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Arctic tundra landscapes are characterized by underlying permafrost sustained by extremely 

low average temperatures. These permafrost soils have been sequestering carbon for millennia, 

effectively locking it into the frozen ground. Currently, anthropogenic climate change, exacerbated 

by Arctic amplification, is driving rapid and unprecedented warming in the Arctic region putting the 

permafrost at risk of thaw. Thawing permafrost could release vast amounts of previously stored 

carbon as greenhouse gasses, driving the permafrost carbon feedback to accelerate warming. 

Unfortunately, the high spatial variability and complex feedback mechanisms limit our understanding 

of the connections and dynamics between above- and below-ground processes, and current models 

often fail to adequately capture permafrost C dynamics, a much-needed representation in climate 

predictions. 

First, we conducted a scaling exercise to evaluate the potential of novel remote sensing 

technologies to capture key tundra processes and reduce observational mismatches. Unoccupied 

aerial systems, airborne imaging spectroscopy, and satellite imagery were used to model the active 

layer and characterize key permafrost features. Medium spatial resolution image bands proved to be 

good predictors of average thaw depth, whereas high resolution imagery showed more contrast 



 

beneficial in complex landscapes like polygon tundra. And while average thaw depth predictions have 

proved valuable, when studying the resilience of the Arctic Boreal Region (ABR) it is important to 

observe local features at the matching scale. Second, airborne imaging spectroscopy allows for a 

region-wide mapping of spectral vegetation traits reflecting the variability in hydrology or nutrient 

availability. Key traits indicative of tundra functioning were selected and clustered to create a high-

resolution spatial dataset reflecting above-ground tundra characteristics reflecting the below-ground 

permafrost conditions. 

Further analysis of the spectral traits revealed the local adaptation strategies to 

environmental conditions and disturbances. Lastly, based on the Landsat archive, yearly disturbances 

were mapped and disturbance trends by thermokarst zone were created. This study highlights the 

importance of landscape characteristics in analyzing and modeling disturbance trends. 

By leveraging each remote sensing data product, we enhanced the characterization of tundra 

landscapes. The scaling approach identified the benefits and pitfalls of each product for modeling, 

which is crucial for region-wide application. Remote sensing proved extremely valuable and provided 

insights into the historical and current state of the permafrost and allows for an improved prediction 

of future shifts in vegetation and ecosystem trajectories by improving the modeling of key vegetation 

parameters and understanding permafrost-vegetation interactions.
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CHAPTER 1 

 SCALING ARCTIC LANDSCAPE AND PERMAFROST FEATURES IMPROVES 

ACTIVE LAYER DEPTH MODELING 

 

Tundra ecosystems in the Arctic store up to 40% of global below-ground organic carbon but are exposed 

to the fastest climate warming on Earth. However, accurately monitoring landscape changes in the 

Arctic is challenging due to the complex interactions among permafrost, micro-topography, climate, 

vegetation, and disturbance. This complexity results in high spatiotemporal variability in permafrost 

distribution and active layer depth (ALD). Moreover, these key tundra processes interact at different 

scales, and an observational mismatch can limit our understanding of intrinsic connections and 

dynamics between above and below-ground processes. Consequently, this could limit our ability to 

model and anticipate how ALD will respond to climate change and disturbances across tundra 

ecosystems.  

In this chapter, we studied the fine-scale heterogeneity of ALD and its connections with land surface 

characteristics across spatial and spectral scales using a combination of ground, unoccupied aerial 

system, airborne, and satellite observations. We showed that airborne sensors such as AVIRIS-NG and 

medium-resolution satellite Earth observation systems like Sentinel-2 can capture the average ALD at 

the landscape scale. We found that the best observational scale for ALD modeling is heavily influenced 

by the vegetation and landform patterns occurring on the landscape. Landscapes characterized by small-

scale permafrost features such as polygon tussock tundra require high-resolution observations to 

capture the intrinsic connections between permafrost and small-scale land surface and disturbance 

patterns. Conversely, in landscapes dominated by water tracks and shrubs, permafrost features 

manifest at a larger scale and our model results indicate the best performance at medium resolution (5 

m), outperforming both higher (0.4 m) and lower resolution (10 m) models. This transcends our study 
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to show that permafrost response to climate change may vary across dominant ecosystem types, driven 

by different above- and below-ground connections and the scales at which these connections are 

happening. We thus recommend tailoring observational scales based on landforms and characteristics 

for modeling permafrost distribution, thereby mitigating the influences of spatial-scale mismatches and 

improving the understanding of vegetation and permafrost changes for the Arctic region.  

 

1.1. Introduction 
 
Tundra landscapes are an extensive feature of the northern arctic biome where cold average annual 

temperatures result in perennially frozen ground or permafrost if frozen for at least two consecutive 

years (French 2007; Van Everdingen, Association, and Others 1998). Extremely low soil temperatures and 

poor drainage facilitate the long-term accumulation of dead organic matter, and as a result, permafrost 

soils have been sequestering carbon for thousands of years (McGuire et al. 2012; Treat et al. 2024). 

Estimates suggest a large stock of around 1,500 petagrams of soil organic carbon (SOC) across the 

circumpolar Arctic, a magnitude that is almost twice the size of the atmospheric C pool ( Schuur et al. 

2015; Hugelius et al. 2014). At the same time, the Arctic region has experienced warming two to four 

times faster than any other biome on Earth. The resulting ground thaw could unlock a substantial amount 

of the C previously stored in the permafrost and make it available for decomposition and release to the 

atmosphere as greenhouse gasses (Schuur et al. 2015; Hayes et al. 2014). This permafrost carbon 

feedback is one of the largest terrestrial-climate feedbacks, with strong positive effects on global 

warming (Schuur et al. 2008; Schuur et al. 2015; Schaefer et al. 2014). 

On top of the permafrost, profound differences between winter and summer temperatures and incident 

solar radiation create seasonal freeze-thaw cycles of the topsoil – known as the active layer (Gomersall 

and Hinkel 2010; Shur, Hinkel, and Nelson 2005; Hall 2007). The complex interactions among active layer 

dynamics, soil properties, and vegetation composition and structure create striking landscape features 

https://paperpile.com/c/aSTMDV/XkFUW+bQJQU
https://paperpile.com/c/aSTMDV/X9Xc+b0XE
https://paperpile.com/c/aSTMDV/v0OY+TGbvD
https://paperpile.com/c/aSTMDV/v0OY+TGbvD
https://paperpile.com/c/aSTMDV/v0OY+DA0K
https://paperpile.com/c/aSTMDV/vmquK+v0OY+pnXar
https://paperpile.com/c/aSTMDV/oUU5T+iqDCw+Un16B
https://paperpile.com/c/aSTMDV/oUU5T+iqDCw+Un16B
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with distinct, and heterogeneous, micro-topography characteristics across scales: from small (<0.5 m) 

and larger (<10 m) hummocks to ice-wedge polygons (10-30 m), each showing unique spatial patterns 

(Sturm and Holmgren 1994; van Huissteden 2020) - figure 1). The spatial differences in soil ice content 

and associated vegetation cover have been shown to be the main drivers of micro-scale topographic 

patterns (van Huissteden 2020), along with surface hydrology and interactions with soil ice and 

vegetation. For example, freeze-thaw cycles cause ground ice accumulation in soil cracks, initiating a self-

organizing network of ice wedges. This process creates the typical polygon pattern of tundra landscapes 

(figure 1c), with a dry elevated area along the edges and wet depressions above the ice wedges and in 

the center of the polygon (French 2007).  

The spatial heterogeneity of micro-topography and the associated soil moisture and vegetation patterns 

importantly regulate below-ground processes, for example, soil hydrothermal dynamics that determine 

the spatial distribution of ground ice content, Active Layer Depth (ALD), and permafrost stability. In 

particular, while the soil thermal state is mainly driven by surface energy balance and ground heat fluxes, 

the spatial variation in surface albedo driven by changes in vegetation type, cover, and height can have 

strong impacts on seasonal permafrost freeze-thaw processes, an important determinant of ALD. Besides 

influencing the albedo, vegetation layers are also an important buffer between the atmosphere and soil 

by influencing both sensible and latent heat fluxes. Shifts in arctic vegetation are thus expected to alter 

ground heat fluxes and cause almost immediate thawing when removed (Blok et al. 2011; Nauta et al. 

2014). In addition to vegetation, variation in micro-topography also plays an important role in ground 

heat fluxes and subsequently affects permafrost dynamics. This is because fine-scale terrain 

characteristics like slope and orientation can forge local drainage and soil moisture, affect snow cover 

and redistribution (Bennett et al. 2022), and drive fine-scale vegetation distribution and structure (French 

2007; Cohen et al. 2014; Jorgenson et al. 2010; Romanovsky and Osterkamp 1995; J. P. Fisher et al. 2016). 

These complex interactions among climate, micro-topography, vegetation, and soil hydrology are 

https://paperpile.com/c/aSTMDV/trEA7+P7oci
https://paperpile.com/c/aSTMDV/P7oci
https://paperpile.com/c/aSTMDV/XkFUW
https://paperpile.com/c/aSTMDV/m0EV6+kHhUy
https://paperpile.com/c/aSTMDV/m0EV6+kHhUy
https://paperpile.com/c/aSTMDV/QUhIX
https://paperpile.com/c/aSTMDV/XkFUW+ZlB9a+wHOuI+wefcE+3FzaB
https://paperpile.com/c/aSTMDV/XkFUW+ZlB9a+wHOuI+wefcE+3FzaB
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responsible for the high spatiotemporal variability found in permafrost dynamics, challenging our ability 

to quantify and model the spatial variation in ALD. 

 
Figure 1.1: Conceptual overview of the thaw gradients covered in this thesis. a. Drained thaw lakes, leave small to 

large depressions in the tundra landscape. Typical vegetation: dry tussock- and dwarf-shrub tundra shifting to 

tussock-sedge, moss tundra in the depressions; b. Ice wedge polygon tundra with intermediate- and complete 

degraded ice wedges creating depressions above the ice wedge polygon structure, sometimes draining toward a 

water track leading to deeper channels. Polygon complex of wet graminoids and wet tussock sedges, while the 

polygon centers are dominated by dry tussock-sedge, dwarf-shrub lichen tundra; c. Water tracks in a moderate 

tundra landscape create a linear complex of wet sedges and dwarf shrub lichen tundra; d. Shrub encroachment in 

the tundra landscape. A complex of low-shrub tundra and tall shrub thickets. The average transect presented is 

approximately 50 m. The scaling diagram on the right shows a conceptual overview of the RS products, UAS, 

Airborne, and satellite, with their differences in altitude and spatial coverage (not to scale). 
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ALD is also highly vulnerable to disturbances. Press disturbances driven by anthropogenic climate 

warming are slowly changing the landscape and can cause an increase in ALD, melting the top of ice 

wedges and shifting low-centered to high-centered polygons with deeper waterlogged channels 

(Liljedahl et al. 2016; French 2007), or by pulse disturbances causing abrupt permafrost thaw and 

creating thermokarst features across the landscape (Grosse et al. 2011). Both types of disturbances 

change the hydrology of the landscape, the vegetation patterns, and the availability of soil C for 

decomposition thereby driving changes in surface and soil energy fluxes that affect ALD. 

Despite the important interactions between above and below-ground processes, limited research has 

been done to quantify these connections and evaluate their potential to infer below-ground spatial 

variability in ALD, due to the remote location and logistic challenges to measure above- and below-

ground properties simultaneously in tundra landscapes. Of all influencing factors, vegetation is relatively 

easy to observe using remote sensing (RS) and can act as a window to the underlying ALD and 

permafrost (Mikola et al. 2018; Döpper et al. 2021; Loranty et al. 2018), especially if combined with 

micro-topography data, to create a link between the above- and below-ground processes necessary to 

observe the fate of the permafrost. High-resolution data are necessary to capture the tundra 

heterogeneity (Muster et al. 2012), but permafrost landscape dynamics and associated disturbance 

effects are mostly observed at coarser spatial and temporal scales (Liljedahl et al. 2016). This scale 

mismatch among the key tundra processes makes it challenging to unravel the intrinsic connections 

between above and below-ground processes, limiting our ability to model and anticipate how ALD will 

respond to climate change and disturbances across different ecosystem types.  

The recent development and use of new sensors and platforms like unoccupied aerial systems (UASs), 

allow us to observe vegetation, typography, and hydrology at high resolutions, providing new 

opportunities to understand the fine-scale connections between above and ground processes and 

facilitating upscaling to larger airborne and satellites. Recently, high-resolution airborne hyperspectral 

https://paperpile.com/c/aSTMDV/9ky25+XkFUW
https://paperpile.com/c/aSTMDV/yDnrX
https://paperpile.com/c/aSTMDV/dWiw0+WCrJ9+J0phY
https://paperpile.com/c/aSTMDV/m3jQ1
https://paperpile.com/c/aSTMDV/9ky25
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imagery and high-resolution satellite imagery were used to model permafrost extent (Thaler et al. 2023) 

and active layer thickness (Zhang, Douglas, and Anderson 2021; Anderson et al. 2019; Gangodagamage 

et al. 2014) but the effect of the different sensors and scale of the RS product on the modeled 

permafrost features is not clear. Advances in UAS technology bridge the gap between ground-level and 

coarse-resolution remote sensing observations (Yang et al. 2020, 2022). Combining hyperspectral and 

UAS image processing allows for quick and detailed characterization of tundra vegetation and landscape 

patterns (Yang et al. 2023). Vegetation height and structure can be derived from UAS photogrammetry, 

together with a high-resolution elevation model, to detect soil subsidence and patterns in 

microtopography (Armstrong et al. 2018; Huang et al. 2018; Correll et al. 2019). UASs have been used 

to assess polygon tundra dynamics (Kartoziia 2019; Fraser et al. 2016) and the fractional cover of tundra 

vegetation used for upscaling to satellite data resolution (Yang et al. 2023; Zhang et al. 2020; Riihimäki, 

Luoto, and Heiskanen 2019).  

In this chapter, we investigated to what extent RS captures the fine-scale variability in ALD through its 

connection with above-ground features like vegetation, topography, and hydrology. We analyzed how 

these connections vary across different representative ecosystem types and across a range of 

observational scales. We collected detailed field-based measurements of thaw depth across 

representative transects in combination with high-resolution UAS imagery covering our study sites on 

the Seward Peninsula, Alaska. The UAS imagery with a base resolution of 0.4 m was stepwise upscaled 

to 10 m and for each step, ALD was modeled with Random Forest. The explained variance was analyzed 

against the spatial resolution to identify the optimum modeling scale for the two study sites. To extend 

our approach to the broader landscape, we used hyperspectral datasets from NASA’s Arctic-Boreal 

Vulnerability Experiment (ABOVE) AVIRIS-NG flight campaign (Miller et al. 2018) and Sentinel 2 to model 

the ALD at the watershed level. Model outputs were used to investigate the scaling effect across 

datasets and the dominant patterns in ALD were analyzed using wavelet and variogram analysis. The 

https://paperpile.com/c/aSTMDV/bOPqN
https://paperpile.com/c/aSTMDV/rtlLZ+zaZ3Q+QBOaa
https://paperpile.com/c/aSTMDV/rtlLZ+zaZ3Q+QBOaa
https://paperpile.com/c/aSTMDV/E3ECn+RMp84
https://paperpile.com/c/aSTMDV/iV48N
https://paperpile.com/c/aSTMDV/KGx7A+CS3fe+iMEwK
https://paperpile.com/c/aSTMDV/XAAGS+2vwdn
https://paperpile.com/c/aSTMDV/iV48N+U7Ixw+kYOYr
https://paperpile.com/c/aSTMDV/iV48N+U7Ixw+kYOYr
https://paperpile.com/c/aSTMDV/flr2
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upscaling process allowed for studying the impact of the spectral differences among the datasets at an 

identical resolution. Our modeling results show the predictive power of region-wide, medium-

resolution ALD trends over the landscape, but the key permafrost features that are sensitive to change 

and a possible indicator of the resilience of the tundra landscape are only captured by the high-

resolution UAS and AVIRIS-NG datasets. Determining the optimal synergy between the spatial patterns 

of tundra landscape features and the optimal scale of observation and analysis will help mitigate the 

influences of spatial-scale mismatches in modeling and improve the understanding of vegetation and 

permafrost changes in the Arctic. 

 
1.2. Materials 
 
1.2.1. Study Site 

 
Our two study sites (Teller and Mile 80; figure 2) are located near Nome on the Seward Peninsula, 

western Alaska. The Seward Peninsula is located below the Arctic Circle on the Bering Sea coast and is 

a remnant of the historical Bering land bridge but is currently separated from Siberia by the Bering Strait. 

The Seward Peninsula is covered by tundra vegetation underlain with discontinuous permafrost (Peel, 

Finlayson, and McMahon 2007). The mean annual air temperature at Nome is -2.3C and shows a positive 

warming trend from 1976 to 2020, with pronounced changes during spring and fall while the winters 

are becoming slightly colder (https://akclimate.org/climate-change-in-alaska/). The Teller Road mile 27 

site, hereafter called Teller, is characterized by coastal tundra with a topographic transition from wet 

meadow tundra on uplands to willow shrubland on lower slopes and along the streams (Raynolds et al. 

2019). The Kougarok Road Mile 80 site, hereafter Mile 80, is categorized as interior tundra This site is 

characterized by a permafrost thaw pond, surrounded by non-active high-centered ice-wedge polygons. 

The pond was drained around 2005, causing increased drainage of the polygon landscape around the 

pond with decreasing soil moisture and increasing depths of the troughs surrounding the polygons. 

These changes subsequently triggered a landscape shift from wet graminoids to mesic plant 

https://paperpile.com/c/aSTMDV/SrWt9
https://paperpile.com/c/aSTMDV/SrWt9
https://akclimate.org/climate-change-in-alaska/
https://paperpile.com/c/aSTMDV/xpvLN
https://paperpile.com/c/aSTMDV/xpvLN
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communities such as tussock sedges (Perreault et al. 2016). Through collaborations with the Next-

Generation Ecosystem Experiments Arctic (NGEE-Arctic) (https://ngee-arctic.ornl.gov/) and NASA 

ABoVE (https://above.nasa.gov/), various field and airborne datasets, including AVIRIS-NG, have been 

collected at both Teller and Mile 80 sites (Miller et al. 2018).   

 
Figure 1.2:  Location of study sites Mile 80 and Teller on the Seward Peninsula, Alaska, USA 

 

1.2.2. Datasets 
 
1.2.2.1. In Situ Active Layer Depth Measurements. In July 2019, we conducted a field campaign to 

collect field-based active layer depth (ALD) measurements across the Teller and Mile 80 sites. It is 

noted that this study focused on exploring the patterns of peak-season ALD, instead of maximum 

annual ALD, commonly referred to as active layer thickness (ALT) observed at the end of the growing 

https://paperpile.com/c/aSTMDV/jDZQQ
https://ngee-arctic.ornl.gov/
https://above.nasa.gov/
https://paperpile.com/c/aSTMDV/flr2
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season. ALD generally increases proportionally to the square root of time since snowmelt (Nelson 

and Hinkel 2003), allowing to observe the spatial patterns in ALD variability before reaching the 

maximum thaw depth. We used a high resolution spatial sampling strategy to thoroughly capture 

the spatial variability of tundra vegetation, permafrost features, and disturbances (figure 1) by 

planning linear transects perpendicular to the elevation gradient (Teller) or crossing permafrost and 

thaw features (Mile 80) and avoiding alignment with vegetation and environmental gradients. At 

each sampling location, a thaw probe (130 cm long, 1 cm diameter, marked with 5-centimeter 

increments) was pushed into the ground until resistance of the permafrost layer was encountered. 

At locations with rocks or a high variability, multiple thaw depths were sampled within an area of 

about 2X2 m square, and the maximum thaw depth is reported.  To link with remote sensing 

imagery, the coordinates of each location were measured using Garmin GPSmap and a portable 

Trimble Geo7X differential GPS. The Geo7X was connected to a Zephyr Model 2 Dual Frequency 

GNSS antenna (Trimble  Incorporated, Sunnyvale, California) and coordinates were logged for at 

least 1 minute. The nearest base station data from the Trimble Reference 

Network (https://www.trimble.com/trs/findtrs.asp) were used to post-process the locations to 

achieve dGPS accuracy.  

 

1.2.2.2. Remote Sensing Data. UAS imagery of the study sites was obtained with a Phantom 4 RTK 

drone in combination with the D-RTK 2 Mobile Station (DJI, Shenzhen DJI Science and Technology 

Ltd.), providing centimeter-scale geolocation accuracy for the UAS. The Phantom 4 is equipped 

with a built-in 1-inch, 20MP CMOS sensor with a mechanical shutter. Two and three UAS flights 

were collected at Teller and Mile80, respectively, under clear-sky conditions and a flight height of 

100m. For this study, one flight for each site that covered our ALD sampling locations was used. 

Vegetation characteristics, canopy height, and digital elevation models were derived from 

photogrammetry point clouds processed with the Metashape (Agisoft LCC) software. We 
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processed UAS flight separately to create a 5 cm resolution RGB ortho mosaic and digital surface 

model (DSM), and based on non-vegetated pixels and local minima the digital elevation model 

(DEM) was generated from the DSM (Yang et al. 2020).  Afterwards, the Canopy Height Model 

(CHM) was calculated as the difference between DSM and DEM. This UAS dataset is publicly 

available at https://doi.org/10.5440/1906348. The UAS imagery is characterized by an extremely 

high spatial resolution in the visible spectrum. The obtained resolution of 4 cm was initially 

reprocessed to a base resolution of 0.4 m. During the timeframe of UAS data collection, AVIRIS-NG 

flight lines were collected and made available by the NASA ABoVE airborne campaign (Miller et al. 

2018). AVIRIS NG is an imaging spectrometer with 425 spectral bands and a wavelength range from 

380 (visible) to 2510 nm (infrared); with 5 nm spectral resolution and a spatial resolution of 5 

meters. The imaging spectroscopy data were collected on July 7 2019 and the orthorectified and 

atmospherically corrected reflectance product (L2) was downloaded from the AVIRIS-NG data 

portal (https://avirisng.jpl.nasa.gov/dataportal/). Compared to the airborne AVIRIS-NG, a Sentinel 

2 satellite has 4 bands (RGB and NIR) matching the 10 m spatial resolution. The Sentinel 2 satellites 

(a twin configuration) have covered the whole world since June 2015 with a revisit time of only 5 

days at the equator. A cloud-free, atmospherically corrected surface reflectance product (L2A) of 

Sentinel-2 imagery was downloaded from the Copernicus open-access hub 

(https://scihub.copernicus.eu/). The Sentinel 2 data were collected on July 6 2019 for Teller and 

July 8 2019 for Mile 80. The Arctic-DEM from the Polar Geospatial Center (Porter et al. 2022) was 

used for the AVIRIS-NG and Sentinel 2, encompassing the complete watershed area for both sites. 

Subsequently, the image dataset and DEM were clipped to the watershed level of the respective 

study sites. The Arctic-DEM strip that matched the AVIRIS and Sentinel-2 collection dates and  

 

 

https://paperpile.com/c/aSTMDV/E3ECn
https://doi.org/10.5440/1906348
https://paperpile.com/c/aSTMDV/flr2
https://paperpile.com/c/aSTMDV/flr2
https://avirisng.jpl.nasa.gov/dataportal/
https://scihub.copernicus.eu/
https://paperpile.com/c/aSTMDV/7GHs5
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overlapped the study site were downloaded at resolutions of 2m (rescaled to match AVIRIS-NG) 

and 10m (https://www.pgc.umn.edu/data/arcticdem/) (Porter et al. 2023). This allows for each RS 

dataset to have a matching DEM. 

 
1.3. Methods 

 

1.3.1. Deriving Fine-scale Topographic and Spectral Features 
 

Fine-scale topographic features such as ice-wedge polygon tundra, patterned ground, and solifluction 

lobes are important drivers of snow depth, hydrological processes, drainage patterns, and soil moisture 

that affect ALD (Hermes et al. 2020; Matsuoka, Ikeda, and Date 2005; Wainwright et al. 2015, 2017; 

Engstrom et al. 2005). However, these impacts remain poorly studied as these features happen at scales 

from a foot to several meters, hard to capture with traditional airborne or satellite DEM datasets (e.g. 

ArcticDEM). In this study, we addressed this problem by deriving topographic features that, considering 

the scale effects, can capture features at different scales and that we can apply to DEM datasets with 

different resolutions. Specifically, topographic variables representing fine-scale topographic position 

and water/energy distribution across the landscapes were derived, including slope, aspect, heat load 

index (HLI), topographic positioning index (TPI), terrain ruggedness index (TRI), convergence index (CI), 

and Topographic Wetness Index (TWI). The HLI is calculated based on the DEM using the R package 

“SpatialEco” (Evans and Ram 2021), and is a measure of incoming solar radiation that accounts for the 

differences in slope and aspect, for example, the temperature differences between south-facing and 

north-facing slopes. The TPI identifies terrain features, where a 0 value represents flat surfaces or 

smooth slopes, < 0 TPI indicates valley bottom or gully, and > 0 TPI represents ridges. TRI provides a 

measure of the ruggedness of the landscape, ranging from level to extremely rugged, based on the 

elevation differences within the defined neighborhood (here at 5, 25, and 50 m). The Convergence Index 

(CI) represents the structure of the terrain by peaks and ridges/pits and channels for the defined 

neighborhood. As the scale is important the CI highly depends on the size of the neighborhood (here at 

https://www.pgc.umn.edu/data/arcticdem/
https://paperpile.com/c/aSTMDV/KJYZs
https://paperpile.com/c/aSTMDV/uw5Im+U3mce+3T3bJ+sPfT8+MsScY
https://paperpile.com/c/aSTMDV/uw5Im+U3mce+3T3bJ+sPfT8+MsScY
https://paperpile.com/c/aSTMDV/f4Uah
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5, 10, 15, 25, 50, 75). TWI can be seen as the likelihood of water accumulating in the landscape and is 

used to represent soil moisture (Winzeler et al. 2022). TWI is calculated based on the specific catchment 

area, the contributing upslope area divided by the flow width, and the grid slope (R - RSAGA & SAGA GIS 

(Conrad et al. 2015)). To standardize the imagery was transformed to the first three bands of the 

Principal Components Analysis (PCA). To take advantage of the information stored in the AVIRIS 

hyperspectral bands, spectral traits and indices related to vegetation and soil were calculated and 

included as covariates. Table 1 (Supplemental material) provides an overview of all covariates. The 

topographic and spectral covariates are calculated for each RS dataset and used in the modeling 

approach. 

1.3.2. Modeling ALD with Random Forest 
 

Using ALD measurement across transects (section 2.2.1) in combination with spectral and topographic 

derivatives from our RS products, we developed a spatially explicit Random Forest (RF) model to predict 

and map ALD across our study landscapes. The spectral and topographic derivatives are used in the RF 

model, as described in 3.1. The RF machine learning algorithm (Breiman 2001) was selected since it is 

relatively easy to use without much parameter tuning and still outperforms other ML algorithms, 

particularly on relatively small datasets (Genuer, Poggi, and Tuleau-Malot 2010). 

1.3.3. Scaling Analysis 
 

To facilitate the scaling of ALD from individual sites (studied with in situ measurements and UAS 

imagery) to the larger landscape (observed with airborne and satellite imagery), and across tundra 

vegetation, permafrost-, and disturbance features, we conducted comprehensive, multi-scale, and 

multi-resolution analyses. First, we examined the impacts of spatial resolution on modeling ALD by 

training the RF using UAS derivatives datasets resampled to a range of resolutions (i.e 0.40 m to 10 m 

at 0.8 m interval). In this process, we identified the optimum modeling scale for the two study sites (see 

section 2.4.1). This analysis provided a ‘clean’ investigation of spatial scaling effects on modeling ALD. 

https://paperpile.com/c/aSTMDV/ydHx7
https://paperpile.com/c/aSTMDV/nj3Ep
https://paperpile.com/c/aSTMDV/IT0RF
https://paperpile.com/c/aSTMDV/NJ8iL
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After that, we re-trained the RF using datasets from AVIRIS-NG and Sentinel 2, along with the matching 

Arctic-DEM at the watershed level of both study sites. This allowed us to model ALD and extend our 

approach to encompass a broader landscape. We compared the model outputs from UAS, AVIRIS-NG, 

and Sentinel-2 to investigate the scaling effect across UAS datasets with upscaled resolutions (see 

section 2.4.1), different sensors, and landscape features (see section 2.4.2). Lastly, the upscaling process 

allowed the synchronization of resolutions among the upscaled UAS, AVIRIS-NG, and Sentinel 2 and 

enabled us to examine the impact of the spectral differences among the datasets at an identical 

resolution. 

1.3.4. Identifying Optimum Feature Scale for Modeling ALD 
 

The mismatch between the scale at which ecological processes happen and the scale of observation 

strongly impacts modeling ecological patterns with remote sensing data. Either over- or under-sized 

observation could lead to reduced model uncertainty due to the occurrence of salt-and-pepper noises 

at fine scale and aggregation of information at large scales. Identifying the optimal scale that best 

captures above-below ground relationships for different landscapes can guide us toward the most 

predictive scale for ALD modeling. In this study, the high-resolution UAS base layers including RGB and 

DEM, are stepwise upscaled with increments of 0.8 m, aggregating from the base resolution of 0.4 m to 

a maximum resolution of 10 m. This resulted in a series of resolutions for which the remote sensing 

derivates were extracted. For each step, the scaled orthoimage and DEM were used to calculate the 

modeling covariates, the RF model was trained and subsequently, ALD was modeled across all grain 

sizes. To identify the optimum modeling scale, the explained variance of the RF model was plotted 

against the grid size, where the maximum explained variance will represent the optimum modeling 

scale. 
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1.3.5. Comparing UAS, AVIRIS-NG, And Sentinel 2 for Modeling ALD 
 

We compare the ability of three datasets, UAS, AVIRIS-NG, and Sentinel-2, with a spatial resolution of 

0.4, 5.1, and 10 m respectively, for modeling ALD. These datasets were used to calculate covariates for 

ALD modeling. Integrating these different resolutions and spatial sales allowed us to model ALD and 

extend our approach to encompass a broader landscape context. We used a spatial covariance approach 

to analyze the modeled ALD patterns versus spatial heterogeneity of the different ALD models with 

different spatial resolutions. We calculated a series of variograms to describe the spatial dependence of 

the ALD model results for the different sensors and different landscape patterns, with the variogram 

attributes descriptive of the scale and intensity of dominant patterns detected in the modeled ALD 

(Murwira and Skidmore 2005; Rietkerk et al. 2000).  On the other hand, a Wavelet transform was 

calculated to analyze the scale variability of dominant patterns. The wavelet transform has its roots in 

signal processing and is based on the Fourier analysis, which decomposes a signal into sinusoidal 

frequency components but loses its spatial reference (Broughton and Bryan 2011). Wavelets enable 

analysis across scales in the spatial domain by providing a location-scale analysis. The wavelet spectrum 

is calculated for a scalable moving window shifted over the transect, and a stepwise increase in window 

size creates a multi-resolution analysis in space. The increased data aggregation allows an analysis of 

the scale variability of the dominant patterns in space. The ability to detect features within transects at 

varying spatial scales makes a wavelet analysis a versatile analytical tool for detecting feature variability 

across scales and allows us to uncover complex patterns and structures in our landscapes (Dale and Mah 

1998; Csillag and Kabos 2002; Murwira and Skidmore 2005). We visualized the wavelet analysis using 

the wavelet power spectrum where the X-axis represents the location along the transect while the Y-

axis represents the feature scale, where Y=1 corresponds with the original pixel size. When moving up 

the Y-axis the wavelet scale is aggregated by factor 1-2-4-8-16... The associated edge effects with 

increased aggregation create a window of applicability of the wavelet power spectrum. We used the R 

https://paperpile.com/c/aSTMDV/I76eE+RV47e
https://paperpile.com/c/aSTMDV/8RIrS
https://paperpile.com/c/aSTMDV/oMViz+jOUEa+I76eE
https://paperpile.com/c/aSTMDV/oMViz+jOUEa+I76eE


15  

package WaveletCom to calculate the power spectrum, identify significant patterns, and visualize the 

window of applicability (Rösch and Schmidbauer 2018).  

To quantify the dominant scale, we selected landscape features with distinct spatial and vegetation 

patterns observed across various spatial scales at each study site. For Mile 80 (see figure 1.8 for 

matching figures), the three landscape features with distinct micro-topography characteristics and 

spatial pattern(s) were: A) Tussock tundra, B) Ice-wedge polygons, and C) the thaw pond. For the Teller 

site, the landscape features selected were: A) Gully with shrub encroachment along the banks, B) Water 

tracks with distinct linear patterns of drier upland dwarf shrubs and wetter sedge-dominate 

depressions, and C) Shrub patches. The spatial autocorrelation, or patchiness, of the modeled ALD was 

calculated using a variogram analysis. Furthermore, wavelet analysis was applied to detect spatial 

patterns across scales for the three landscape patterns, allowing the detection of the different features 

present in the tundra landscapes. The results derived from these analyses allow for a detailed 

understanding of the tundra and landscape patterns observed and ALD modeled by the UAS, AVIRIS-

NG, and Sentinel 2 datasets. The spatial patterns detected by the different platforms were compared 

with the OFS derived from the scaled UAS ALD model. We then compared and analyzed the model 

outputs from UAS, AVIRIS-NG, and Sentinel to investigate the scaling effect across different datasets, 

resolutions, and landscape features. 

1.3.6. Comparative Analysis of spectral Properties of UAS, AVIRIS-NG, and Sentinel 2 for Thaw Depth 
Modeling 

 
The upscaling process facilitated the alignments of ALD model outputs based on resolution among the 

upscaled UAS (2.4.1) and AVIRIS-NG and Sentinel (2.4.2), enabling an analysis of the impact of spectral 

resolution among datasets. In our analysis, we compared the matching datasets derived from UAS with 

AVIRIS-NG, and Sentinel 2 for their ability to model ALD, considering the different spectral resolutions 

of each dataset.  

 

https://paperpile.com/c/aSTMDV/mOwuQ
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The UAS imagery is characterized by 3 spectral bands in the visible spectrum (Red, Green, Blue - RGB) 

with a base resolution of 0.4 m and upscaled resolutions of 5.1 and 10 meters to match AVIRIS-NG and 

Sentinel-2, respectively. The upscaled ALD model results are used as a base model.  Conversely, the 

Sentinel 2 satellite has 4 spectral bands matching the 10-meter spatial resolution covering RGB and a 

Near Infrared (NIR) band. 

 

1.4. Results 
 
1.4.1. Field-based Active Layer Depth 

 
The active layer depth was measured along 6 transects at Teller (collected on 17/07/2019) and 4 

transects at Mile 80 (collected on 12/07/2019) during the 2019 field season. The ALD ranged from 15 

cm to 120 cm and 18 cm to 100 cm, respectively, for Teller and Mile 80, with much larger spatial 

variation at Teller than Mile80  (mean ALD: Teller 72.7±25.9 and Mile 80 38.7±12.5). The larger spatial 

variation in ALD at Teller is associated with vegetation patterns (Yang et al., 2019). The deepest mean 

ALD was associated with wet graminoids (89.8±21.6 cm) and forbs (e.g. horsetail/coltsfoot - 79.4±20.9 

cm), followed by tall willow shrubs (77.6±23.5 cm) and dry graminoids (75.2±26.5 cm). The lowest mean 

ALD was observed for deciduous low shrubs (e.g. dwarf birch and bog blueberry - 58.9±21.9 cm). The 

difference between the means of deciduous low shrubs and tall willow, dry graminoid, and wet 

graminoid is significant (p < 0.05). We used one-sided ANOVA to test the difference between groups (p 

< 0.01) followed by the Tukey HSD (p < 0.05) to identify the specific groups with significant differences. 

However, at Mile 80, no significant differences were observed in mean ALD between the two main 

vegetation types tussock tundra (39.3±14.9 cm) and deciduous low shrub (38.4±11.5 cm). 

1.4.2. Characterization of Key Covariates 
 

The covariates were selected to capture and represent the diverse land surface variation present at the 

study sites. At Mile 80, the DEM shows overall minor elevational variation over the tussock tundra, 

https://paperpile.com/c/aSTMDV/EtuZ5
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creating a gently rolling landscape with a slight curvature. Interestingly, the micro-topography was able 

to capture the existence of polygons (figure 1.1b), where the slightly elevated polygon centers are 

covered with deciduous low shrubs, and the depressions above the ice wedges are covered with sedges 

(left panel in Figure 1.3). The site features a central thaw pond and a drainage channel from that pond 

towards a stream. The thaw pond, measuring 100 by 150 meters and almost 1.5 m deep, is a dominant 

disturbance feature increasing drainage from the surrounding polygon tundra. At Teller, the elevational 

gradient is south-southeast oriented, with relatively steep slopes along the central stream. 

Microtopographic variation includes linear patterns along the slope with distinct graminoid 

(depressions) and deciduous low shrub cover, and deeper water tracks with wet graminoid vegetation. 

Along the stream, willow patches are mixed with wet graminoids, forbs (horsetails), and deciduous low 

shrubs. The calculated Convergence Index (Thommeret, Bailly, and Puech 2010) with varying kernel sizes 

reveals different landscape patterns, as presented for Mile 80 in Figure 1.3. A smaller kernel size 

accentuates features associated with polygon tundra, an intermediate kernel size highlights the main 

drainage channels, and a large kernel size highlights disturbances like the distinct thaw pond. 

 

 
Figure 1.3: Micro-topographic spatial patterns defined by the Convergence Index (CI), with different neighborhood 

sizes (25-49-75 pixels) — an example from the Mile 80 study site based on UAS-derived DEM with a resolution of 

0.4m. Convergent or channels are represented in red (negative CI), yellow represents a more planar surface (CI=0), 

and blue highlights divergent or ridges (positive CI). 

 

 

 

 

https://paperpile.com/c/aSTMDV/gKL4I
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1.4.3. Modeled Active Layer Depth 
 
1.4.3.1. UAS-based ALD modeling and Scaling Across Grid Size. The modeled ALD of the gradually 

upscaled high-resolution UAS base layers with a resolution of 0.4 m up to a maximum resolution of 

10m. ALD was modeled across all grain sizes, and the RF model's explained variance was plotted against 

the grid size. Figure 1.4 visualizes the changes in the explained variance of the RF model with increasing 

grid size for both study sites and reveals a distinctly different trajectory for both sites. For the Teller 

site, the model accuracy increased initially and peaked around a spatial resolution of 5 m before 

showing a slight decrease towards the lower resolutions. In contrast, the explained variance for Mile 

80 peaked at the highest resolution before quickly dropping with increased spatial grid size. 

When visually examining the spatial patterns, the Teller site (figure 1.4b) shows pronounced 

landscape patterns for the mid- to low-range resolutions (2.8 to 10.0 m), including the peak 5 

m resolution. The high-resolution model output comparatively lacked spatial patterns, while 

speckled model output is observed at large pixel sizes. Instead at Mile 80 (figure 1.4a), high-

resolution model outputs well observed the spatial structures associated with tundra polygons. 

These spatial structures were diminished with decreasing model resolution, especially when 

the modeling resolution is over 2.8 m. 
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 Figure 1.4. Active layer modeling results with changing resolutions. A &B: UAS model results for ALD with 

increasing grid size ranging from 0.4m to 10 m, with intermediate steps of 2.8, 5.2, and 7.6 m presented (A 

= Mile 80, B = Teller). Note the difference in scale and the associated size of the landscape features in both 

landscapes. Figure 4 bottom: Scale of the RS dataset used to model ALD plotted against the explained 

variance by the model. The plot shows the difference in behavior between Mile 80 and Teller, where Mile 

80 peaks at the smallest scale, quickly dropping with increased resolution the models for the Teller site reach 

their optimum around 5m resolution, with a slight drop with the lower and higher resolutions. 
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Figure 1.5: Density plot of UAS model results for ALD with grid sizes 0.4m, 5m, and 10 m for Mile 80  and 

Teller study site. 

 

Figure 1.5 shows the distribution of the modeled ALD values for both the Mile 80 and Teller study 

sites, for resolutions 0.4 m, 5, and 10 m. Different ALD prediction patterns are observed for the two 

study sites. For Mile 80 (figure 1.5 - left), the ALD predictions are largely centered around a mean of 

40 cm, which is close to the observed ALD mean of 38.7 cm derived from the transect-based, in situ 

ALD measurements. Only the high-resolution model represented the spatial ALD variability, allowing 

the model to predict and capture variation in the deeper ALD values beyond the average. For Teller 

(figure 1.5 - right), the model outputs for the different resolutions show similar mean ALD values 

that align with the mean transect ALD of 72.7cm measured in the field. At 10 m resolution, the model 

slightly overestimates ALD while at 0.4 m there is a slight underestimate of ALD. Overall, the models 

at Teller effectively capture the average ALD compared to the mean of the transect ALD 

measurements. 

1.4.3.2. Multi-platform Based ALD Modeling Across Grid Size and Landforms. For the multi-

platform comparison, ALD was modeled using the high-resolution UAS base layer, the AVIRIS-NG, 

and the Sentinel 2 imagery with respectively 0.4 m, 5.1 m, and 10 m spatial resolution (figure 1.6). 

We analyzed the model outputs for spatial patterns by variogram and wavelet analysis. These tools 
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allowed us to study how the different landscapes are represented across scales and sensors. 

Splitting the landscapes into their distinct landforms, variograms, and wavelets allowed us to study 

the distinctive differences captured by our model across both scale and landforms. Details of the 

model outputs from UAS, AVIRIS-NG, and Sentinel 2 for the Teller (Top) and Mile 80 (bottom) study 

sites are presented in Figure 1.6. 

 
Figure 1.6: Multi-platform model results from the Teller site (top) and Mile 80 (bottom). A detail of the ALD 

model results are presented from left to right: UAS (0.4 m), AVIRIS-NG (5.1 m), Sentinel 2 (10 m), and the 

UAS RGB image (0.4 m) for reference. 

 

For Mile 80, the key landforms present include tussock tundra, polygon tundra, and a drained thaw 

lake. To get insights into the distribution of the modeled thaw depth across landforms and pixel 

size/dataset, we extracted details from the study sites that explicitly cover the landforms of 

interest (figure 1.7). The density plot shows that all the datasets cover the variability of ALD for the 

thaw pond (C). However, the tussock tundra and polygon tundra show contrasting results. Only 

the high-resolution model could capture the variability in ALD associated with the tussock tundra 
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(A) and polygon tussock tundra (B) features. Deeper ALD values were not present in the AVIRIS-

NG and Sentinel models. For Teller, key landforms present include (A) gullies with shrubs, (B) water 

tracks, and (C) areas of shrub encroachment. Concerning the distribution of modeled thaw depth 

across the landforms (figure 1.7), the density plot shows that all datasets cover the mean ALD, 

while the medium to low-resolution model has a wider spread compared to the high-resolution 

model.  

 
Figure 1.7. Density plots showing the distribution of modeled ALD across key landforms and platforms. 

Landforms covered by Mile 80: (a) tussock tundra, (b) polygon tundra, and (c) drained thaw lake; and Teller: 

(a) gullies with shrubs, (b) water tracks, and (c) shrub encroachment. 
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The spatial variation in the modeled ALD was analyzed using a variogram analysis (figure 8). 

Overall, observed spatial patterns in modeled ALD decreased with coarsening resolution. 

Compared to AVIRIS-NG and Sentinel, the semivariance of the UAS modeled ALD peaked for the 

three examined landscape types, with a larger range value for thaw lake and polygon tussock 

tundra (range: 4.7 m for both), compared to tussock tundra (range 2.9 m). The observed pattern 

in range corresponds with the spatial size of the features in the landscape patterns for tussock 

tundra (A) < polygon tussock tundra (B) and thaw lake (C). In contrast, the AVIRIS-NG model shows 

no autocorrelation for tussock tundra, capturing only the polygon tundra and thaw pond. The 

increased range for polygon tundra variogram, along with a large nugget to partial sill ratio, 

indicate a weak spatial structure. The thaw lake variogram tends to flatten, but still displays a linear 

increase, indicating a trend in ALD over the landscape. Finally, the Sentinel-2 model only captures 

the thaw pond, yet again showing an increased range, a linear trend, and a large nugget-to-partial 

sill ratio, suggesting a weak spatial structure. The variogram for (A) and (B) exhibit a pure nugget 

effect (a straight horizontal line) without spatial structure. For Teller (figure 1.8), variogram output 

from the UAS model shows a strong, short-ranged spatial autocorrelation pattern that is observed 

for both landforms related to shrubs, while the water tracks variogram tends to reach a sill twice, 

indicating a potential anisotropic pattern. The AVIRIS-NG model reveals a long-range spatial 

dependency for water tracks while showing weak to no spatial dependency for both other 

landforms. Sentinel-2 model output captured a weak spatial autocorrelation characterized by a 

large nugget-to-partial sill ratio for the water tracks, a pure nugget effect for shrub encroachment, 

and a linear trend for the gully suggesting a trend over the modeled landscape. 
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Figure 1.8: Multi-platform variogram analysis of the ALD model output from the Mile 80 (left) and Teller site 

(right). Comparison between RS platforms from top to bottom: UAS (0.4 m), AVIRIS-NG (5.1 m), Sentinel 2 

(10 m) and different landforms. The landforms for Mile 80 are tussock tundra, polygon tundra, and thaw 

lake; and for Teller a gully with shrubs, water tracks, and shrub encroachment. The variogram graphically 

depicts the spatial structure within the model output. A typical variogram has an increasing spherical shape, 

reflecting the increased variation or dissimilarity in the data until it reaches the range. Beyond the range, no 

correlation is observed. Variogram models showing a linear increase indicate a trend over the modeled 

landscape and variogram models represented by a straight line signify no spatial structure and are referred 

to as exhibiting a pure nugget effect. 
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We performed a wavelet analysis to study Mile 80 in more detail. The dominant frequencies 

identified along the UAS transect covering Mile 80 (figure 1.9) manifest with peak powers in the 

frequency bands centered around 8, 24, and 64, corresponding to real-world periods of 

approximately 3.2 m, 9.6 m, and 25.6 m, respectively. Analyzing the spatial variation within the 

transect reveals a distinct pattern: a strong signal with a period of 8 is most prominent in the initial 

quarter of the plot, while the signal with period 24 dominates the second quarter. The largest 

period dominates around the center of the transect. Translated to the context of tundra landforms, 

the shorter periods align with the Tussock tundra vegetation patterns (figure 1.9a), the 

intermediate period correlates with the characteristic polygon tundra (figure 1.9b), and the largest 

period of around 25.6 m aligns with the presence of the thaw pond situated in the middle of the 

transect (figure 1.9c). Comparing the observed patterns within the AVIRIS-NG and Sentinel-based 

transect indicates a consistent pattern. Although the fine-scale patterns associated with tussock 

tundra and polygon tundra are absent, large-scale patterns were observed at the center of the 

transect, aligning with the thaw pond. 



26  

 
Figure 1.9: Wavelet analysis of the different platforms and landforms of Mile 80. To quantify the dominant 

scale for different landscape features with distinct micro-topographic characteristics and spatial pattern(s) 

we selected a subset of the Mile 80 study site covered with: A) Tussock tundra, B) Ice-wedge polygons, and 

C) Thaw pond. The transect used for the wavelet analyses covers first (A) tussock tundra, and second (B) 

polygon tundra with (C) a drained thaw lake followed by a mixture of tussock tundra with degraded polygon 

tundra for the rest of the transect. The wavelet spectrum (left), with the distance along the transect on the 

X-axis and the scale on the Y-axis, visualizes the significant patterns by scale along the transect. Power ranges 

from purple (low) to red (high), and the 5% significance level is delineated by white lines. 

 

1.4.3.3. Multi-platform Based ALD Modeling Across Grid Sizes and Spectral Resolutions. To 

investigate the influence of spectral resolution on the ALD modeling, we compared outputs from 

the upscaled UAS-based model with those derived from the AVIRIS-NG and Sentinel-2 datasets, 
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respectively (figure 10). Visually, the spatial structure of Teller seems preserved in all model 

outputs and looking at the correlation the AVIRIS-NG and Sentinel-2 based (R2 0.76 and 0.77) 

models both outperformed the upscaled UAS imagery at an identical resolution (R2 0.64 and 0.70) 

indicating the added value of the spectral information in AVIRIS-NG (an increase of 0.12) and the 

NIR band of sentinel (an increase of 0.06). A similar but stronger pattern is visible for mile 80. 

Increase of R2 by 0.18% for the AVIRIS-NG-based model compared to the upscaled UAS and 0.21% 

for the Sentinel-based model.  

 
Figure 1.10: Effect of spectral resolution on the multi-platform model results from the Teller site (left) and 

Mile 80 (right). A detail of the ALD model results are presented from left to right: 0.4 m, RGB and ALD), 

AVIRIS-NG (5.1 m), and Sentinel-2 (10 m).  

 

Table 1.1: Correlation coefficient between ALD field measurements and modeling output.  

Correlation UAS (5m) AVIRIS-NG UAS (10m) Sentinel 2 

Teller 0.64 0.76 0.70 0.77 

Mile 80 0.44 0.62 0.34 0.55 
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1.5. Discussion and Conclusion 
 

We evaluated the ALD model outcomes for a large range of spatial scales across different tundra 

landscapes on the Seward Peninsula, AK. We compared 3 commonly used sensor platforms, each with 

their specific spectral and spatial resolutions: UAS, AVIRIS-NG, and Sentinel-2. As base layers, we 

upscaled the high-resolution 0.4 m UAS imagery to match the 5.1 m AVIRIS-NG and 10 m Sentinel-2 

Imagery. 

Tundra landscapes are characterized by a high environmental complexity that results from vegetation 

permafrost interactions and landscape dynamics, all influenced by external drivers such as weather 

patterns and the changing climate. Environmental heterogeneity is also recognized as the key driver of 

species richness, but such relationships are strongly affected by the spatial scale of analysis (Stein, 

Gerstner, and Kreft 2014). The link between vegetation community attributes and permafrost condition 

(Standen and Baltzer 2021) makes effectively capturing this heterogeneity crucial for the accurate 

modeling of ALD. Detecting the extremes in ALD, particularly in ice-rich tundra where a sudden increase 

in thaw depth can trigger catastrophic thaw, can dramatically alter the landscape.  

Our study, based on upscaled UAS imagery, revealed that an optimal characterization of the tundra 

landscape largely depends on the spatial heterogeneity and size of the landscape features. A key factor 

in modeling the ALD of the tundra landscape involved considering the scale of common tundra 

vegetation, permafrost, and disturbance features. The identification of the Optimum Feature Scale 

(OFS) via a multi-scale modeling approach allowed us to detect the scale at which the RF model excels 

in capturing the ALD variability across the landscape. The spatial scales aligned with the observed 

landscape heterogeneity outperformed the other scales. To achieve high-precision modeling results, 

the observations must match the permafrost and/or ecological feature scale, and pixel size used by the 

RS products. On the other hand, although high-resolution model results demonstrated excellence in 

some cases (e.g. at the Mile 80 site), medium-resolution models covering larger landscape features 

https://paperpile.com/c/aSTMDV/Si2Cy
https://paperpile.com/c/aSTMDV/Si2Cy
https://paperpile.com/c/aSTMDV/F6Gm3
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outperformed them for the Teller site. This underscores how a stratified approach might be required to 

optimize the modeling of the tundra landscape. The medium-resolution model, using AVIRIS-NG, also 

benefits from the added value of the high spectral resolution to improve the medium-resolution model 

outcomes.   

Our findings indicate that low-resolution predictions show less contrast compared to high-resolution 

predictions (Thompson, Bell, and Butler 2001), but medium-resolution models are good predictors of 

average thaw depth even at a site with high heterogeneity. And while average thaw depth predictions 

have proved valuable, when studying the resilience and future trajectories of the ABR it is important to 

observe local (disturbance) features at the matching scale. For example, the small-scale (micro-

)topography and vegetation patterns observed in polygon tundra, present in the landscape at mile 80, 

have similar underlying ALD patterns driven by the presence of ground ice wedges. Disturbances 

associated with ice wedges characterize the different polygon tundra disturbance stages. Observations 

from mile 80 for the polygon tundra landscape demonstrate ALD patterns with above- and below-

surface spatial variability as described by (Siewert et al. 2021). Increased disturbances caused by the 

drained thaw lake changed the local and regional hydrology, where water tracks may have contributed 

to the thaw lake drainage (Trochim et al. 2016). The increased water drainage deepened the troughs, 

leading to dryer and wider troughs by removing the insulation moss cover above the ice wedges.  

By analyzing this landscape at high resolution, we conclude that the increased drainage could drive 

tundra landscapes to shift back to aerobic respiration resulting in a greater proportion of CO2 compared 

to the higher CH4 emissions expected under wetter conditions (Lawrence et al. 2015), reducing the 

global warming potential of the emissions from 25 for CH4 versus 1 for CO2 over a 100-year time period. 

Additional research is needed to confirm these dynamics at our study sites. It is also important to 

highlight that these polygon tundra dynamics are observed using high-resolution UAS imagery, but could 

not be observed using medium- to large-scale observations from AVIRIS-NG and Sentinel-2.  This scale 

https://paperpile.com/c/aSTMDV/NJ2zn
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dependency of ecosystem properties emphasizes the necessity of incorporating spatial structure and 

fine-scale heterogeneity into modeling efforts (Graham et al. 2019; Atkins et al. 2023). However, 

observing the landscape across different scales not only makes it possible to observe the different 

drivers but also enables a comprehensive understanding of the dynamics and the impact of climate 

change and disturbance on these ecological drivers.  

Our findings contribute significantly to a better understanding of the landscape dynamics controlling 

tundra ecosystem processes, with insights into the permafrost carbon feedback. The multiscale analysis 

here has implications for improved monitoring and could advance our ability to address the complexities 

of the tundra ecosystem more effectively. The identification of dominant tundra landscape features, 

coupled with the exploration of the spatial variation of these features, can drive different models for 

the representation of ALD, key outstanding needs in terrestrial biosphere models (Fisher et al. 2018; 

Huntzinger et al. 2020). 

In summary, pixel size or spatial resolution is a critical factor in determining the level of discretization 

associated with different spatial observation scales. Although increased spectral resolution can improve 

model results, the observed spatial variation in the landscape must match the environmental covariates, 

with matching spatial patterns for above- and below-ground properties. Achieving this congruence 

between observation and process modeled is essential for accurate model predictions. This extends to 

the distribution of extreme thaw across the landscape. Emphasizing the strengths of an RS modeling 

approach while understanding the limitations of the different RS platforms is essential for enhancing 

current and future monitoring strategies. This knowledge will contribute to our understanding of the 

impact of climate change on the tundra ecosystem and assessing ecosystem health and resilience will 

be possible by linking thaw depth frequencies, indicative of disruptions in ecosystem health or 

decreasing resilience in the face of global warming. Continuous monitoring of these indicators over time 

could help assess tundra ecosystem stability and resilience in the changing world. 

https://paperpile.com/c/aSTMDV/IQNeH+x1g9E
https://paperpile.com/c/aSTMDV/fX2P+TtDz
https://paperpile.com/c/aSTMDV/fX2P+TtDz


31  

CHAPTER 2 

 THAWTRENDR: A SPACEBORNE DISTURBANCE HISTORY PRODUCT 

 

Disturbance events and associated ecosystem changes in the Arctic-Boreal Region (ABR) of North 

America have the potential to unlock a substantial amount of the large soil organic carbon (SOC) stock 

by thawing and making it available for decomposition. This permafrost carbon feedback (PCF) could 

significantly influence global-scale climate dynamics and urgently needs an improved representation in 

state-of-the-art climate models. The current and rapid warming of the ABR is causing increased and 

intensified disturbance impacts, but quantifying the rate of change across the landscape is challenging, 

primarily due to a lack of observations. There is a need to develop and test methods for quantifying the 

detailed landscape aspects of changes in disturbance regimes and thus make it possible to study the post-

disturbance thaw and recovery of ABR ecosystems. 

In this study, we have generated an annual 30 m spatial resolution disturbance map product through a 

comprehensive time-series analysis of the historical Landsat satellite record using the LandTrendr 

algorithm. Our focus was to analyze the disturbance trends for North Alaska, with particular emphasis on 

the different susceptible thermokarst landscapes. We differentiated between wetland, lake, and hillslope 

thermokarst landforms to capture the spatial variation in disturbance intensity and trends across these 

landscapes. To enhance disturbance detection of the LandTrendr algorithm to detect disturbances, we 

combined model outputs from different spectral indices to create an ensemble of disturbance layers. An 

RF model used the difference between disturbance datasets as covariates to classify detected 

disturbances into disturbance classes.  

We observed large differences in model outcomes between indices. This underscores the importance of 

selecting appropriate indices and using a model ensemble to detect disturbances effectively. 

Interestingly, we found that the highest thermokarst risk classes for lake, hillslope, and wetland are less 
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affected by wildfires. This suggests that high-risk thermokarst areas are low-risk fire areas, (currently) not 

prone to fire disturbance that could trigger permafrost thaw and thermokarst disturbances. 

Our disturbance dataset enables further investigation into the impact of disturbance history on current 

vegetation and the effect of disturbance intensity on the landscape, categorized by disturbance type. 

Quantifying disturbance trends and assessing the associated permafrost vulnerability is crucial for 

understanding and projecting global carbon cycle dynamics. The potential shift of the ABR from a carbon 

sink to a carbon source under a future warming climate underscores the urgency and significance of our 

research, which contributes to understanding the interactions among disturbances, permafrost, and the 

broader climate system. 

 
2.1. Introduction 

 
The Arctic Boreal Region (ABR) of northwestern North America is characterized by its cold climate and 

poorly drained soils,  which facilitate the extensive accumulation of organic matter in perennially frozen 

ground or permafrost. Over the past millennia, the ABR has accumulated substantial carbon stocks in its 

ecosystems. For example, the northern circumpolar permafrost zone stores up to 1,600 Pg C - 

approximately one-third to one-half of the global terrestrial C storage (Bradshaw and Warkentin 2015; 

McGuire et al. 2009; Pan et al. 2011). Currently, the ABR is undergoing rapid, widespread, and 

unprecedented transformation marked by physical and biological changes initiated in recent decades 

(French 2011, Frost et al. 2018, Jorgenson et al. 2006, Lara et al. 2016, Myers-Smith et al. 2015, Myneni 

et al 1997). While global climate change is evident, the high northern latitudes have experienced a 

temperature rise twice that of the global average (AMAP 2017, Chapman and Walsh 2007, Hinzman et al 

2005, IPCC 2014, McGuire et al 2006, Serreze and Barry 2011). This accelerated climate warming 

increases the frequency and intensity of disturbances and associated ecosystem changes in the ABR, 

potentially unlocking and releasing to the atmosphere a substantial amount of carbon currently stored 

in the permafrost soils (Tarnocai et al. 2009; Hugelius et al. 2014 & 2020; Hayes et al. 2014). The increased 

https://paperpile.com/c/e2MXWp/HFwJn+JkCkf+BQ2Db
https://paperpile.com/c/e2MXWp/HFwJn+JkCkf+BQ2Db
https://paperpile.com/c/e2MXWp/XvAy+DsLy+JX75+sGKQ
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vulnerability to thaw and decomposition may lead to an increased release of C into the atmosphere 

(Schädel et al. 2014; Schuur and Abbott 2011; O’Donnell et al. 2012), driving the so-called ‘permafrost 

carbon feedback’ (Schuur et al. 2015), thereby further accelerating global warming. In contrast, the 

potential increase in C uptake by tundra and boreal forest vegetation under similar climate conditions is 

projected to be smaller than the permafrost C emissions (McGuire et al. 2018; Abbott et al. 2015). For 

example, considering the current warming trajectory for the ABR, it is estimated that 5% to 15% of the 

soil organic carbon (SOC) pool could become vulnerable to decomposition and potentially released into 

the atmosphere by the year 2100. Notably, this projection only considers the gradual thawing of 

permafrost (Schuur et al. 2015; Hugelius et al. 2014 & 2020), and adding the land area vulnerable to 

abrupt thaw processes (Olefeldt et al. 2016) is likely to accelerate the release of SOC across the 

permafrost region (Turetsky et al. 2019 & 2020; Nitzbon et al. 2020). 

Press disturbances, like climate warming, cause a gradual yet widespread top-down degradation of 

permafrost by increasing the active layer thickness (ALT) The resulting increased rooting depth and 

decomposition rate will release nutrients thereby slowly altering the environmental conditions and the 

associated vegetation communities (Salmon et al. 2016; Blume-Werry et al. 2019; Wang et al. 2017). In 

contrast, thermokarst is categorized as a pulse disturbance, where the thawing of ice-rich permafrost 

leads to rapid and significant subsidence of a part of the landscape, resulting in pronounced shifts in 

hydrological patterns (Turetsky et al. 2019; in ’t Zandt, Liebner, and Welte 2020; Schuur et al. 2015; 

Osterkamp et al. 2009). Pulse disturbances have the potential to push an ecosystem beyond its resilience 

thresholds, making recovery to the previous state unlikely, and triggering ecosystem changes (Grosse et 

al. 2011; Scheffer et al. 2001 & 2009). These ecosystem changes could be catastrophic and result in a 

substantial release of large amounts of C (Turetsky et al. 2019 & 2020). Other disturbances linked to 

global warming are causing more extreme weather events (e.g., heat waves, rain storms, drought, pests) 

and increased fire frequency and intensity of wildfires.  

https://paperpile.com/c/e2MXWp/NARd+H6pW+e6N0
https://paperpile.com/c/e2MXWp/Wfuv
https://paperpile.com/c/e2MXWp/9gPL+QKcA
https://paperpile.com/c/e2MXWp/Wfuv+DsLy+JX75
https://paperpile.com/c/e2MXWp/aWuB
https://paperpile.com/c/e2MXWp/HPJe+Fa7Iv+GtLL
https://paperpile.com/c/e2MXWp/TU5m+3YaY+VCB7
https://paperpile.com/c/e2MXWp/HPJe+gj4m+Wfuv+Nkto
https://paperpile.com/c/e2MXWp/HPJe+gj4m+Wfuv+Nkto
https://paperpile.com/c/e2MXWp/AYKh+EPurj+XjBS
https://paperpile.com/c/e2MXWp/AYKh+EPurj+XjBS
https://paperpile.com/c/e2MXWp/HPJe+Fa7Iv
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Arctic tundra and boreal forests are particularly sensitive to climate variability, and the exhibition of an 

amplified response to external disturbances can indicate the ecosystem's proximity to a critical threshold 

or transition (Seddon et al. 2016; Scheffer et al. 2009). Warming is pushing landscapes over their tipping 

point and accelerating disturbance regimes, for example, the larger area covered by higher-intensity fires 

as shown by Rocha et al. (2012). The interplay of these events could eventually shift the trajectory of ABR 

ecosystems by triggering permafrost thaw and vegetation changes (Walker et al. 2019; Genet et al. 2013; 

Li et al. 2021).  

A profound understanding of these disturbance dynamics is key to accurately predicting the magnitude 

- and even direction - of the carbon-climate feedback in the future. To determine the future trajectory of 

the ABR, we need to address the extent of the permafrost in the region that is currently resilient to 

transition or vulnerable to near-term thaw induced by climate change. Our approach involves a 

comprehensive analysis of the Landsat satellite record for trends in disturbances over the recent decades. 

By characterizing landscape resilience from these observed patterns, we aim to map the vulnerability of 

permafrost in the upcoming decades. Observing permafrost disturbance in the ABR is challenging due to 

the spatiotemporal variability and complex interactions between vegetation cover and permafrost 

(McGuire et al. 2002), compounded by the variable ground ice content, creating a large heterogeneity 

across landscapes and regions. We build on the decades-long Landsat archive available on Google Earth 

Engine (GEE) (Gorelick et al. 2017; Kennedy et al. 2018) and by integrating disturbance-targeted 

observations, we aim to unravel the resilience of permafrost landscapes. Thaw features can be observed 

by satellites (INitze et al. 2018; Beamish et al. 2020), but by mining the entire Landsat archive to find and 

characterize disturbance events we can quantify the different aspects of disturbances across the ABR. 

The outcomes of our study make it possible to study post-disturbance thaw and recovery by creating a 

spaceborne disturbance product for the permafrost region of the Seward Peninsula, Alaska. 

 

https://paperpile.com/c/e2MXWp/LAxE1
https://paperpile.com/c/e2MXWp/EPurj
https://paperpile.com/c/e2MXWp/8apVx
https://paperpile.com/c/e2MXWp/5TGPg+r2FQb+o6ldu
https://paperpile.com/c/e2MXWp/5TGPg+r2FQb+o6ldu
https://paperpile.com/c/e2MXWp/mIamf
https://paperpile.com/c/e2MXWp/GKcZ4+lSij9
https://paperpile.com/c/e2MXWp/ys0B+D0ckq
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2.2. Methods 
 

2.2.1. Spaceborne Disturbance Detection 
 

As a case study for the circumpolar Arctic region our analysis covers the North of the state of Alaska, 

including the Seward Peninsula, which hosts the Next-Generation Ecosystem Experiments Arctic (NGEE-

Arctic) project (https://ngee-arctic.ornl.gov/) collecting high-resolution datasets (Yang et al. 2021, 2023) 

and the ABOVE (https://above.nasa.gov/) AVIRIS-NG fight campaign (Miller et al. 2018) allowing for 

future data integration.  

The effects of climate change are pushing landscapes over their tipping point and accelerating 

disturbance regimes with a significant effect on the ABR. To map and monitor these changes, remote 

sensing techniques have emerged as a crucial tool with a proven track record. Pulse disturbances have 

been mapped and described using remote sensing (Jones et al. 2011), and long-term RS records have 

facilitated the study of trends in vegetation properties associated with press disturbances (Beck and 

Goetz 2011). Recent studies have successfully demonstrated the approach for detecting and classifying 

various ABR landscape changes (Olthof and Fraser 2014; I. Nitze et al. 2018; Ingmar Nitze et al. 2017, 

2021). Advances in access to satellite imagery, e.g. free access to the Landsat archive since 2008, 

combined with a massive increase in the availability of cloud-based storage and processing, have created 

novel opportunities for image processing and change detection. For example, the combined integration 

of the Landsat archive and time-series segmentation algorithms like LandTrendr (Landsat-based 

detection of Trends in Disturbance and Recovery) (Kennedy, Yang, and Cohen 2010) and CCDC 

(Continuous Change Detection and Classification) (Zhu and Woodcock 2014) are now available and 

implemented on Google Earth Engine (GEE) (Kennedy et al. 2018; Gorelick et al. 2017; Arévalo et al. 

2020).  

The disturbances detected depend on the algorithm, spectral index, and the point density of the time 

series observations (Pasquarella et al. 2022).  Each segmentation algorithm has specific input 

https://ngee-arctic.ornl.gov/
/Users/wout_r/Documents/THESIS/(Yang%20et%20al.%202021,%202023)
https://above.nasa.gov/
https://paperpile.com/c/e2MXWp/lRFyJ
https://paperpile.com/c/e2MXWp/10I7n
https://paperpile.com/c/e2MXWp/2JJAl
https://paperpile.com/c/e2MXWp/2JJAl
https://paperpile.com/c/e2MXWp/UDlG+ys0B+nqfS+RS6b
https://paperpile.com/c/e2MXWp/UDlG+ys0B+nqfS+RS6b
https://paperpile.com/c/e2MXWp/OJyis
https://paperpile.com/c/e2MXWp/5hQG
https://paperpile.com/c/e2MXWp/lSij9+GKcZ4+l9LY
https://paperpile.com/c/e2MXWp/lSij9+GKcZ4+l9LY
https://paperpile.com/c/e2MXWp/TGNY
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requirements, for example, CCDC captures and models the phenological variation and deviation over 

time and is effective in regions with long growing seasons and/or strong phenological variation. The 

unique challenges of the ABR such as the short growing season, influence of residual snow, and frequent 

cloud cover limit the ability of these phenological-driven approaches. The LandTrendr change detection 

and segmentation method is based on a yearly composite (Kennedy, Yang, and Cohen 2010), and the 

integration of LandTrendr with GEE has been demonstrated for specific ABR disturbances by detecting 

retrogressive thaw slumps (Runge, Nitze, and Grosse 2022). Next to arctic-specific factors, like the short 

growing season, using the Landsat archive over Alaska adds complexity to creating pixel-based time 

series.  First, there is limited data coverage over Alaska within the Landsat archive from 1984 to 2005 (Ju 

and Masek 2016) due to data relay issues in combination with limited tasking and Landsat-7 was affected 

by the scan line corrector failure since 2003 (Goward et al. 2006). 

To address these challenges, our approach leverages the extensive processing and storage capabilities of 

GEE to implement the LandTrendr algorithm across a range of spectral indices calculated from the 

Landsat archive (Table 1). The time series data were extracted from maximum pixel values collected 

during the peak summer season, spanning from July 5 to August 25, corresponding with peak vegetation. 

This process creates an ensemble of yearly observations from 1986. Disturbances in the ABR occur at 

different scales and are driven by various processes, triggering different disturbance trajectories. We 

leverage this variability by using different band indices, relating to different processes, as input for 

LandTrendr, creating an ensemble of disturbance patterns in the results. Using an ensemble of different 

metrics has improved disturbance detection performance (Cohen et al. 2018; Hislop et al. 2019; Healey 

et al. 2018). This allows for the creation of an ensemble of disturbance maps from 1986 to 2020, including 

the disturbance's year, intensity, recovery, and duration. The ensemble will facilitate the study of trends 

of disturbances over a large region. 

 

https://paperpile.com/c/e2MXWp/OJyis
https://paperpile.com/c/e2MXWp/j1Qpr
https://paperpile.com/c/e2MXWp/jLvD
https://paperpile.com/c/e2MXWp/jLvD
https://paperpile.com/c/e2MXWp/ycVM
https://paperpile.com/c/e2MXWp/ziYl+gOI5+kAEg
https://paperpile.com/c/e2MXWp/ziYl+gOI5+kAEg
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Table 2.1: Landsat-based indices used for disturbance detection. The Tasseled Cap indices are Brightness (TCB), 

Greenness (TCG), Wetness (TCW), and Angle (TCA).  

Indices Calculation (Landsat) 

NDVI (NIR − Red) / (NIR + Red) 

NDWI (Green - NIR) / (Green + NIR) 

NBR (NIR − SWIR2) / (NIR + SWIR2) 

TCB 0.2043 ∗ Blue + 0.4158 ∗ Green + 0.5524 ∗ Red + 0.5741 ∗ NIR + 0.3124 ∗ SWIR1 + 0.2303 

∗ SWIR2 

TCG − 0.1603 ∗ Blue + − 0.2819 ∗ Green + − 0.4934 ∗ Red + 0.7940 ∗ NIR + − 0.0002 ∗ SWIR1 + 

− 0.1446 ∗ SWIR2 

TCW 0.0315 ∗ Blue + 0.2021 ∗ Green + 0.3102 ∗ Red + 0.1594 ∗ NIR + − 0.6806 ∗ SWIR1 + − 
0.6109 ∗ SWIR2 

TCA Arctan (TCG/TCB) 

 

2.2.2. Spatial and Temporal Disturbance Patterns 
 

The spatiotemporal disturbance patterns are analyzed based on landscape characteristics and 

synthesized within the thermokarst vulnerability zones as delineated by Olefeldt et al. (2016). Initially 

established to asses thermokarst risk in lake, wetland, and hillslope environments, these zones serve here 

as a framework for characterizing the landscape based on: (a) Permafrost distribution and ground ice 

content: The ice content of the permafrost drives vegetation changes, for example, abrupt thaw drives a 

change from woody vegetation to graminoid cover in ice-rich lowlands, whereas in ice-poor uplands the 

woody vegetation increases, see Heijmans et al. (2022) for a detailed review; (b)Topography; (c) 

Sedimentary overburden; and (d) Histel coverage. We expect these zonation to be valuable for analyzing 

not only thermokarst trends, but also the patterns of wildfire, and other disturbances. The original 

classification by Olefeldt et al. (2016) includes three classes based on lake, wetland, and hillslope 

thermokarst types, each subdivided into low, moderate, high, and very high categories of vulnerability. 

This allows the creation of an ensemble of disturbance trends over time by thermokarst class. To compare 

the rate of change by disturbance class, simple linear models with a fixed intercept (we start with the 

https://paperpile.com/c/e2MXWp/aWuB
https://paperpile.com/c/e2MXWp/UXVO
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hypothetical detected disturbance = 0) were fitted on the cumulative yearly observed disturbance. 

Disturbance vulnerability class was added as an interaction term to compare intercept differences. For 

this we used least-square means, to obtain the slopes for each risk intensity class. All analyses were 

performed in RStudio (R version 4.3.2, using the packages nlme and ARest ).  

2.2.3. Disturbance Classification 
 

The disturbance history allows tracking changes over time and showing the temporal evolution of the 

disturbance probability. Here, we also aim to characterize the disturbance type. To classify the 

disturbance dataset, we developed a classification based on the key indices identified for disturbance 

detection. The LandTrendr output for each selected indices, excluding the year of disturbance, is used as 

a covariate in a disturbance-type classification model. The year of disturbance is attached to the classified 

disturbance dataset, creating a yearly, classified spatial disturbance layer from 1986 to 2020, allowing for 

a spatiotemporal trend analysis by disturbance type. To address the limited field observations due to the 

demanding conditions to collect additional field data in the ABR, we synthesize existing datasets e.g. 

(Swanson 2021; I. Nitze et al. 2018; Pekel et al. 2016; Hansen et al. 2013). Disturbance classes are 

averaged into broader categories and training data is extracted using equal sampling across classes in 

GEE. We use a 70/30 split for training and validation datasets. Among the two GEE classifiers, 

ee.Classifier.smileCart() and ee.Classifier.smileRandomForest(), RandomForest allows better tuning of 

the classes by using the class probability output and was used for the final classification. 

 

2.3. Results 
2.3.1. Disturbance Detection 

 
The detection of pulse disturbances using various indices with the LandTrendr algorithm resulted in 

different trajectories and detection probabilities (Figure 2.1). These variations and differences among 

indices facilitated the creation of an ensemble dataset that integrates the diverse disturbance trends 

detected by each index. 

https://paperpile.com/c/e2MXWp/sfJXg+ys0B+OfvX+Jfyh
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Figure 2.1. Differences in disturbance detection by LandTrender based on the used Landsat derived indices. 

 

There is a large variation in the detected disturbed area depending on the index applied by LandTrendr. 

Figure 2.2 summarizes the disturbance layers from the different indices over northern Alaska from 1986 

to 2020, revealing that on average 1.15% (sd 1.26) of northern Alaska was disturbed. The disturbance 

percentages observed by the different indices range from 0.00% up to 3.82%, with a median of 0.85% 

slightly lower than the mean. Comparing the influence of the indices used in the LandTrendr model, the 

most disturbed areas were detected by TCA lag (3.5%), NBR lag (2.6%), TCG lag (2.3%), TCW lag (1.1%), 

TCA gain (1.2%), and TCG gain (1.1%). 
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Figure 2.2. Spider chart represents the percentage of north Alaska affected by disturbances detected by 

LandTrendr for the different indices, from 1986 till 2020. The boxplot on the right shows the variation around the 

median.  

 

2.3.2. Spatial Disturbance Patterns 
 

Furthermore, the observed differences between indices can be specific to certain disturbance classes. 

Figure 3 summarizes the disturbance layers over northern Alaska from 1986 to 2020, categorized by 

thermokarst risk type and risk gradation. The detection patterns observed are similar to those of the 

averaged disturbance ensemble, with higher disturbance percentages registered for NBR and the three 

TC indices.  

Within the thermokarst category, the average disturbance values are similar: 

• Hillslope thermokarst zones: 1.2%,  

• Wetland thermokarst zones: 1.1%,  

• Lake thermokarst zones: 0.9%. 

Statistically, no significant differences were observed using a one-way ANOVA test  (p = 0.61 > 0.05) to 

test for differences between the group averages. However, larger differences were observed when 

averaged by risk category: 

• Low-risk categories: 1.6%, 
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• Moderate risk: 1.1%, 

• High risk: 0.9%, 

• Very high risk: 0.6%.  

A one-way ANOVA test (p = 0.036 < 0.05) followed by Tukey’s Honest Significant Difference (HSD) method 

was used to detect differences between group means. A significant difference was observed between 

the very high-risk and low risk thermokarst groups (p adj 0.03 < 0.05). 

 
Figure 2.3. Spider charts showing the disturbance rate by thermokarst risk and indices used, from 1990 till 2023, 

and summarized by thermokarst risk area:  A. Thermokarst lake, B. Thermokarst wetland, and C. Thermokarst 

hillslope.  
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Comparing the thaw risk for each thermokarst type, significant differences between the mean thaw 

risks were observed only for the lake thermokarst risk zone ( p = 0.039 < 0.05) using one-sided ANOVA. 

However, these differences were not significantly confirmed by Tukey’s HSD test. 

Examining the different risk zones, it was found that the very high and moderate high lake,  high 

hillslope, and very high, high, and moderate wetland thermokarst risk zones correlate with relatively 

low disturbance percentages. Conversely, the low-risk zones exhibit the highest disturbance percentage 

for lake, wetland, and hillslope thermokarst. 

Specifically, low-risk thermokarst zones show high observed disturbance percentages as detected by 

NBR and TCA indices. In contrast, high-risk thermokarst zones display low disturbance percentages on 

the NBR and TCA disturbance indices and relatively high on the other tasseled cap disturbance indices. 

This pattern indicates a relationship between the importance of the index and the expected disturbance 

for Lake, Wetland, and hillslope disturbance types. 
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2.3.3. Spatio-Temporal Patterns of Disturbance 
 

 

Figure 2.4. Spatio-temporal disturbance patterns were analyzed for the hillslope, lake, and thermokarst risk 

polygons. The analysis includes the yearly disturbed area and the cumulative increase in disturbed area over time 

from 1986 to 2020. The disturbance patterns were examined for moderate-, high-, and low-risk thermokarst 

hillslope zones, as well as for moderate-, high-, very high-, and low-risk zones for lake and wetland thermokarst.  

 

Figure 2.4 illustrates the occurrence of peak disturbances, notably clustered around the years 2005 and 

2016. There is no observed shift in disturbance between thermokarst categories; however, there is an 
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intensity peak specifically for wetland thermokarst disturbance. The accumulated disturbances over 

time, observed in Figure 2.4, exhibit a distinct pattern across different thermokarst and risk classes. 

Disturbance accumulation remained stable until a steep increase was observed during the years 2000 - 

2005. These peak disturbances account for the initial steep rise, yet an upward trend in disturbances 

continued even after this period. Large peak disturbances correlate with a steeper increase in the overall 

disturbance trend, indicating significant impact evens followed by sustained disturbance activity.  

 

Table 2.2: Testing slope coefficients of accumulated disturbance trends. 

 
Lake Wetland Hillslope 

Low - Moderate p < 0.01 p < 0.01 
 

Low - High 
 

p < 0.01 p < 0.01 

Low - Very high p < 0.01 p < 0.01 / 

Moderate - High p < 0.01 p < 0.01 p < 0.01 

Moderate - Very high p < 0.01 p < 0.01 / 

 

2.3.4. Disturbance Trends By Class 
 

Based on the observed differences between indices (Figure 2.1) disturbance datasets were used as 

covariates in an RF model to classify detected disturbances into specific disturbance classes. First, we 

identified the key indices (Figure 2.3) for further disturbance detection: TCW l&g, TCG l&g, TCA l&g, and 

NDVIl & NBRl. Training data was split 70/30 for training and validation. The overall validation (Table 2.3) 

accuracy was 86% for the fire class, 63% for drained lakes, and 67% for wetlands. Figure 2.5 provides a 

detailed depiction of detected drained lakes on the Seward peninsula. Additionally, we included two 

Non-Disturbance (ND) classes in the classification to account for false positive disturbance detections 

related to water bodies.  
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Table 2.3: Confusion matrix based on independent validation data. 

% Fire Drained ND1 Wetland ND2 
 

Fire 87.7 5.3 3.5 0.0 3.5 87.7 

Drained 1.6 63.9 16.4 4.9 13.1 63.9 

ND1 3.3 15.0 36.7 30.0 15.0 36.7 

Wetland 1.6 6.6 13.1 75.4 3.3 75.4 

ND2 6.0 10.4 16.4 3.0 64.2 64.2 

 
86.2 62.9 41.5 66.7 67.2 65.4 

 

 
Figure 2.5. Detailed representation of the disturbance dataset, focusing on fire disturbances (yellow) and drained 

lakes (green). 

 

In the final step, we assign the classified disturbance layer with the year of disturbance from the original 

LandTrendr output. Figure 2.6 illustrates the total accumulated disturbed area categorized by fire, 

drained lakes, and wetlands disturbance for thermokarst hillslope, wetland, and lake thermokarst risk 

polygons. Fire disturbance accounts for the largest proportion of the disturbed area. In contrast, lake 

and wetland disturbances are significantly smaller in scale (Figure 2.6 - right column), and exhibit distinct 

disturbance patterns, compared to fire disturbances, with peak occurrences around 1992 and after 
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2000. This pattern was not previously detected, as fire disturbances dominate the overall observed 

disturbance pattern over time (Figure 2.4). 

 
Figure 2.6: Spatio-temporal disturbance patterns categorized by disturbance type for the hillslope, lake, and 

thermokarst risk polygons. The analysis includes the cumulative increase in disturbed area over time, spanning 

from 1986 to 2020, for fire, drained lakes, and wetland disturbance. The disturbance patterns were examined 

across risk zones: very high-, high-, moderate- and low-risk thermokarst classes wetland, lake, and hillslope 

thermokarst. 
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2.4. Discussion and Conclusion 
 

We tailored the LandTrendr algorithm to address the specific disturbances observed in the ABR, which 

are diverse and highly variable, each triggering different spectral responses. Traditionally, the 

LandTrendr algorithm runs on a single vegetation or spectral index. By comparing the outcomes of 

LandTrendr across different spectral or vegetation indices, we observed large differences in disturbance 

detention. This variability has also been noted in forested areas (Cohen et al. 2018), highlighting the 

importance of an ensemble approach. 

To enhance disturbance detection, we combined model outputs from different spectral indices to create 

an ensemble of disturbance layers. This enabled us to map yearly disturbances from 1986 to 2020. 

Combining ensemble layers offers several benefits, including increased robustness and accuracy by 

leveraging the strengths of multiple models. Various post-processing techniques have been proposed, 

primarily for forest disturbance detection. For instance, (Healey et al. 2018) used a stacked 

generalization approach based on multiple detection algorithms using RF, incorporating pre-and post-

disturbance data. Adding various pre-and post-disturbance indices as covariates to our RF model could 

be beneficial and potentially lead to improved detection accuracy.  

To identify differences in disturbance pressure between landscapes with varying characteristics, we 

differentiated between risk classes associated with wetland, lake, and hillslope thermokarst landforms 

as defined by (Olefeldt et al. 2016). Our analysis revealed spatial variation in disturbance intensity and 

trends across these landscapes, indicating specific disturbance patterns for different thermokarst 

landscapes. High-risk thermokarst zones across all classes (lake, hillslope, and wetland) exhibited the 

lowest observed disturbance pressure. This raised the question: Are disturbances in these areas either 

not detected or the ‘expected’ disturbances have not yet been activated? Time segmentation 

disturbance algorithms, like LandTrendr, are developed for detecting pulse disturbances, while 

thermokarst disturbances can be initiated as a press disturbance before triggering a pulse disturbance 

https://paperpile.com/c/e2MXWp/ziYl
https://paperpile.com/c/e2MXWp/kAEg
https://paperpile.com/c/e2MXWp/aWuB
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that can be observed by the algorithms. Fire disturbance, on the other hand, proportionally affects the 

largest areas among the observed disturbances, with its increasing prevalence being particularly 

significant. Fires impact the tundra landscape by combusting biomass and organic matter from tundra 

and forest vegetation and soils, contributing to a globally significant source of greenhouse gas emissions 

(Mack et al. 2013; Van Der Werf et al., 2017), also there is an increasing risk to trigger permafrost thaw 

and thermokarst post-fire. Increases in thaw lakes, peatland, and wetland areas are major contributors 

to methane (CH4) emissions due to their extensive organic-rich soils commonly found in arctic tundra 

and boreal forest ecosystems (McGuire et al. 2009; Roulet et al. 1992; Peng et al. 2022). The observed 

rise in disturbance-driven carbon emissions could potentially weaken the ABR land sink. However, the 

highest thermokarst risk classes for lake, hillslope, and wetland are less affected by wildfires. This 

suggests that high-risk thermokarst areas are low-risk fire areas, (currently) not prone to fire disturbance 

that could trigger permafrost thaw and thermokarst disturbances. 

To calculate the disturbance probability and track changes over time, we analyzed the temporal 

evolution of disturbance probability. Additionally, it is crucial to predict future disturbance trends based 

on the time since the last disturbance, the resilience of the landscape, and the current ecosystem state. 

Our dataset presents the opportunity to further investigate the impact of disturbance history on 

vegetation and assess the effect of repeated fires and their intensity on the landscape. Both, post-

disturbed thaw and post-thaw recovery can be categorized. 

Arctic tundra and boreal forests are particularly sensitive to climate variability, and their amplified 

response to external disturbances may indicate the ecosystem's proximity to a critical threshold or 

transition (Seddon et al. 2016; Scheffer et al. 2009). We provide the framework and first dataset to study 

and understand these dynamics, essential for predicting future disturbance trends and their impacts on 

the carbon balance of these vulnerable ecosystems and help to demystify the permafrost carbon 

feedback, which urgently needs a better representation (McGuire et al. 2018). 

https://paperpile.com/c/e2MXWp/JkCkf+HH3w+11DX
https://paperpile.com/c/e2MXWp/LAxE1+EPurj
https://paperpile.com/c/e2MXWp/9gPL
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CHAPTER 3 

 BELOW-GROUND PERMAFROST PROCESSES MANIFEST AS ABOVE_GROUND 

FUNCTIONAL TRAITS IN ARCTIC TUNDRA LANDSCAPES 

 

Tundra climate change exerts significant pressure on Arctic ecosystems impacting their resilience to 

disturbances and shifts in ecosystem structure. Detecting changes in tundra ecosystems is challenging 

due to the heterogeneous nature of the landscape, permafrost, and vegetation patterns. While remote 

sensing observations capture primarily above-ground properties, below-ground properties are critical 

in the Arctic, so much of our understanding is dependent on how aboveground vegetation properties 

thereby reflect the state of the underlying permafrost. Here we propose a novel approach using 

hyperspectral imagery to map the spatial patterns of tundra functioning. We hypothesize that by 

combining spectral metrics and traits linked to tundra functioning, a clustered functional diversity 

assessment will reveal the spatial patterns of tundra functioning from which we may gain insight into 

the state of the underlying permafrost and the stability of the tundra ecosystem. 

Using hyperspectral AVIRIS-NG imagery from NASA’s ABoVE (Arctic-Boreal Vulnerability Experiment) 

field campaign and field-based thaw depth measurements we identified spectral plant traits indicative 

of the functioning of the tundra ecosystem. The balanced set of spectral traits was clustered to create 

‘thaw functional types’ and compared with thaw depth measurements and model outcomes to unravel 

the interactions between tundra functioning and the state of the permafrost. We show that a balanced 

set of spectral vegetation traits can be used to create high-resolution maps showing regional patterns 

in trait diversity, without prior taxonomic info, indicative of tundra functioning. 
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3.1. Introduction 
 

The Arctic has experienced warming at a rate two to four times faster than any other biome on Earth 

(Rantanen et al. 2022). The pronounced warming of the Arctic region, known as Arctic amplification, is 

considered the primary driver of recent changes in tundra ecosystems. Over thousands of years, the low 

soil temperatures and limited drainage of permafrost soils have facilitated the accumulation of dead 

organic matter, leading to the sequestration of substantial carbon reserves, nearly double the size of 

the atmospheric C pool (Schuur et al. 2015; Hugelius et al. 2014; McGuire et al. 2012). However, the 

current climate warming trends and consequently thawing permafrost can release vast amounts of the 

C previously stored in the permafrost by making it available for decomposition and releasing greenhouse 

gasses such as carbon dioxide and methane into the atmosphere (Schuur et al. 2015; Hayes et al. 2014). 

The permafrost carbon feedback mechanism is one of the largest terrestrial-climate feedbacks with a 

strong positive effect on global warming (Schuur et al. 2008, 2015; Schaefer et al. 2014). Permafrost 

thaw can alter the resilience of the tundra ecosystem and increase the vulnerability of the permafrost 

landscape to abrupt (pulse) disturbances that can have a huge impact on the soil C stocks (Schuur and 

Abbott 2011; Grosse et al. 2011; Jones et al. 2015; Holloway et al. 2020; Treat et al. 2024). The effects 

of permafrost thaw are currently underestimated due to the challenge of detecting gradual permafrost 

thaw (Jorgenson and Grosse 2016; Bartsch, Strozzi, and Nitze 2023), the tendency to generalize the 

tundra landscape characterization in region-wide assessments (Lara et al. 2020), and the limited or 

missing representation of the permafrost C feedback in current climate models (Schädel et al. 2024; 

Fisher et al. 2018).  

Permafrost thaw increases the depth of the seasonal unfrozen layer on top of the permafrost, or active 

layer. It drives changes like increased mineralization, nutrient cycling, and rooting depth reflected in the 

tundra vegetation community structure and composition traits (Standen and Baltzer 2021). Plant 

functional traits are linked with geomorphological processes in tundra landscapes, and disturbances 

https://paperpile.com/c/hUF4Ua/PKZF
https://paperpile.com/c/hUF4Ua/7Ed5e+blRRC+KSkgz
https://paperpile.com/c/hUF4Ua/7Ed5e+Xg3W
https://paperpile.com/c/hUF4Ua/icb9u+7Ed5e+vujTG
https://paperpile.com/c/hUF4Ua/8n90+vTsT+FGSE+58tV+nkm0
https://paperpile.com/c/hUF4Ua/8n90+vTsT+FGSE+58tV+nkm0
https://paperpile.com/c/hUF4Ua/3jtv+kBFq
https://paperpile.com/c/hUF4Ua/zJHT0
https://paperpile.com/c/hUF4Ua/CKjB+AcXt
https://paperpile.com/c/hUF4Ua/CKjB+AcXt
https://paperpile.com/c/hUF4Ua/qCwG
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drive changes in trait composition and diversity (Kemppinen et al. 2022; Bjorkman et al. 2018). To study 

the adaptive strategies of tundra vegetation, it is important to focus on functional traits. The significance 

of functional traits lies in their direct or indirect impact on the fitness and performance of the individual 

plant species within a given tundra landscape (Violle et al. 2007). Morphological, physiological, or 

phenological characteristics or traits are considered functional traits if they influence growth rate, 

reproduction, and survival (Dıáz and Cabido 2001; Violle et al. 2007). Functional traits serve as vital 

indicators of species distribution and individual performance across environmental and disturbance 

gradients. Assessing leaf and plant functional traits provides insight into the ecosystem functioning and 

resilience, and is consequently indicative of the ecosystem response to disturbances (Funk et al. 2017; 

Reich, Wright, and Cavender-Bares 2003; Lavorel and Garnier 2002; Wright et al. 2004). Understanding 

the relationship between functional traits, trait diversity, and the environment allows for forecasting 

the effects of climate change (Myers-Smith, Thomas, and Bjorkman 2019; Thomas et al. 2020). A 

Functional Diversity assessment can link the changes in biological diversity and the underlying 

ecosystem processes by combining traits that influence individual fitness and ecosystem functioning 

(Violle et al. 2007, 2014; Asner et al. 2017).  

Field measurements of arctic plant traits are challenging, due to the remote location, short growing 

season, and the spatial heterogeneity in tundra vegetation. Remote Sensing (RS) offers a key advantage 

by enabling continuous spatiotemporal observations of arctic environments. Recent advances in 

imaging spectroscopy have revolutionized our ability to observe spectral leaf and canopy traits, 

facilitating continuous, spatiotemporal observations and diversity metrics across landscapes (Nelson et 

al. 2022; Jetz et al. 2016; Yang et al. 2023). Spectral traits are linked to leaf pigments (eg. chlorophyll), 

leaf foliar chemistry (eg. nitrogen or phosphorus content), structural (eg. LAI), or senescent (dry) carbon 

(cellulose and lignin index) properties of the reflected vegetation and can be linked to belowground 

processes, via decomposition, nutrient cycling, and soil microbial community composition (Madritch et 

https://paperpile.com/c/hUF4Ua/gmjFf+1e6B
https://paperpile.com/c/hUF4Ua/l83A
https://paperpile.com/c/hUF4Ua/si7UJ+l83A
https://paperpile.com/c/hUF4Ua/1ztm+5uNh+ECLCw+IpUI
https://paperpile.com/c/hUF4Ua/1ztm+5uNh+ECLCw+IpUI
https://paperpile.com/c/hUF4Ua/IlCE+4hGC
https://paperpile.com/c/hUF4Ua/l83A+7ytm+VdiK
https://paperpile.com/c/hUF4Ua/TK2Y+gaWV+MH1r
https://paperpile.com/c/hUF4Ua/TK2Y+gaWV+MH1r
https://paperpile.com/c/hUF4Ua/qVik+dvbC
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al. 2020; de Vries et al. 2012). Spectral traits can be derived from hyperspectral imagery, and using 

NASA’s airborne imaging spectrometer AVIRIS-NG enables the spatial mapping of canopy and plant 

functional traits (Angela Lausch et al. 2016). These canopy traits reflect the heterogeneity across the 

landscape (Asner et al. 2014), providing detailed insights into spatial patterns of tundra functioning. 

Creating a spatial representation of the functional heterogeneity of the tundra landscape requires 

selecting a balanced set of spectral traits encompassing the characteristics and adaptations of tundra 

vegetation to varying environmental conditions and disturbances. Using spectral plant traits beyond 

field-measured plant traits can offer a more comprehensive understanding of ecological patterns and 

ecosystem functions by quantifying similarities, differences, and distribution of the spectral traits 

(Cadotte, Carscadden, and Mirotchnick 2011). RS indicators of functional diversity enable the detection 

and monitoring of spatial trends and patterns in vegetation health (Angela Lausch et al. 2016), 

facilitating the derivation of ecosystem functioning, health, and resilience (to change) without individual 

species mapping. A spatially explicit assessment of functional diversity in tundra vegetation can reveal 

spatial patterns in tundra functioning linked to ecosystem stability and resilience (A. Lausch et al. 2016; 

Schneider et al. 2017). Recent studies such as Kemppinen et al. (2022) have demonstrated the 

relationships between plant (community) functional traits and geomorphological processes in tundra 

landscapes. Moreover, Mason et al. (2005) advocate for using a combination of functional richness, 

functional evenness, and functional divergence as essential components to assess functional trait 

diversity.  

To understand the vegetation response to environmental changes, Díaz et al. (2016) identified the key 

plant traits for growth, survival, and reproduction. They showed that the first two principal axes 

explained most of the trait variation and the axes were identified as (a) plant and leaf size, comprising 

attributes like plant height and leaf area, and (b) the leaf economic trait axis, summarizing 

photosynthetic leaf area construction costs, including leaf nutrient and pigment contents, as well as 

https://paperpile.com/c/hUF4Ua/qVik+dvbC
https://paperpile.com/c/hUF4Ua/x3ks6
https://paperpile.com/c/hUF4Ua/hizpQ
https://paperpile.com/c/hUF4Ua/QImN
https://paperpile.com/c/hUF4Ua/x3ks6
https://paperpile.com/c/hUF4Ua/UtTa3+IZFHR
https://paperpile.com/c/hUF4Ua/UtTa3+IZFHR
https://paperpile.com/c/hUF4Ua/gmjFf
https://paperpile.com/c/hUF4Ua/tsX0
https://paperpile.com/c/hUF4Ua/khc0q
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specific leaf area. Although the global trait relationship along these two axes also applies to the tundra 

biome, Thomas et al. (2020) found a reversed relative importance of these axes suggesting the primary 

importance of resource economic traits such as resource allocation and utilization. However, despite 

the emphasis on resource traits, we should not overlook the importance of size traits, as tundra warming 

is expected to benefit larger plants and leaves, and these size-related traits will inform the trajectory of 

the tundra in a warming world (Thomas et al. 2020; Myers-Smith, Thomas, and Bjorkman 2019). 

Translating these findings to the tundra landscape, changes along axis (a) may affect carbon storage, 

snow trapping, and shading, while axis (b) relates to nutrient cycling and availability, photosynthetic 

efficiency, and resilience. Therefore, the selected spectral traits should also reflect the potential of 

vegetation to withstand or adapt to disturbances associated with a warming landscape. These traits 

must be ecologically meaningful to depict the response of tundra vegetation to changing environmental 

conditions. 

In this chapter, we utilized AVIRIS-NG hyperspectral imagery acquired by NASA’s ABoVE (Arctic-Boreal 

Vulnerability Experiment) flight campaign (Miller et al. 2018), to calculate spectral vegetation traits for 

a study area in western Alaska, USA. Different spectral traits were combined to detect subtle changes 

in vegetation characteristics that could indicate variability in the active layer, hydrology, or nutrient 

availability - parameters that are particularly susceptible to changes under current climate scenarios. 

Clustering key spectral traits into the so-called thaw functional type classes creates a high-resolution 

spatial data set of trait-based above-ground tundra characteristics that indicate the state of below-

ground properties, such as permafrost. The spatial variability in functional diversity will represent the 

permafrost-vegetation interactions due to the strong coupling between vegetation and permafrost 

features in the tundra landscape. Further analysis of traits, trait diversity, and trait relationships can be 

used to derive vegetation trajectories to thaw. The functional diversity will show the spatial variation in 

https://paperpile.com/c/hUF4Ua/4hGC
https://paperpile.com/c/hUF4Ua/4hGC+IlCE
https://paperpile.com/c/hUF4Ua/Fd2oK
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thaw-related functional traits, without prior knowledge, resembling the resilience of permafrost to 

future warming. 

 

3.2. Materials and Methods 
 

3.2.1. In-situ Thaw Depth Measurements for Spatial ALD Modeling 
 

Our study focused on a site near Nome on the Seward Peninsula, Alaska. The Seward Peninsula, located 

in western Alaska below the Arctic Circle, is covered by tundra vegetation underlain with discontinuous 

permafrost (Peel, Finlayson, and McMahon 2007). The site at Teller Road mile 27, hereafter called Teller, 

is characterized by coastal tundra featuring transitions from wet meadow tundra to willow shrubland 

along the streams, as well as erect dwarf shrub tundra, sedge willow dryas, and shrub and sedge tussock 

tundra (Raynolds et al. 2019). Through collaborations with the Next-Generation Ecosystem Experiments 

Arctic (NGEE-Arctic) (https://ngee-arctic.ornl.gov/), field-based thaw depth measurements were 

collected across the Teller site. The spatial sampling strategy was designed to capture the spatial 

variability of tundra vegetation, permafrost features, and disturbances by linear transects perpendicular 

to the elevation gradient. Thaw depth was measured along the transects using a thaw probe (130 cm 

long, 1 cm diameter, marked with 5-centimeter increments). We pushed it into the ground until 

resistance of the permafrost layer was encountered, and recorded the depth. At sample locations with 

rocks or a high variability, multiple thaw depths were sampled within an area of about 2 by 2 m square, 

where we reported the maximum thaw depth. The active layer depth (ALD, n = 419) was measured across 

six transects, avoiding alignment with vegetation and environmental gradients, spanning distances from 

2.5 to 3 km, totaling over 16 km, and encompassing an elevation gradient ranging from 57 to 270 meters 

covering the NGEE-Arctic Teller watershed (Fig. 1A). To explore the spectral patterns of vegetation, 

spectral (AVIRIS-NG) and ALD measurements were carry out during peak-season vegetation from July 19 

to July 22nd, 2022.. Maximum annual ALD, commonly referred to as active layer thickness (ALT) is 

https://paperpile.com/c/hUF4Ua/CNwFO
https://paperpile.com/c/hUF4Ua/Oo7DP
https://ngee-arctic.ornl.gov/


55  

observed at the end of the growing season, but ALD generally increases proportionally to the square root 

of time since snowmelt (Nelson and Hinkel 2003), allowing to observe the spatial patterns in ALD 

variability before reaching the maximum thaw depth. Next to thaw depth, also soil moisture and 

vegetation height were measured at each sample point. At last, the GPS position was measured using a 

portable Trimble Geo7X differential GPS. The Geo7X was connected to a Zephyr Model 2 Dual Frequency 

GNSS antenna (Trimble  Incorporated, Sunnyvale, California) and sites were logged for at least 1 minute. 

The nearest base station data from the Trimble Reference 

Network  (https://www.trimble.com/trs/findtrs.asp) were used to post-process the locations to achieve 

dGPS accuracy. For spatial modeling of the Active Layer Depth (ALD) across the Teller site we created a 

high-resolution spatially explicit active layer model based on the thaw depth transects in combination 

with hyperspectral AVIRIS-NG imagery, their derivatives, and the Arctic DEM following the methodology 

described in chapter 1. The ALD model output will be compared with plant community types mapped by 

(Konduri et al. 2021) for the 1st- and 2nd-level plant community types. 

3.2.2. Remote Sensing Datasets 
 

Airborne hyperspectral imagery was collected over the Teller and Mile 80 sites. The AVIRIS-NG flight lines 

were collected on 13 July 2022 by the NASA ABoVE airborne campaign (Miller et al. 2018) using the AVIRIS 

NG imaging spectrometer (400 - 2400 nm, 430 bands) with +-5 m pixel size. We downloaded the 

reflectance product from the AVIRIS-NG data portal (https://avirisng.jpl.nasa.gov/dataportal/) 2022 - 

(https://popo.jpl.nasa.gov/avng/y22/). We processed the Arctic-DEM 

(https://www.pgc.umn.edu/data/arcticdem/) (Porter et al. 2023) to select the best available strip and 

used it as an elevation model with the matching AVIRIS-NG resolution at 5 m. 

3.2.3. Tundra Functional traits 
 

We aim to categorize tundra vegetation with tundra functional traits, reflecting their responses to 

geomorphological processes, disturbances, and environmental conditions in tundra landscapes 

https://paperpile.com/c/hUF4Ua/fHVY
https://paperpile.com/c/hUF4Ua/Fd2oK
https://avirisng.jpl.nasa.gov/dataportal/
https://popo.jpl.nasa.gov/avng/y22/
https://www.pgc.umn.edu/data/arcticdem/
https://paperpile.com/c/hUF4Ua/9IrO5
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(Kemppinen et al. 2022, 2021). Hyperspectral AVIRIS-NG imagery, available from the ABoVE field 

campaign (Miller et al. 2018), can be used to detect small changes in vegetation traits and characteristics 

(S. Serbin and Yang 2021) that could be the first indication of thaw-driven changes in active layer, 

hydrology, or nutrient availability. In our approach, we use ALD as a proxy for the variability of the tundra 

landscape as a reflection of the geomorphological processes, disturbances, and environmental 

conditions. ALD was compared with the functional diversity metrics based on the following selection of 

spectral traits suggested by (Féret and Boissieu 2020): 

• Transformed Chlorophyll Absorption Reflectance Index / Optimized Soil-Adjusted Vegetation Index 

ratio (TCARI_OSAVI - (Haboudane et al. 2002) provides an estimate of vegetation chlorophyll 

content, and vegetation vigor, adjusted for variable soil background effects; 

• Normalized Difference Leaf Mass Area (ND_LMA -(le Maire et al. 2008) reflects leaf structural 

parameter leaf mass per unit area. High values indicate vegetation with high mass and density 

leaves, slower growth rates, and longer longevity reflecting investments in structural defense, 

durability, and conservation of resources; 

• Continuum Removal in Shortwave Infrared (CR_SWIR - (Féret, 2020) index is based on absorption 

features in the shortwave infrared that reflects the moisture content and structural properties of 

the vegetation and is related to Equivalent Water Thickness. Low values indicate well-hydrated 

leaves and a healthy leaf structure; 

• Area under continuum removed curve Normalized to the Chlorophyll absorption Bands (ANCB -

(Malenovský et al. 2013) is related to Chlorophyll a&b content of the leaves, especially for higher 

vegetation fraction with high signal to noise;  

• Normalized Difference Vegetation Index (NDVI - (Tucker 1979) measures the overall vegetation 

health and density difference between the near-infrared strongly reflected by vegetation and the 

https://paperpile.com/c/hUF4Ua/gmjFf+Fv7cN
https://paperpile.com/c/hUF4Ua/Fd2oK
https://paperpile.com/c/hUF4Ua/nrQ6
https://paperpile.com/c/hUF4Ua/pHu9L
https://paperpile.com/c/hUF4Ua/QqxTj
https://paperpile.com/c/hUF4Ua/WwjY
https://paperpile.com/c/hUF4Ua/Rnb0
https://paperpile.com/c/hUF4Ua/pkAO
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light absorbed by vegetation. A healthy vegetation with greater biomass will have higher NDVI 

values. 

 

While the spectral indices used lack validation for the tundra landscape or this specific site, our primary 

focus is not on obtaining precise numeric leaf parameter values but rather on analyzing the spatial 

patterns and relationships between key functional traits across the tundra landscape and factors such as 

ALD. These selected spectral indices serve as proxies for the associated vegetation or leaf traits, enabling 

the mapping and analysis of the spatial variation.  Grouping vegetation with similar spectral trait 

responses into so-called Tundra Functional Types, can be used as predictors of tundra functioning. The 

concept of tundra functional types originates from Plant Functional Types (PFTs) commonly used in 

community and ecosystem ecology. PFTs group species with similar responses to environmental changes, 

disturbances, and contributions to ecosystem functioning. Following (Ordway et al. 2022) we clustered 

the selected spectral traits into functional types, hypothesizing that the grouped types will reflect below-

ground properties. The calculated spectral traits also allow for assessing spatial trends and patterns in 

vegetation and vegetation health using RS indicators of functional diversity (Angela Lausch et al. 2016). 

The trait-based functional diversity metrics, functional richness, divergence, and evenness were 

calculated from the multidimensional trait space (Villéger, Mason, and Mouillot 2008; Schneider et al. 

2017) using the biodivMapR package in R (Féret and Boissieu 2020). 

 

3.3. Results 
 

3.3.1. Active Layer Depth Transects 
 
The measured ALD varied between 20 and 120 cm, with a mean of 62.8 cm and a standard deviation of 

24.0 cm. The boxplots in Figure 3.1B illustrate the variations in ALD among transects, with the deepest 

ALD observed along transects 3 and 4, which traverse the site along the water track.  

https://paperpile.com/c/hUF4Ua/K8AZ
https://paperpile.com/c/hUF4Ua/x3ks6
https://paperpile.com/c/hUF4Ua/s8cfX+IZFHR
https://paperpile.com/c/hUF4Ua/s8cfX+IZFHR
https://paperpile.com/c/hUF4Ua/pHu9L
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 Figure 3.1. Location and overview of the field based active layer depth measurements. 3.1A: The 6 transects 

covering the NGEE-Arctic study site Teller, red indicates a deeper active layer depth. 3.1B: Boxplots show the 

variability in thaw depth along the different transects of the Teller study site. 

 

Compared with plant community types mapped by Konduri et al. (2021), no significant differences were 

observed between mean ALD for the 1st-level plant community types (Fig. 3.2A). When using 2nd-level 

plant community types, the deepest mean ALD was associated with Willow shrubs (80.2, sd 18.6 cm), 

followed by Mesic graminoid herb meadow tundra (74.0, sd 19.8 cm) and Rock-talus-glacial-snow (69, 

sd 9.6 cm). The shallowest mean ALD was observed for drias-lichen dwarf shrub tundra (40.8, sd 10.7 

cm) followed by Mixed shrub-sedge tussock tundra (59.1, sd 25.8 cm) and Tussock lichen tundra (57.9, 

sd 23.0cm). The difference between the means of Willow shrubs (21, 25, 26, 30, 36 - 0.05 / 22 - 0.1) and 

between 30 - 24 (24 - 25 / 0.1) is significant (p < 0.05). We used one-sided ANOVA to test the difference 

between groups (p<0.01) followed by the Tukey HSD (p<0.05) to identify the specific groups with 

significant differences. 

https://paperpile.com/c/hUF4Ua/fHVY
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Figure 3.2. The relationship between measured active layer depth and vegetation type for the Teller site. The 

boxplots in Figure 2A show the ALD distribution for the first-level plant community types (1 Barren, 2 Graminoid -

, 3 Shrub-, and 4 Wetland- tundra. Figure 2B shows the variability in ALD along the second-level plant community 

types: 21: Dryas-lichen dwarf shrub tundra, 22: Ericaceous dwarf shrub tundra, 23: Sedge-willow-Dryas tundra, 

24: Mesic graminoid-herb meadow tundra, 25: Tussock-lichen tundra, 26: Mixed shrub-sedge tussock tundra, 27: 

Birch-Ericaceous-lichen shrub tundra, 28: Willow shrub, 29: Alder-willow shrub, 30: Willow-birch shrub, 36: Wet 

meadow tundra, and 42: Rock-talus-glacial-snow. 

 

3.3.2. Spatial Distribution of Active Layer Depth 
 

When visually examining the spatial patterns of high-resolution ALD model outputs, the Teller site (Fig. 

3.3) shows pronounced large-scale landscape patterns associated with deeper thaw depths, primarily 

driven by a large gully in the middle of the watershed and smaller water tracks draining into the gully or 

continuing downslope. The spatial structures associated with ice wedges are characterized by a spatial 

distinct pattern and relatively shallow thaw depths at the top and bottom of the Teller hillslope. 



60  

 
 

Figure 3.3: High-resolution active layer depth model output, based on the active layer measurements for the 

Next Generation Ecosystem Experiment - Arctic Teller watershed showing the pronounced deep active layer 

patterns along the water tracks and the particular shallow active layer ice wedge patterned regions. 

 
 
3.3.3. AVIRIS-NG Spectral Traits Clusters 
 
For the Teller watershed, five spectral traits are calculated CR_SWIR, TCARI_OSAVI, ANCB, MD_LMA, and 

NDVI (Fig. 3.4). We use the ALD transects to connect the functional tundra traits with measured ALD, 

vegetation height, and soil moisture. Table 3.1 shows the correlation coefficient between the spectral 

traits and field measured ALD, soil moisture, and vegetation height. The spectral indices CR_SWIR, related 

to Equivalent Water Thickness or the leaf water content, and ANCB, related to Chlorophyll a & b content, 

show an inverse and weak correlation with ALD and vegetation height. TCARI/OSAVI is related to leaf 
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chlorophyll content, ND_LMA is related to Leaf Mass per Area, and NDVI shows a correlation with ALD 

and a stronger correlation with vegetation height. 

 
Figure 3.4: AVIRIS-NG derived spectral traits CR_SWIR, TCARI_OSAVI, ANCB, ND_LMA. 

 

Table 3.1: Correlation coefficients (r) between field-measured active layer depth (ALD), soil moisture, vegetation 

height, and AVIRIS-NG derived spectral traits (* not significant). 

 
ALD Soil moisture Veg. height NDVI ND LMA CR SWIR TCARI OSAVI 

Soil moisture -0.02* 
      

Veg. height 0.23 0.13 
     

NDVI 0.28 -0.25 0.45 
    

ND LMA 0.26 0.24 0.50 0.61 
   

CR SWIR -0.28 0.23 -0.37 -0.88 -0.57 
  

TCARI OSAVI 0.24 -0.07* 0.56 0.88 0.69 -0.81 
 

ANCB -0.15 0.47 -0.21 -0.76 -0.12 0.61 -0.49 

 

We used the spectral traits CR_SWIR, TCARI_OSAVI, ANCB, MD_LMA, and NDVI (Fig. 3.4) as the basis for 

k-means clustering to identify the functional response classes. First, we reduced the dimensionality of 

the normalized indices using a PCA. The first two PCA bands account for 88.9% of the cumulative 

explained variance ( PC1: 70.4%, PC2: 18.5%) of the input spectral indices. Key indices for PC1 are NDVI, 

CR_SWIR, and TCARI_OSAVI, while for PC2, they are ND_LMA and ANCB. Finally, we used the first two 

PC components as input for the k-means cluster analysis, which was set to four clusters.  
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Figure 3.5 illustrates the spatial distribution of the functional groups obtained by the kNN classifier (Fig. 

3.5A) and the distribution of their associated trait values and ALD (Fig. 3.5B).  Class 2 (green) is barely 

present in the core site, rendering it insufficient for analysis. Two key classes exhibit distinct ALD 

patterns: class 3 (yellow) corresponds with the deeper ALD values, while class 4 (red) is associated with 

shallow ALD values. Based on trait values, we can differentiate the vegetation strategies of the distinct 

functional groups. Class 1 (orange) does not show distinct patterns in functional traits, the ALD and trait 

values do not differentiate them from classes 3 and 4. As a result, class 1 is not considered a distinct 

functional group.  

 
Figure 3.5: Spatial map showing TFT for the Teller site, along with cluster plots showing the distribution of the 

spectra indices and ALD along vegetation type. 

 

Comparing class 3, which has deeper ALD values, with class 4, which has shallower ALD values, reveals 

different adaptation strategies of the tundra vegetation. The vegetation properties of Class 3 are 

characterized by high ND_LMA, NDVI, and TCARI/OSAVI, as well as lower ANCB and CR_SWIR trait values 

(Fig 3.5).  High ND_LMA, or a high mass per unit area, indicates thick and robust leaves associated with 

relatively slower growth rates but increased durability and resistance to damage. High NDVI values 

suggest healthy vegetation with dense growth and strong photosynthetic activity. Similarly, high 

TCARI/OSAVI reflects strong photosynthetic activity due to high chlorophyll content. Surprisingly, ANCB, 
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another indicator of chlorophyll content, showed lower values, although the differences between groups 

were smaller for this trait. Lastly, a low CR_SWIR reflects higher leaf moisture content and intact leaf 

structure, indicating soft and healthy leaves. In contrast, the vegetation in class 4 shows an inverse 

response for all indices. Class 4 is characterized by reduced photosynthetic activity, sparse vegetation, 

thinner and less dense leaves, and potential water stress or tougher, drier leaves.  

For the Mile 80 site, which has a rather homogeneous vegetation cover, we calculated the same spectral 

indices and used the first two PC components as input for the k-means cluster analysis, which was set to 

two clusters. Figure 3.6 shows the spatial patterns of the two distinct tundra trait classes. Compared to 

Teller (Fig. 3.5), the relative values of ANCB are higher, while the NDVI values are lower. The vegetation 

properties of type 1 are characterized by higher NDVI and TCARI/OSAVI values, and lower ANCB, 

CR_SWIR, and ND_LMA trait values compared to type 2. Higher NDVI and TCARI/OSAVI traits suggest a 

higher photosynthetic activity, chlorophyll content, and overall healthier vegetation. However, this is 

contradicted by the lower ANCB values. Lower ND_LMA and CR_SWIR values indicate leaves with a lower 

mass per unit area, or fast-growing thinner leaves with a high moisture content and a more intact leaf 

structure, suggesting healthier leaves. In contrast, vegetation type 2 has lower NDVI and TCARI/OSAVI 

values, indicating lower photosynthetic activity and chlorophyll content, which is not supported by the 

slightly higher ANCB values. The higher CR_SWIR values reflect lower leaf moisture content or damage 

to the leaf structure, and the slightly higher ND_LMA values indicate thicker, slow-growing, but more 

durable leaves. 
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Figure 3.6: Spatial map showing TFT for the Mile 80 site, along with cluster plots showing the distribution of the 

spectra indices along tundra vegetation type. 

 

Further analyses of the tundra landscapes were based on functional diversity metrics. While the 

functional diversity metrics for the Telle landscape did not reveal any new patterns compared to the 

cluster plot, the functional diversity metrics for Mile 80 (Fig. 3.7 - from left to right functional richness, 

divergence, and evenness) did show an elaborated response. Functional richness or trait space occupied 

by the tundra communities, shows that the tundra landscape at Mile 80 exhibits low functional richness, 

suggesting only a limited range of traits are present and the dominance of a specific functional strategy. 

Areas affected by disturbances show increased functional richness. Functional divergence shows how 

regular the abundances are in trait space, where undisturbed tundra is characterized by low divergence, 

showing an overrepresentation of key traits while other traits are underrepresented or rare. The higher 

functional divergence observed along the disturbance gradients suggests a more equal representation 

of traits. Lastly, functional evenness reflects the balance between specialization and redundancy, where 

high evenness or redundant functional roles are observed along disturbances like drained thaw lakes, 

water tracks, and streams. 
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Figure 3.7: Functional diversity (10 pixels radius) of the mile 80 site based on the spectral trait layers. 

 

To study the differences in observed patterns between grouped functional traits and diversity (Fig. 3.6 & 

3.7) in detail for Mile 80, we explore the different landscape features and their functional response. 

Creating an RGB plot of three key spectral traits, R: ND_LMA - G: NDVI - B: CR_SWIR, allows for an in-

depth study and understanding of the variability in tundra trait space. As presented in Figure 3.8, 

different trajectories are observed for the disturbances, which are not detected when clustering traits 

into two functional groups, and even increasing the number of functional groups does not reveal the 

same pattern. Two different and opposite responses of the tundra vegetation to disturbances are 

captured but not visible in the tundra trait clustering and functional diversity metrics. Both transects 

cover a drained lake, while the red transect shows decreased productivity and the yellow transect shows 

improved productivity. Interestingly, the water tracks created by the drainage show a similar response 

as the drained lakes.  
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Figure 3.8: Functional trait variability observed at the Mile 80 landscape, indicating different trajectories for 

disturbance patterns. Band combination used: Red: ND_LMA, Green: NDVI, and Blue: CR_SWIR band. 

  

3.4. Discussion and Conclusion 
 

Text Tundra landscapes represent a dynamic equilibrium between abiotic conditions, disturbance 

regimes, and species communities. The landscape exhibits patterns driven by self-organization, 

vegetation succession, and permafrost dynamics (Romme and Knight 1981). Historically, tundra 

landscapes have been resilient to change, defined as the cumulative disturbances required to shift 

landscape processes and associated vegetation toward a new stable state (Hirota et al. 2011; Naito and 

Cairns 2015; Levine et al. 2016; Holling 1973; Curtin and Parker 2014). However, current anthropogenic 

climate change is pushing tundra landscapes to the limits of resilience, as observed by increased 

disturbances and shifting patterns (Braghiere et al. 2023). To unravel the dynamics, we used spectrally 

derived functional traits, specifically those reflecting the with- and within-species variability of leaf traits, 

https://paperpile.com/c/hUF4Ua/R7thK
https://paperpile.com/c/hUF4Ua/LD60h+viauJ+KMLU5+EDpAx+6w8nJ
https://paperpile.com/c/hUF4Ua/LD60h+viauJ+KMLU5+EDpAx+6w8nJ
https://paperpile.com/c/hUF4Ua/yUSu
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indicative of variations in light availability, environmental conditions such as water and nutrient 

availability, and disturbance pressure (Osnas et al. 2018; S. P. Serbin et al. 2016; Butler et al. 2017). 

 

First, we studied a heterogeneous hillslope characterized by two vegetation types with distinct 

adaptation strategies. One vegetation type exhibits healthy, well-hydrated, and robust durable leaves 

with high photosynthetic activity, suggesting near-optimal growing conditions with ample moisture and 

nutrients. The other vegetation type had faster growing but less durable leaves and lower photosynthetic 

activity, suggesting poorer vegetation health and less optimal growing conditions with periods of 

inadequate moisture or limited nutrient availability. The observed vegetation type patterns 

corresponded with modeled ALD patterns, and the correlation coefficients between spectral traits and 

measured ALD suggest that taller and healthier vegetation is associated with deeper ALD.  Second, we 

studied a homogenous tundra landscape with limited topographic variation. Our clustering approach 

characterized two vegetation types with distinct adaptation strategies. The base vegetation is 

characterized by relatively fast-growing leaves and high photosynthetic activity suggesting relatively 

healthy vegetation without large moisture or nutrient deficits. In contrast, the disturbance-associated 

vegetation had a relatively low photosynthetic activity and health. The relatively homogeneous tundra 

landscape of Mile 80 provides the environment to explore the ability of functional traits and functional 

diversity metrics to capture ecosystem responses to environmental conditions and disturbances. In 

resource-limited and harsh environments functional richness reflects the constraints imposed by the 

landscape on species and traits, and captures the functional adaptations along gradients (Lamanna et al. 

2014; Schumm et al. 2019). High functional divergence can be interpreted as a relaxed ecological filter, 

allowing for functional redundancy (Ricotta et al. 2020). Low functional evenness signifies specialization 

and efficient resource use (Mason et al. 2005), which may increase vulnerability to disturbance, whereas 

high evenness implies redundant functional roles promoting stability. Generally, high functional richness, 

https://paperpile.com/c/hUF4Ua/RSzz+r38v+B75F
https://paperpile.com/c/hUF4Ua/Y2Cc+H0E8
https://paperpile.com/c/hUF4Ua/Y2Cc+H0E8
https://paperpile.com/c/hUF4Ua/jxrm
https://paperpile.com/c/hUF4Ua/tsX0
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divergence, and evenness are linked with more stable landscapes, where redundant functional groups or 

a fully occupied functional space enhances resilience to disturbances. Translating this to the tundra 

landscape, we can conclude that disturbances create a window of opportunity for plant species initially 

unable to establish. Making it unlikely that disturbed tundra landscapes will return to their undisturbed, 

but more vulnerable state. Feedback mechanisms between the vegetation and soil properties can 

exacerbate this trend. Our functional diversity maps allow for a spatially continuous assessment of plant 

functional diversity linked to ecosystem stability (Lausch et al. 2016; Schneider et al. 2017), without prior 

taxonomic info. Interestingly, our detailed analysis of spectral traits shows that clustering detected 

vegetation patterns associated with reduced economic traits (browning) but not those with improved 

economic traits (greening) as shown in Figure 3.8.   

 

In the Tundra landscape, warming is expected to drive an increase in vegetation height and leaf size traits, 

but the direction of the relationship was largely determined by soil moisture (Bjorkman et al. 2018; 

Thomas et al. 2020). This highlights the importance of assessing a balanced set of plant functional traits 

to determine the functional drivers and responses of the Tundra landscape. Based on the spectral traits 

and spectral trait diversity at Teller, the predicted increasing thaw depth, where deeper thaw depths are 

associated with taller vegetation. For Mile 80, we suggest a similar effect with increasing vegetation 

height and leaf traits will be observed along water tracks. This indicates that spectral traits and spectral 

trait diversity can provide insights into current and future shifts in vegetation or ecosystem trajectories. 

 

Employing spectral traits or their functional diversity will also enable functional diversity from space 

(Rossi et al. 2020; Hauser et al. 2021), improve the scaling towards the pan-arctic using sentinel-2 (Ma et 

al. 2019) or the application of future multi- and hyperspectral satellites able to RS traits, that could be 

used to improve the modeling of key vegetation parameters as demonstrated by improved RS-driven 

https://paperpile.com/c/hUF4Ua/UtTa3+IZFHR
https://paperpile.com/c/hUF4Ua/1e6B+4hGC
https://paperpile.com/c/hUF4Ua/1e6B+4hGC
https://paperpile.com/c/hUF4Ua/TFD7+0jUH
https://paperpile.com/c/hUF4Ua/uHwqb
https://paperpile.com/c/hUF4Ua/uHwqb


69  

trait-based models to map vegetation productivity at larger scales (Wieczynski et al. 2022). This can be 

extended by using functional traits or diversity measures to improve the prediction of other ecosystem 

functions and below- and aboveground processes like energy balance and nutrient cycling. Therefore, 

functional traits and their diversity metrics can become predictors of key arctic ecosystem functions. 

 

In summary, we demonstrated that functional traits allow for the quantification of high-resolution spatial 

variation of tundra landscapes. For Teller, with its diverse vegetation patterns, we observed a functioning 

relationship between tundra vegetation types and the state of the permafrost. In contrast, disturbances 

and upcoming shifts in vegetation were observed for Mile 80, characterized by uniform Tussock tundra 

vegetation.

https://paperpile.com/c/hUF4Ua/WIYJ
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