2R1x1 +

2t1)︸ ︷︷ ︸
x2

(4.2)
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where λ1, λ2 ∈ R are scalars that represent the depth of x1 from the respective camera origins

and x2 ∈ R3 are the coordinates of the point x1 in the frame of camera 2. λ1 can solved by

computing the intersection of the ray x1 = λ1K
−1
1 u1, with the plane P .

n̂⊤(λ1K
−1
1 u1) = h =⇒ λ1 =

h

n̂⊤K−1
1 u1

(4.3)

Now, substituting λ1 in equation 4.2 and rearranging the equation to form the homography

matrix H:

λ2u2 =
h

n̂⊤K−1
1 u1

K2
2R1K

−1
1 u1 +K2

2t1

(n̂⊤K−1
1 u1)λ2u2 = hK2

2R1K
−1
1 u1 +K2

2t1(n̂
⊤K−1

1 u1)

(n̂⊤K−1
1 u1λ2)︸ ︷︷ ︸
α

u2 = (hK2
2R1K

−1
1 +K2

2t1n̂
⊤K−1

1 )︸ ︷︷ ︸
2H1

u1. (4.4)

In the last step, n̂⊤K−1
1 u1λ2 can be absorbed into α as a scaling factor because α can absorb

an arbitrary non-zero scalar function of u1.

To justify this possibility of α, αu2 = 2H1u1 can be rewritten with α as a multiple of

an arbitrary non-zero scalar function f(u1) : P2 → (R \ {0}) of u1 with α = γf(u1) where

γ ∈ R is a scale factor:

γf(u1)


u2

v2

1

 =


h⊤
1

h⊤
2

h⊤
3

u1 =
2H1u1 (4.5)

Solving for γ can be equate for γf(u1) = h⊤
3 u1 which gives,

γ =
h⊤
3 u1

f(u1)
(4.6)

Substituting γ in equation 4.5, the original definition of the homography transform is

got:
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h⊤
3 u1

f(u1)
f(u1)


u2

v2

1

 = h⊤
3 u1


u2

v2

1


︸ ︷︷ ︸

α′

= 2H1u1 (4.7)

When implementing the homography on the robot and in practice use equation 4.4, we

made these assumptions:

• All the points of the detected human lie on a plane.

• The plane is parallel to the x-y axis of the camera, so n̂⊤ = [0, 0, 1].

• The person’s distance is in the range of 1 to 3 meters, and we transform the image

based on the different expected distance ranges from LiDAR estimation. For instance,

the H matrix for h = 3 is:

2H1 =


0.896 −0.219 13.76

0.000 0.683 16.55

0.000 −0.002 1.000

 (4.8)

4.3 Person detection and human pose estimation

YOLOv8-Pose [35] is used for person detection and pose estimation. YOLOv8 (You Only

Look Once, Version 8) is the latest iteration of the YOLO series, known for its real-time

object detection capabilities. YOLOv8 extends these capabilities to pose estimation, which

involves detecting keypoints on human bodies to understand their posture and movements.

YOLOv8-Pose identifies a person in an image and provides a confidence score by estimating

a bounding box around them. The bounding box includes the top corner of the bounding

box and its width (w) and height (h). Simultaneously, the YOLOv8-Pose also estimates the
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human pose. The human pose is represented as the 2D location of the 17 keypoints (xp, yp)

that correspond to different human body parts for example, p ∈ {shoulder, foot, hip, . . . }.

YOLOv8-Pose models come in five sizes, from smallest to largest (n)ano, (s)mall, (m)edium,

(l)arge, e(x)tra-large. Bigger models have more layers, thus more weights and thus more

representation power, but at the cost of compute and memory resources.

4.3.1 YoloV8

YOLOv8 shares a similar backbone as YOLOv5 but includes changes to the cross-stage

partial bottleneck(CSPLayer), now referred to as the CSP with two convolutions (C2f)

module. This module combines high-level features with contextual information to enhance

detection accuracy [36]. The Figure 4.1 shows YoloV8 Architecture [37]. It employs a

modified CSPDarknet53 [38] backbone, a C2f module, an spatial pyramid pooling fast

(SPPF) layer for fast computation, convolutions with batch normalization and SiLU activation,

and a decoupled head for independent handling of objectness, classification, and regression

tasks. The architecture of YOLOv8 can be divided into Backbone, Neck, and Head. The

Backbone of YOLOv8 is designed to extract features from input images. It employs a series

of convolutional layers, which include:

• Convolutional Layers: These layers perform convolutions to detect features at

various levels of abstraction.

• Batch Normalization: This helps in stabilizing and speeding up the training process

by normalizing the output of the convolutional layers.

• Activation Functions: Typically, ReLU or Leaky ReLU are used to introduce non-linearity.

The Backbone’s role is to generate a rich feature map that represents the input image,

capturing spatial hierarchies from low-level edges to high-level semantic content. The Neck

49



Figure 4.1: YoloV8 Architecture.

of YOLOv8 enhances the feature representation and prepares it for the detection task. It

includes:

• Feature Pyramid Networks (FPN): FPNs are used to combine features at different

scales, which helps in detecting objects of various sizes.

• Path Aggregation Network (PAN): PAN further processes the multi-scale features

from FPN to improve the flow of information.
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The Neck helps in aggregating features from different levels, making the detection process

more robust to variations in object size and position.

The Head of YOLOv8 is where the actual detection and keypoint estimation occur. It

consists of:

• Bounding Box Prediction: Predicts bounding boxes using anchor boxes and their

respective offsets.

• Objectness Score: Indicates the likelihood of an object, in this case human being

present in the bounding box.

• Class Prediction: Determines the class probabilities for each human.

• Keypoint Estimation: For pose estimation, YOLOv8 predicts the coordinates of

keypoints on the human body.

The Head uses convolutional layers to refine the feature maps from the Neck and generate

the final detection outputs.

4.3.2 Human Bounding Box Prediction and Keypoints Detection

YOLOv8 [36, 37] predicts bounding boxes (x, y, w, h) using anchor boxes, which are

predefined boxes with specific aspect ratios and scales. The model predicts adjustments to

these anchor boxes to fit the human more accurately. The objectness score represents the

likelihood that a bounding box contains an object. YOLOv8 uses a sigmoid function to

predict this score:

objectness = σ(o) (4.9)

where o is the raw score predicted by the network. Class probabilities are predicted using a

softmax function over the raw class scores.
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Keypoints are predicted for each detected person within the bounding boxes. The

keypoints are represented as (xk, yk) coordinates, where k denotes a specific keypoint. YOLOv8

uses the following equation to predict keypoint coordinates:

(xk, yk) = σ(tk) + (cx, cy) (4.10)

where tk is the predicted offset for the keypoint, and (cx, cy) are the cell coordinates.

4.4 Fall detection from human pose

The next step is detect fall from extracted poses from the previous step. Two separate

approaches for fall detection modules were experimented: (a) Rules-based fall detection and

(b) MLP-based fall detection. These two approaches are discussed below.

4.4.1 Rules-based Fall Detection

The rules-based approach for fall detection uses predefined conditions on the detected

keypoints to identify whether a person has fallen. This method leverages the keypoints

detected by YOLOv8-Pose to systematically examine specific conditions with high confidence.

These conditions are designed to ensure that critical aspects of the body’s posture are

assessed accurately.

Using the keypoints detected by YOLOv8-Pose, a fall F can be determined using the

following criteria:

F = (yshoulder > (yfoot − l)) ∧ (yhip > (yfoot − l/2)) ∧ (yshoulder > (yhip − l/2)) ∨ (h < w)

(4.11)

where l = ∥(x, y)shoulder−(x, y)hip∥2, and h and w are the height and width of the person’s

bounding box, respectively. The rules-based method is based on several geometric conditions

involving the relative positions of the keypoints detected on the human body. It is to be
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noted that the (0, 0) pixel location lies in the top-left corner of the image meaning the object

at the bottom will have greater y-coordinate than the object at top. The conditions can be

elaborated as follows:

1. Shoulder Below Waist: The y-coordinate of the shoulder (yshoulder) must be greater

than the y-coordinate of the foot (yfoot) minus the length l (distance between shoulder

and hip). This condition ensures that the shoulder is positioned higher than the foot,

indicating an upright position.

2. Hip Below Foot: The y-coordinate of the hip (yhip) must be greater than the

y-coordinate of the foot (yfoot) minus half the length l. This condition checks that

the hip is higher than the foot.

3. Shoulder Under Hip: The y-coordinate of the shoulder (yshoulder) must be greater

than the y-coordinate of the hip (yhip) minus half the length l. This condition ensures

that the shoulder is above the hip.

4. Width Greater than Height: The height (h) of the bounding box should be smaller

than width (w). If the height is less than the width, it is an indication that the person

is lying down, suggesting a fall.

These conditions collectively help in identifying whether the detected person is in a standing

or fallen position. The rules-based approach is straightforward and computationally efficient,

making it suitable for real-time applications. However, its performance heavily depends on

the accuracy of the detected keypoints. Misidentification or occlusion of keypoints can lead

to incorrect fall detection.

4.4.2 MLP-based Fall Detection

In addition to the rules-based method, a fall detection module using a Multi-Layer

Perceptron (MLP) was imployed. This approach leverages machine learning to classify
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whether a fall has occurred based on the detected keypoints. The Figure 4.2 illustrate

the architecture of the MLP model used for fall detection. The MLP for fall detection is

Figure 4.2: MLP Architecture

designed with the following architecture:

• Input Layer: 34 units, corresponding to the 2D coordinates of 17 keypoints.

• Hidden Layers: Two hidden layers, each with 20 units and ReLU activation functions.

• Output Layer: 2 units with softmax activation, representing the classes "fall" and

"no fall".

The input to the MLP is the x and y coordinates of the keypoints. The output is a probability

distribution over the two classes. The MLP is trained using the FallDetectionDatabase [39]

containing annotated instances of falls and non-falls. The training process involves the

following steps:

1. Data Collection: Collecting a dataset with keypoints annotated for fall and non-fall

scenarios.

2. Preprocessing: Normalizing the keypoints coordinates to ensure consistency in the

input data.

3. Training: Using the annotated dataset to train the MLP with binary cross-entropy

loss. The training and validation accuracy are shown in Figure 4.3.

4. Evaluation: Evaluating the trained model on a separate test set to assess its accuracy

and performance.
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Figure 4.3: MLP accuracy on Fall Detection Dataset

The MLP-based approach can capture more complex patterns in the keypoints data, potentially

leading to higher accuracy in fall detection. However, it requires a sufficiently large and

diverse dataset for training to generalize well to new data.

4.5 Experiment and Results

For human fall dataset, 128 images from robot’s POV are captured for the custom

dataset. Then dataset is manually categorized into 62 images depicting human falls and

66 images depicting not-falls under similar lighting conditions. This dataset was used only

for evaluating the methods, not training, and is available on the project GitHub page.

4.5.1 Evaluating the fall detection pipeline

The fall detection pipeline contains of 3 steps, (a) pre-processing (b) person detection

and human pose estimation and (c) fall detection from human pose. Two options for the

pre-processing step were evaluated: (i) robot POV, where no homography is applied to the

input image (ii) human POV where homographies are computed based on the minimum and
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maximum distance in the room, applied to the input image and highest confidence results

are picked. Five options for the person detection step: n, s, m, l, x for each size of the

YOLOv8-Pose model from the smallest to the largest were evaluted. Lastly, two options for

the fall detection from human pose were evaluated: (i) Rules-based fall detection and (ii)

MLP-based fall detection. All model variations combined leads to 20 models. The accuracy

of these models on the dataset is plotted in Figure 4.5 (Right). On average, across the five

Table 4.1: Fall detection module performance on the created dataset

YOLOv8 (orig) YOLOv8 (custom)

metrics n s m l x n s m l x
Accuracy 0.49 0.54 0.61 0.62 0.70 0.55 0.60 0.66 0.74 0.70
Precision 0.40 0.59 0.67 0.67 0.79 0.63 0.70 0.76 0.85 0.80
Recall 0.10 0.16 0.39 0.42 0.53 0.19 0.31 0.45 0.56 0.52

F1-Score 0.16 0.25 0.49 0.51 0.63 0.30 0.43 0.57 0.68 0.63

models, the homography improved the accuracy by 6-12 percent. It is observed that the

human POV improves accuracy over robot’s POV consistently as shown in Table 4.1. Also

Rules-based model has a better accuracy than the MLP-based model meaning that MLP

model must be improved in order to increase the accuracy.

4.5.2 Robustness to homography

The results from previous section show that changing robot POV to human POV using

homography transform improves accuracy. This suggests that YOLOv8 trained on MS-COCO

is not robust to homographic transformations of the original image. The performance of the

pre-trained YOLOv8n [35] model on homographic-variations of MS-COCO validation dataset

are evaluted. To compute these homographies, the angle of view are varied in the pitch

direction (downwards) (θ ∈ {0◦, 5◦ . . . , 55◦}) from the original human viewpoint θ = 0 in the

MS-COCO dataset. A fixed distance of 3m from the person to the camera is assumed. Then

the MS-COCO validation images are transformed using the computed homographies. These
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Figure 4.4: Applying Homography on a sample image in the data set. Left: image taken
from the robot’s POV. Right: transformed image to a human POV.

images are fed into YOLOv8-Pose-nano for pose estimation. The F1-score (harmonic mean

of precision and recall) under different confidence thresholds of and a fixed-distance threshold

for pose estimation are then calculated. The resulting plot is shown in Figure 4.5 (Top). The

results show that homography-corruption of the MS-COCO dataset reduces the F1 score of

pose estimation at all confidence levels. The mean F1 score of pose estimation drops from

0.789 to 0.745 and a drop in the mean average precision score (mAP50) for the predicted

bounding box from 0.911 (original dataset) to 0.638 (θ = 30◦). The Top figure shows the

F1 Score of Pose Estimation of MS-COCO validation dataset using YOLOv8-Pose-nano.

The Botton figure illustrates the Comparison of fall detection accuracy from robot POV

vs human POV. By transforming images from the robot POV to the human POV through

Table 4.2: YOLOv8n accuracy reduces when images are transformed to robot POV

dataset mAP50 mAP50-95

MS-COCO validation (original) 0.798 0.511
MS-COCO validation (transformed to robot POV) 0.274 0.118

the Homography matrix, fall detection performance is improved by 6-12% across models.

The x-axis indicates the 5 model sizes (n)nano, (s)mall, (m)edium, (l)arge, e(x)tra-large of

YOLOv8-Pose as shown in Table 4.2.
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4.5.3 Qualitative results

Figure 4.6 shows the robot detecting multiple fallen people and sending an email alert

with the image as an attachment. In this experiment, multiple individuals are within the

Figure 4.6: Top: Fall event detection in the presence of multiple people. Bottom: Fall
detected by the robot, and sample email generated by the system.

view of the robot, and the fall detection module detects and reports the detected falls,

accompanied by labeled images are presented.
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4.5.4 Summary

Both the rules-based and MLP-based approaches for fall detection have their strengths

and limitations. The rules-based method is simple and efficient but relies on the accurate

detection of keypoints. The MLP-based method, on the other hand, leverages machine

learning to capture complex patterns but requires extensive training data. Future work may

involve combining these approaches to further enhance the robustness and accuracy of fall

detection systems. The overall demo of the entire system working together is shown as a

video here1 .

1https://youtu.be/wcP0rxez69o
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The thesis presents Omobot, a mobile robot designed with an emphasis on affordability

and autonomy to enhance elderly care by detecting falls. The practical effectiveness and

reliability of the robot in real-world scenarios have been demonstrated through a variety

of experiments, including motor system identification, payload capacity, battery runtime,

odometry accuracy, and obstacle avoidance efficiency. Motor System Identification showed

that with a simple motor system identification, the robot could maintain a more accurate

trajectory, reducing deviations from planned paths. Physical tests demonstrated that the

robot could carry a significant load, providing the potential to include physical attachments

that can improve the safety further. Also, the battery offered sufficient runtime for practical

applications, lasting an average of 93 minutes on a full load. This ensures that the robot

can operate effectively without frequent recharges. The robot effectively detected and

maneuvered around obstacles, which is an essential requirement for ensuring safe interaction

in environments inhabited by elderly people or those requiring assistance. The robot has also

demonstrated reliable fall detection capability through improved image processing techniques

and the usage of advanced pose detection algorithms.

5.2 Future Work

Omobot has demonstrated the potential to be applied in the real world to ensure the

security and safety of elderly people. However, before deploying to a real-world environment,

some improvements must be made to increase its adaptability and ensure its effectiveness in

a broader range of environments. Some of the future works are summarized in the following

subsections:
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5.2.1 Enhanced Sensor Integration

One of the primary recommendations for future work is the integration of more advanced

sensing technologies. The current model utilizes 2D LiDAR, which, while effective for

primary navigation and obstacle detection, has limitations in complex environments with

varying heights and more intricate obstacle configurations. Full utilization of the mounted

stereo cameras would perceive surroundings in 3D, significantly improving its ability to

navigate more complex environments.

5.2.2 Adaptive Homography Transformations

Currently, the robot uses fixed homography transformations to adjust its perception

based on the camera’s viewpoint (Assumed to be 1.5 m). Future research could explore

adaptive homography techniques that dynamically adapt to different environmental setups

and camera perspectives. This would not only improve the accuracy of the robot’s pose

estimation and movement analysis but also enhance its versatility.

5.2.3 Fall Detection Model Enhancements

To improve the reliability and accuracy of fall detection, it is proposed that deep learning

models used by Omobot be developed further and refined. Currently, the MLP-based model

uses two hidden layers, making the model deeper. Training on a more diverse dataset that

includes a broader range of fall types, environmental conditions, and user interactions could

help better understand and predict fall incidents. This could solve the potential problem

of failure to detect falls with the partial presence of humans hidden behind obstacles. This

enhancement could lead to quicker and more accurate responses to falls and allow the robot

to adapt to the behaviors and patterns of its users.
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5.2.4 Multi-Sensor Data Fusion

Integrating data from various sensors to represent the environment better with more

information can be a future direction. By combining inputs from visual sensors, LiDAR, and

perhaps even auditory sensors, Omobot could achieve a better perception of its surroundings.

This sensor fusion would be instrumental in developing more sophisticated decision-making

algorithms that can differentiate between normal activities and potential hazards or emergencies.

5.2.5 User Interaction and Interface Enhancements

Making the user interface more intuitive and accessible for elderly users will be more

helpful. Future iterations could include more natural language processing capabilities, allowing

users to communicate with Omobot using voice commands more conversationally. Enhancements

might also include better physical interaction designs, such as more accessible emergency

buttons or user-friendly touch interfaces.

5.2.6 Real-World Testing and Customization

Real-world testing is critical to understanding how Omobot performs outside of controlled

environments. Future work should include pilot programs in actual home settings, with a

focus on collecting feedback from elderly users and caregivers to tailor the robot’s features

and functionalities to meet their needs better.

Through these extensive future developments, Omobot could significantly advance in its role

as an assistive technology for the elderly, providing not only more reliable fall detection but

also enhanced daily support.
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