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Early detection of diseases and injuries is critical for many treatments to be effective in 

achieving positive patient outcomes; this early detection is aided by accessible and non-invasive 

diagnostic methods including biophotonics. Tools such as Spatial Frequency Domain Imaging 

(SFDI) and Diffuse Optical Spectroscopic Imaging (DOSI) are two clinically relevant and 

powerful biophotonics techniques for identification and monitoring of disease and injury in 

medical settings, due to their utility in imaging and diagnosis, but recognizing their full potential 

necessitates advances in photon simulations to improve accuracy. The utility of SFDI in 

particular is heavily limited by the accuracy and applicability scope of available lookup tables 

(LUTs) generated by Monte Carlo simulations, with a disproportionate impact on marginalized 

communities due to unaddressed effects of varying levels of skin melanin. Monte Carlo Extreme 

(MCX) is a software suite which allows a fuller utilization of modern computing power through 

GPU acceleration for running simulations, improving processing speed by up to more than 100x 

compared to Monte Carlo Command Line, a software suite for running Monte Carlo simulations 

already commonly in use. The Gardner method is a method using Monte Carlo simulation for 

generating LUTs dependent on a mathematical transform; the Fourier method is a potentially 

novel method of using Monte Carlo simulations for generating LUTs described in this paper 



 
 

   

 

which is more directly analogous to SFDI imaging processes which, we believe, could result in 

more accurate LUTs. In this work, MCX was utilized as a testbed to demonstrate the 

advantages and advances of the software with regard to rapid generation of LUTs and the 

potential of the Fourier method over the Gardner method. Specifically, we demonstrate the 

ability to spatially project patterns identical to those physically used in SFDI instrumentation. We 

benchmarked traditional Gardner-based Monte Carlo Simulation approaches in MCX as well as 

MCCL, comparing time requirements and accuracy of optical property determination for the 

Gardner method implemented in both software suites against an MCX Fourier illumination 

pattern approach. We found that MCX demonstrates speed improvements over MCCL ranging 

from 25x to upwards of 100x faster LUT generation speeds, and that the Fourier method 

showed marked advantages in accurate extraction of optical properties with a reduced rate of 

error compared to Gardner. The reduction of time required to generate various LUTs enables 

the ability to expand the range of LUTs to better encompass the role of melanin in various skin 

tones observed in clinical practice to improve accuracy of tissue chromophore extraction. 

Specifically, we found that failing to account for melanin concentrations associated with a 

broader range of skin-tones can result in upwards of 70% error in absorption coefficient 

extraction when using multi-layer LUTs with inaccurate skin optical property assumptions within 

the range of human skin tone variation. In summary, MCX-based Fourier-patterned photon 

simulations demonstrate promise in terms of reducing the computational burden of generating 

appropriate LUTs needed for implementing a broader and more accurate application of SFDI 

imaging in clinical practice. 
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CHAPTER 1 

INTRODUCTION & BACKGROUND 

Spatial Frequency Domain Imaging (SFDI) is a non-invasive and low-cost imaging 

technique that images a wide area of tissue with healthcare applications including: 1) monitoring 

near-surface tissue oxygenation and capillary perfusion (Weinkauf, 2019), 2) monitoring 

pressure ulcer and diabetic necrosis risk factors (Yafi et al, 2017; Li et al, 2020), 3) monitoring 

wound or surgery recovery progress (Gioux et al, 2019; Draghici et al, 2018), 4) identification of 

near-surface tumors and proto-tumors (Tabassum et al, 2018), and 5) monitoring the severity of 

certain dermatologically relevant diseases (e.g. systemic sclerosis) (Pilvar et al, 2023). 

SFDI fundamentally consists of the projection of light at different spatial frequencies, 

followed by processing, analysis, and comparison of the resulting diffuse reflectance (Gioux et 

al, 2019). As tissue is a low-pass filter, different spatial frequencies and wavelengths will 

produce different effective penetration depths. The diffuse reflectance emanating from the 

surface is dependent on both the optical scattering and absorption, collectively known as tissue 

optical properties (OPs) (Cuccia et al, 2009, Gioux et al, 2019). Judicious control of spatial 

frequency and wavelength enables the optical scattering and absorption properties to be 

separated analytically, with the optical absorption being used to quantify a variety of tissue 

chromophores, such as oxyhemoglobin and deoxyhemoglobin (Gioux et al, 2019). 

To separate tissue optical properties from diffuse reflectance, forward models calculating 

the diffuse reflectance of varying optical scattering and absorption events for each spatial 

frequency are required. These forward models rely on either analytical approaches based on 

the radiative transport equation (RTE) and the diffusion approximation of light or numerical 

Monte Carlo simulations. As diffusion approximation relies on the assumption of an 

approximately 10:1 ratio of optical scattering to absorption, the diffusion approximation is not 

always applicable, particularly in tissues with low optical scattering, making solutions to the RTE 

exceptionally difficult to compute. Approaches reliant on Monte Carlo simulations may be limited 
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by available computational resources. However, recent software developments have enabled 

opportunities to directly match the instrumentation illumination patterns with Monte Carlo 

simulation models in addition to accelerating that modeling using graphical processing units 

(GPUs) for rapid, accurate generation of look-up tables (LUTs) - LUTs being reference tables 

used by functions to retrieve values based on certain input parameters - in SFDI, they are used 

to match detected diffuse reflectance to probable optical properties of the sample as a result of 

the difficulties of solving such problems analytically (see section 1.4 Modeling Photon 

Propagation). 

In this document, we will first explain the basis and background of SFDI, followed by the 

fundamentals of the software in use during this study. We will then describe the tests performed, 

why we performed them, and what the results indicate. 

1.1 Fundamentals of SFDI 

 

Figure 1: Diagram of SFDI process from Gioux et al, 2019 

The process of SFDI (see Fig. 1) begins by choosing a set of spatial frequencies and an 

appropriate wavelength of light. Two-dimensional sinusoidal patterns (for non-zero spatial 

frequencies) with defined amplitude and phase are projected onto the sample. Three images 
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with unique phase shifts (0, 120, 240º) of the 2D sinusoidal pattern are used at each spatial 

frequency are captured. The phase images at each spatial frequency are demodulated to 

provide the modulation transfer function (MTF) as a function of spatial frequency, the first step 

towards separating tissue scattering and absorption.  

The most common spatial frequency combination to use in SFDI is 0.1 mm-1, a 

sinusoidal intensity pattern (AC), and 0 mm-1, an unpatterned light projection (DC) with no 

spatial intensity change. Diffuse reflectance, the light emanating  from the tissue or phantom (an 

object designed to mimic human tissue properties), is then imaged using a camera at each 

wavelength, spatial frequency, and phase. 

 

Figure 2: Single-pixel demodulation process flow diagram from Gioux et al, 2019. 

Using the 3-phase images, the images are demodulated at every pixel (see Figure 2) 

using the equation shown in Equation 1, for which I°(x,y) is the captured light intensity for the 

pixel at the given x and y coordinates for a particular phase, with the subscript indicating the 

phase shift from the standard in degrees, and AC(x,y) is the resulting demodulated reflectance 

value at the given x and y coordinates (Nadeau et al, 2014). 

Equation 1. 

𝐴𝐶(𝑥, 𝑦)  =  
√2

3
 {[𝐼0°(𝑥, 𝑦)  − 𝐼120°(𝑥, 𝑦)]2 + [𝐼120°(𝑥, 𝑦) − 𝐼240°(𝑥, 𝑦)]2 + [𝐼240°(𝑥, 𝑦) − 𝐼0°(𝑥, 𝑦)]2}1/2 

The result of this demodulation is a single image for every wavelength and spatial 

frequency tested. If the imaged surface is not flat, this image is subjected to surface correction 

(measured via profilometry). SFDI requires the use of tissue phantoms during a calibration step 

to account for the instrument response function and variability in the lighting conditions in the 
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testing environment. The resulting diffuse reflectance values enable extraction of optical 

property information by comparing the output from multiple distinct spatial frequencies at the 

same wavelength.  

1.2 Light Tissue Interactions 

Diffuse reflectance, or Rd, is a unitless measurement of the amount of light which returns 

to the camera after exiting the tissue relative to what was projected onto the tissue. Anisotropy, 

or g, is a measure of likely scattering direction; 0 is equally likely to scatter in any direction, 

while 1 is entirely forward (the same direction as the particle/photon was already traveling), and 

-1 is entirely backward (in the opposite direction as the particle/photon had been traveling). N is 

the index of refraction, while μs is the scattering coefficient and μa is the absorption coefficient - 

measures of how likely a photon is to scatter or be absorbed, respectively, per unit distance 

traveled within the medium. μs’ is the reduced scattering coefficient, defined in Equation 2, and 

used to account for expected path divergence based on the anisotropy value. 

Equation 2    𝜇𝑠′ = 𝜇𝑠 ∗ (1 − 𝑔) 

In light propagation research, L* is a unitless measure of expected path-length equal to 

the multiplicative inverse of the sum of μa and μs’, as shown in Equation 3. 

Equation 3    𝐿 ∗ = 1 / (𝜇𝑎+𝜇𝑠′)  

 Rd, μs, and μa are the most notable of these in SFDI modeling - the former being what is 

observed clinically in SFDI, and the latter two being used as the key components of LUT 

construction. 
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Table 1: Overview of Optical Properties 

Optical Property Abbreviation 
/ Symbol 

Brief Explanation Typical Units 

Diffuse Reflectance Rd Relative amount of returned 
light from a medium 

None 

Absorption Coefficient μa Rate of absorption per unit 
distance 

mm-1 

Scattering Coefficient μs Scattering event rate per unit 
distance 

mm-1 

Index of Refraction n Relative light wavelength 
reduction vs vacuum 

None 

Anisotropy g Metric of relative scattering 
direction probabilities 

None 

Reduced Scattering 
Coefficient 

μs’ Anisotropy-adjusted scattering 
coefficient 

mm-1 

Unitless Expected 
Pathlength 

L* Unitless measure of 
anticipated typical path-length 

None 

Transport Mean Free Path TMFP Anticipated distance before net 
scattering behavior can be 
treated as entirely random. 

mm 

 

SFDI modeling consists of a forward model and an inverse model (see Fig. 3). The 

forward model is used to generate LUTs, running a simulation to test what diffuse reflectance 

results given a set of optical properties in simulated tissue in conjunction with a specified spatial 

frequency. The inverse model is used to fit the measured diffuse reflectance of the tissue or 

phantom and separate the optical scattering and absorption properties at the various spatial 

frequencies. To quantify the tissue optical properties, we use the linear interpolation function, 

griddata() in MATLAB and the inverse model to extract the optical properties (tissue scattering 

and absorption) from the measured diffuse reflectance, Rd.  
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Figure 3: Representative diagram of photon interactions in tissue 

Using the tissue absorption coefficient and Beer-Lambert law, the concentration of 

specific chromophores of interest (i.e. oxyhemoglobin or deoxyhemoglobin) can be quantified; 

see Equation 4, where A is attenuation, ε is molar absorptivity, l is length in centimeters, and c is 

concentration in mol/cm3. 

Equation 4     𝐴 = 𝜀𝑙𝑐 

However, as this form of the Beer-Lambert equation relies on a known path-length and 

does not account for attenuation due to losses from scattering, it cannot be used in isolation, as 

a basic linear model of path-length can only be used when the propagation regime is ballistic 

rather than random. Figure 4 demonstrates this behavior wherein photon propagation varies 

with scattering characteristics - as path length, scattering coefficient, and scattering anisotropy 

increase, the overall behavior of propagating photons in a medium will shift away from a 

standard ballistic regime and approach what is sometimes called a ‘random walk’; however, this 

unpredictability only applies in the aggregate. The direction of any given photon under this 

behavioral regime continues to have the same characteristics as before, but the direction of any 

randomly selected photon from the set of photons subject to this behavioral regime will be 

impossible to predict based on the initial direction when projected into the tissue. In biological 
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tissues, the average distance between scattering events, the scattering mean free path, is 

typically around 100 µm, and the average distance before a randomly selected photon’s 

direction will be effectively random, the transport mean free path, is around 1 mm (Busch et al, 

1994). 

 

Fig. 4: Representative diagram of photon propagation characteristics with effective 

depth; base image from Ntziachristos, 2010. 

SFDI’s forward and inverse models together are able to resolve this, however: forward 

modeling generate look-up tables with combinations of optical properties which can then be 

used with the attenuated diffuse reflectance in the inverse model to generate absorption maps. 

These absorption maps can be used in conjunction with the Beer-Lambert Law and the 

extinction coefficient of the chromophores of interest for each wavelength to fit the concentration 

of chromophores (Cuccia et al, 2009). 

1.3 Chromophore Extraction 

The selection of light wavelength to project during imaging is crucial for determining 

chromophore concentration due to substance-dependent absorption spectrums. Excitation 

wavelength selection for optimal extraction of chromophores of interest within tissue is 

dependent on the number of chromophores of interest and their relationships to one another. 
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Isosbestic points, wavelengths at which the absorption of 2 or more chromophores are identical, 

are critically important for rigorous quantification of chromophore pairs (Nitzan 2014). For 

successful extraction of individual chromophores within a pair, the wavelength where the two 

chromophores have the highest relative differences in absorption must be identified. Ideally, this 

wavelength will be one where few other chromophores would have a significant impact on 

absorption. This extraction process uses the results at the selected isosbestic point to determine 

total concentration, and results at the wavelength of maximum difference to determine relative 

concentration of one of the paired chromophores. Contrasting this approach, solo chromophore 

extraction does not involve isosbestic points. As a result, accurate extraction is more dependent 

on the known optical properties of the background tissue and other nearby chromophores to 

select suitable wavelengths. The selected chromophores need to have sufficient contrast with 

other chromophores and background tissue to isolate the concentration of the chromophore of 

interest. 

Two key chromophores of particular interest in SFDI are oxyhemoglobin and 

deoxyhemoglobin, which can provide crucial information on blood oxygenation levels. These 

two forms of hemoglobin share isosbestic points near 586nm and 808nm (see Figure 5), with 

ideal wavelength for an optimal signal to noise ratio for determining the concentration of these 

chromophores at 659nm (see Figure 5) At this wavelength, the relative absorption for 

deoxyhemoglobin is ten times greater than that of oxyhemoglobin (Meglinski & Matcher, 2002) 

and few other tissues have absorption coefficients as significant. However, melanin, a 

chromophore responsible for human skin pigmentation, also absorbs in this range. This 

complicates extraction and impairs accuracy when using oxy- and deoxyhemoglobin, as well as 

other tissue chromophores using this range. 
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Fig 5: Absorption of most relevant chromophores of interest - oxyhemoglobin (O2Hb), 

deoxyhemoglobin (HHb), melanin, lipids and water (commonly anticipated secondary or 

background chromophores). Data sourced from S. L. Jacques, 2018. 

As melanin content varies widely (Meglinski & Matcher, 2002), utilizing an array of LUTs 

designed with the appropriate skin phenotypes in mind may be far more accurate than a generic 

LUT or applying LUTs built for a very different skin phenotype. Poorly fitted LUTs can result in 

poor outcomes for patients, as was seen during the COVID-19 pandemic, where non-Hispanic 

black patients were almost twice as likely to have hypoxemia that went undetected by pulse 

oximetry than their non-Hispanic white counterparts (Sudat et al, 2023; Sjoding et al, 2020; 

Bickler et al, 2005). To determine what LUT parameters are most appropriate, a patient’s skin 

must be assessed objectively. Unfortunately, many of the historical skin tone classifications are 



10 
 

   

 

subjective, creating significant limitations in accurately extracting tissue chromophores from 

members of underrepresented populations. The Fitzpatrick scale, a classification schema for 

human skin tone developed in the 1970s to assist with psoralen and UVA (PUVA) therapy, (see 

Figure 6) has severely limited use for academic purposes, especially in contexts unrelated to 

sunburn as a result of its subjective, self-administered, and survey-based assessment methods 

(Phan et al, 2021). Placement on the Fitzpatrick scale is based on patients self-reporting their 

skin’s reaction to sun exposure, on a spectrum from burning to tanning. Many other models 

have little to no scientific basis, such as von Luschan’s chromatic scale, based purely on visual 

comparisons (Smith 2002). 

 

Fig 6: Fitzpatrick scale depiction of relative values showing six categorizations of skin and 

original purpose as basic skin cancer risk assessment tool. 

Cutaneous colorimetry provides researchers with a more objective tool with which to 

assess skin color: the CIELAB color system, which represents color via three dimensions as 

seen in Figure 7: lightness (typically denoted by L* but marked as L** in this paper to avoid 

confusion with the L* parameter used in SFDI) which ranges from pure black at 0 to pure white 

at 100; a*, which indicates a red-green color component where +a* is more red and -a* is more 

green; and b*, which indicates a yellow-blue color component where +b* is more yellow and -b* 

is more blue.  
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Figure 7: Representation of the triple axis color system used in cutaneous colorimetry. 

These two chromaticity parameters align with the mechanisms of natural human vision in 

distinguishing and identifying color, and all three together are likely to present a very suitable 

mechanism for estimates of melanosome concentration, with L**, a*, and b* corresponding with 

total melanin, pheomelanin, and eumelanin concentration respectively. These estimates are 

limited however; human skin variation tends to range from L** values of 30 to 80 at the far 

extremes and increasing melanin concentration will eventually result in reduced chromaticity. 
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(Ly et al, 2020) Cutaneous colorimetry has been used in conjunction with SFDI to demonstrate 

a basic level of correlation between values in the CIELAB system and optical properties relevant 

to SFDI (Phan et al, 2022). Although this technique is very promising and a clear improvement 

over previous methods of skin tone assessment, the early state of current research makes 

apparent the necessity of additional research before melanosome concentration can be reliably 

estimated via colorimetry, which is beyond the scope of this project. 

1.4 Modeling Photon Propagation 

The radiative transfer equation (RTE) allows for the analytical modeling of energy 

transfer through a medium in the form of electromagnetic radiation based on absorption, 

emission, and scattering pattern. The RTE can be seen in Equation 5, where t is time, c is the 

speed of light in the tissue, μt is the extinction coefficient and equal to the sum of μs
 and μa (the 

scattering and absorption coefficients, respectively), P is a phase function representing the 

probability of light at angle s’ scattering at the angle dΩ around direction s, and S(r,s,t) 

represents the light source where r denotes position, s denotes direction, and t denotes time. 

Unfortunately, the RTE is very difficult to solve without approximations such as the diffusion 

approximation; these approximations result in the solution being computationally efficient, but 

limit the possible accuracy (Gardner & Venugopalan, 2011, Haskel et al, 1994). 

Equation 5

 

 One common approximation for modeling photon propagation in biological tissues using 

the RTE is diffusion approximation, wherein it is assumed that optical scattering dominates at a 

ratio of at least 10:1 (Haskell et al, 1994). This assumption may be true for some light-skinned 

individuals, but becomes progressively less suitable for use as complexion darkens (Meglinski & 

Matcher, 2002; Bickler et al, 2005). Using the diffusion approximation, the RTE is reduced to the 
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diffusion equation, shown in Equation 6, where Φ(r,t) is the fluence rate and D is the diffusion 

coefficient of the medium. 

Equation 6  
1

𝑐

𝜕𝛷(𝑟,𝑡)

𝜕𝑡
+ 𝜇𝑎𝛷(𝑟, 𝑡) − 𝛻 ∙ [𝐷𝛻𝛷(𝑟, 𝑡)] = 𝑆(𝑟, 𝑡) 

The diffusion coefficient D is described in Equation 7, where μs’ is the reduced scattering 

coefficient and μa is the absorption coefficient. 

Equation 7    𝐷 =
1

3(𝜇𝑎+𝜇′𝑠)
 

Another limitation of the diffusion approximation approach is the reliance upon an 

assumption of homogeneous tissue, neglecting the possibility of multiple layers with different 

properties (Alexandris et al, 1998). This assumption has been helpful in previous models for 

SFDI but suffers from inequitable patient care outcomes due to natural variations in human skin 

tone (Sudat et al, 2023). As melanin is only present in the epidermis, a layer of tissue commonly 

approximated as 100 microns thick (Meglinski & Matcher, 2002; Lister et al, 2012) simply 

modeling the change in skin tone as a change in a homogenous tissue layer is likely to result in 

errors as compared to a multilayer approach (Gardner & Venugopalan, 2011; Tabassum et al, 

2018).  

1.5 Numerical Simulation Approaches 

The primary method of photon modeling for SFDI is currently Monte Carlo simulations. 

The Monte Carlo method of simulation uses large numbers of repeated random sampling trials 

and is very effective at modeling complex probabilistic systems which may be difficult to solve 

analytically. Equation 8 shows how to calculate diffuse reflectance, Rd, as a function of spatial 

frequency, fx, with Monte Carlo simulations for SFDI, where N is the total number of photons 

simulated and Wn is the weight of the nth photon - the means of determining Wn being the 

primary differentiation between different Monte Carlo simulation methods (Gardner & 

Venugopalan, 2011). 

Equation 8  𝑅𝑑(𝑓𝑥) =
1

𝑁
∑ 𝑊𝑛

𝑁
𝑛=1  
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In the context of SFDI, several different options are available to perform these 

simulations with open-source tools - the foundational method being developed in stages by 

Steven Jacques and his graduate students between 1985 and 1999 (Jacques, 2022). Several 

software generations of improvements and advancements have been made since, most notably 

Monte Carlo Command Line (MCCL) developed by UC Irvine (Hayakawa et al, 2022), and more 

recently Monte Carlo Extreme (MCX) by Fang et al. (Fang & Boas, 2009).  
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CHAPTER 2 

METHODS & SOFTWARE 

2.1 Monte Carlo Command Line 

Recently, MCCL has been the most commonly used software for generating LUTs, but 

suffers from requiring familiarity with shell interfaces that may present barriers to use. UC 

Irvine’s Virtual Tissue Simulator (VTS), however, has a dedicated graphical user interface (GUI) 

which makes testing and interaction to understand certain basic functions involved in MCCL 

much easier. In our own research, we used the VTS for comparison testing regarding the 

behavior of Rd plots at varying values of L* and optical property ratios. A more significant 

limitation of MCCL is its reliance on the CPU for large numbers of similar calculations - a 

process more readily handled by the GPU in modern computing (Hayakawa et al, 2022). 

2.1.1 Gardner Method Implementation 

 One method of Monte Carlo simulation readily implemented through MCCL is the 

Gardner method (Gardner & Venugopalan, 2011), which consists of a pencil beam illumination 

source projected normally onto the simulated tissue, with the resulting photon paths weighted 

based on the relevant spatial frequency and the resulting diffuse reflectance calculated via the 

following equation: 

Equation 9   𝑊𝑛 =𝑒𝑥𝑝 (−𝜇𝑎,1𝑑1,𝑛 − 𝜇𝑎,2𝑑2,𝑛) 𝑒𝑥𝑝 (−2𝜋𝑖𝑓𝑥𝑥𝑛)  

Where di,n is the total photon path length in the i'th layer, with subscripts 1 & 2 

respectively indicating the top & bottom layers of a two-layer tissue model. The first term 

handles the effects of absorption, matching a conventional continuous absorption-weighted MC 

simulation, while the second term accounts for spatial modulation as a frequency-dependent 

phase accumulation; xn is the net lateral displacement of photon exit location relative to source. 

In practical terms, this means that the Gardner method is able to exploit the non-

directionality of Beer-Lambert equation, using a pencil source and photon displacement-based 

weighting mechanism to simulate a distributed spatial frequency-based illumination for which 
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only the photons that end up in the origin point are considered. MCCL is able to make effective 

use of continuous calculations (Hayakawa et al, 2022), with arbitrary layer sizes and properties, 

and no requirement for an outer boundary on the simulated tissue area. 

2.2 Monte Carlo Extreme 

Recently, Dr. Qianqian Fang has developed Monte Carlo Extreme, or MCX, a GPU-

based Monte Carlo simulation program which utilizes GPU acceleration to improve speeds by 

running many simultaneous computations of photon paths in parallel (Fang & Boas, 2009; Yan 

et al, 2020). The program is available in a number of forms for different applications, including 

Mesh-based Monte Carlo (MMC) which displays advantages when modeling complex tissue 

forms, MCX forOpenCL (MCX-CL) which is able to use a wider variety of GPUs and CPUs for 

processing, MCXStudio, an equivalent to VTS with a built-in GUI, and MCXLAB, which converts 

MCX’s code into a MEX file able to called and managed directly from MATLAB. MCXLAB is the 

program used here due to the ease of adjustment, testing, and use thanks to MATLAB’s 

convenient user interface and debugging tools (Fang & Boas, 2009). MCXLAB uses a voxel-

based simulation to simplify photon path modeling calculations and tissue simulation, while 

diffuse reflectance can be captured by the use of detectors, a bounding box system, or a voxel-

based pixel-like binning system for photon accumulation. The latter is directly comparable to the 

camera of actual SFDI instrumentation, and the option used for the simulations in this paper. 
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Figure 8a and 8b: Representative diagrams of the overall structure of MCCL and MCX tissue 

simulations. Fig 8c: representation of optical property setup of MCX and projected Fourier light 

intensity pattern. 
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 While MCCL is capable of simulating either random photon absorption (sometimes 

called ‘Russian roulette’ simulation) or weighted photon ‘packets’ wherein the weight is reduced 

based on the absorption profiles of the tissue medium and pathlength, MCX by default works on 

the weighted photon packet model with only a marginal capacity to simulate total photon loss. 

This model is more reliable for acquiring detailed information with a lower photon count as each 

packet simulates many photons - the total photon losses in the simulation reduces effective 

photon simulation counts beyond those points of loss (and associated information), while the 

weighting model still retains the relevant information regarding likelihood of photon loss. This 

results in the photon packet model being a more computationally efficient method for the 

purposes of SFDI lookup table generation (Yan et al, 2020; Fang & Boas, 2009). Both MCCL 

and MCX are capable of simulating a large variety of photon sources, of which the ‘pencil’ and 

‘Fourier’ source types are most relevant. The ‘pencil’ source simulates a pencil beam source 

and can be modeled by both MCCL and MCX, while only MCX is capable of modeling the 

‘Fourier’ source, which projects a modulated 3-dimensional quadrilateral source with uniformly 

distributed but differentially weighted photon packets based on a specified spatial frequency 

pattern. This intensity distribution, which matches the projection patterns used for SFDI in 

clinical practice, is not possible to recreate in MCCL. Given this more direct modeling of SFDI 

imaging, the Fourier method may suffer from fewer potential sources of error, especially in a 

voxel-based simulation platform, enabling greater accuracy and speed in lookup table 

generation. 

2.2.1 Gardner Method Implementation 

To ensure that similar results could be achieved via MCX as with MCCL, we attempted 

several different methods to recreate the Gardner Method in MCX before settling on our present 

methodology. This would also allow further testing to take advantage of MCX’s GPU 

acceleration for generating LUTs. As this project is a continuation of previous work, certain code 

was partially inherited from others, and the methods used to calculate Rd for the Gardner 
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method recreation displayed certain indiscrepancies compared to the results obtained by MCCL 

- it took multiple iterations of testing to realize that the origin of these inconsistencies was not a 

fundamental problem with recreating the Gardner method with MCXLAB’s voxel-based 

simulations, but rather a mistake in post-processing calculations related to which axes were of 

interest (see Appendix for relevant code). 

2.2.1.1 Comparison to MCCL Gardner Method 

The Gardner method as originally described for photon weight calculations appears as 

shown in Equation 10, where W represents the photon’s weight, μa represents the absorption 

coefficient of the simulated tissue layer, d represents the photon path length, fx and fy are spatial 

frequencies in the x and y axes respectively, and xj and yj are displacement of the photon’s exit 

position from the origin in the x and y axes respectively.  

Equation 10    𝑊𝑗 = 𝑒−𝜇𝑎𝑑 ∗ 𝑒−2𝜋 𝑖 𝑓𝑥𝑥𝑗 ∗ 𝑒−2𝜋 𝑖 𝑓𝑦𝑦𝑗  

As the spatial frequency was only non-zero for the x axis, the term for the y axis can be 

simplified to e0 as any term multiplied by zero becomes zero. This then simplifies to the form 

shown in equation 11, as e0 is equal to 1. This can be further adjusted to account for multiple 

layers if necessary, adding new terms multiplicatively to represent the absorption from each 

layer based on the absorption coefficient and total pathlength within that layer. 

Equation 11    𝑊𝑗 = 𝑒−𝜇𝑎𝑑 ∗ 𝑒−2𝜋 𝑖 𝑓𝑥𝑥𝑗 

This can be further simplified by using Euler’s identity (see equation 12) to reduce the 

second term of Equation 10. 

Equation 12    𝑒𝑖𝑥 =  𝑐𝑜𝑠 (𝑥)  −  𝑖 𝑠𝑖𝑛 (𝑥) 

This reduced form can be seen in Equation 13, below: 

Equation 13   𝑒−2𝜋 𝑖 𝑓𝑥𝑥𝑗 =  𝑐𝑜𝑠 (2𝜋  𝑓𝑥𝑥𝑗) −  𝑖 𝑠𝑖𝑛 (2𝜋 𝑓𝑥𝑥𝑗) 

 

Both the spatial frequency (fx) and the displacement from the origin along a single axis 

(xj) must be real numbers; as a result, their product with 2π will always be real as well. This 
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means that the second (sine) term of the reduced form seen in Equation 13 will always remain 

imaginary. As the data of interest lies wholly along the real axis, this imaginary component may 

be entirely ignored, resulting in the form shown in Equation 14. 

Equation 14    𝑊𝑗 = 𝑒−𝜇𝑎𝑑 ∗ 𝑐𝑜𝑠(2𝜋 𝑓𝑥𝑥𝑗)  

2.2.1.2 Simulated Tissue Phantom Dimensions 

The phantom dimensions were structured to centralize around the light source at the 

center more, as was our detection method, using a large spherical detector. We used 

dimensions of 200mm x 200mm x 200mm (10mm voxels) when testing homogeneously or 

100mm x 100mm x 40mm (1mm voxels) for multilayer tests, with 160 and 80mm radius detector 

spheres respectively. In Figure 9, which shows the simulated phantom, the wire outline 

indicates the edges of the voxel simulation, the red arrow indicates the origin and direction of 

simulated photons, and the green sphere represents the detector radius. Only photons which 

exit the bottom plane of the simulation inside the detector radius are detected, resulting in the 

oversized detector seen here to capture all relevant photons from one surface. Tissue layers are 

not visible due to absorption only being calculated as part of post-processing. Voxel size was 

less important to maintain as they were not being used as pixel collectors (demonstrably so, 

based on testing); using a single detector and bounding box detection - once a photon crosses 

out of the simulation space, the position of exit and other relevant information such as velocity 

and final weight are logged and the photon simulation is terminated. 
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Fig. 9: Representation of Gardner method simulated tissue domain with detector and photon 

source in MCXLAB generated using mcxpreview.  

2.2.2 Fourier Source Simulation(s) 

The Fourier projection constructs the origin of the light source as an area and models 

spatial intensity by using different initial weights for photon packets based on specified 

frequency and the packet’s unique starting position within that area (Yan et al, 2020). Figure 9c 

shows a very basic representation of this, with the color intensity of each blue arrow 

representing initial photon packet weight by position. This results in a simulated process directly 

analogous to clinical SFDI, including having to demodulate the output of the simulation to obtain 

finalized values - unlike the Gardner method, which does not require demodulation. Coding this 

demodulation process was the bulk of the difficulty in programming the Fourier method 

simulations (see Appendix for relevant code. 
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2.2.2.1 Simulated Tissue Phantom Dimensions 

Though the initial simulated phantom was structured to be 100mm long, 60mm wide, 

and 20mm thick, with the projection area matching the x-y profile, testing revealed a significant 

drop in Rd values around the edges of the simulation in a manner dependent on simulated 

tissue phantom optical properties. This effect became negligible after adding a 20mm margin on 

either side to the simulation dimensions in the x and y planes, suggesting that the edge effect 

was due to simulated photons taking paths that would lead outside of the simulation, and 

resulting in overall dimensions for the simulation of 140mmx100mmx20mm. The projection area 

remained 100mm by 60mm; as by restricting the projection area to an integer number of spatial 

frequency cycles, the total power/area for a given photon count could remain constant across 

different simulations. Figure 10 shows this in more detail; the wire outline indicates the edges of 

the voxel simulation, the red arrow indicates the direction of simulated photons, the colored 

volumes indicate layers with different optical property values (purple: bulk tissue layer; green: 

skin layer), and the gray rectangle represents the light projection origin area. 
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Fig. 10: Representation of Fourier method simulated tissue domain with detector and photon 

source in MCXLAB generated using mcxpreview. 

2.2.2.2 Demodulation & Rd Calculation 

While MCXLAB comes with certain ready-made functions to calculate diffuse reflectance 

while performing simulations, they are not always suitable for use for all applications. We used 

mcxcwdref.m, a function for computing continuous wave (CW) diffuse reflectance using the 

detectors system, as a basis to write a new function, mcxcwbbdref.m, designed to use bounding 

box detectors in place of spherical/point detectors. However, after significant testing and 

comparison with a third alternative method (‘zero-layer’ detection), we found that while using 

bounding box detection was able to capture additional information about simulated photons 

upon tissue exit (such as photon velocity vector, momentum transfer, and scattering event 

counts), it also increased the computational burden and coding complexity significantly, and our 

study’s aims were unable to benefit from the additional information provided. As such, we opted 

to use zero-layer detection instead. 
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Zero-layer detection makes use of an MCX feature wherein diffuse reflectance or 

transmittance data can be saved in boundary voxels upon a simulated photon’s exit from the 

simulation area at that boundary when the appropriate config variable is set (cfg.issaveref=1) 

and those boundary voxels have all properties set to 0. Each boundary voxel saves the photon 

packet weights of simulated photons that exit the simulated tissue into the voxel’s local volume 

of simulation space as a negative sum, terminating the simulated photon packets after their 

weight is recorded. This conveniently bins the recorded photon weights into a pixel-like format, 

allowing ready use of pixel-by-pixel demodulation approaches (see Equation 1). 

We wrote mcxdemodRd.m (see Appendix) to process the resulting information, which 

normalizes the recorded phase-pixel intensities based on the total applied photon density 

(photons per surface voxel within the projection area) using a procedure heavily based on 

methods suggested by one of Dr. Qianfang’s students (Ragunathan, 2021), before 

demodulating using Equation 15, shown here for reference. 

Equation 15 

𝐴𝐶(𝑥, 𝑦)  =  
√2

3
 {[𝐼0°(𝑥, 𝑦)  − 𝐼120°(𝑥, 𝑦)]2 + [𝐼120°(𝑥, 𝑦) − 𝐼240°(𝑥, 𝑦)]2 + [𝐼240°(𝑥, 𝑦) − 𝐼0°(𝑥, 𝑦)]2}1/2 

 

While the Gardner approach calculates the reduced photon weights from absorbance 

and pathlength after the fact so that multiple spatial frequencies can share the same initial 

simulation, cutting down on number of required simulations at the cost of additional post-

processing computation load, the Fourier approach takes advantage of the increased 

computational power afforded by modern GPUs to reduce the photon weight with each photon, 

and recreates the demodulation process by directly modeling SFDI projection patterns. 
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CHAPTER 3 

SIMULATIONS 

 A variety of tissue optical properties were simulated, based on previous work by 

Tabassum et al. (Tabassum et al, 2018) to enable comparisons, available optical phantoms, 

and known/calculated optical properties of human epidermal, dermal, and subdermal tissue 

based on the work of Meglinski & Matcher, Lister et al., and the Oregon Medical Laser Center 

w/ Steven Jacques (Meglinski & Matcher, 2002; Lister et al 2012; Jacques 2018); each relevant 

method will detail the relevant optical properties. 

3.1 MCX and MCCL Behavioral Comparison 

MCCL was used to run several simulations using the Gardner method across a total of 

fifty-one spatial frequencies (applied using post-processing) evenly distributed from 0.0 mm-1 to 

0.50 mm-1 inclusive in 0.01 mm-1 increments on four different homogenous simulated tissue 

phantoms with defined L* values of 0.5, 1.0, 2.0, and 4.0, with a constant ratio of μs':μa of 1:100. 

Fifty-one spatial frequencies were generated due to the computational requirements of MCCL, 

as this would allow the results of this generation process to be used in later tests as well. 

MCXLAB was used to run several simulations with 1e7 photons across a total of ten key 

spatial frequencies (0.0, 0.167, 0.333, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50 in mm-1) on 

four different homogenous simulated tissue phantoms with defined L* values of 0.5, 1.0, 2.0, 

and 4.0, with a constant ratio of μs':μa of 1:100, using both Fourier and Gardner simulation 

methods (spatial frequencies applied using post-processing for Gardner method, per standard 

practice).  

MATLAB was used to generate a set of diffusion approximations on homogenous 

simulated tissue mediums using diffApproxSFD.m (see Appendix; adapted from Cuccia et al, 

2009), for comparison purposes. These were performed across a total of ten spatial frequencies 

(0.0, 0.167, 0.333, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50) on four different sets of 
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homogenous simulated tissue characteristics with defined L* values of 0.5, 1.0, 2.0, and 4.0, 

with a constant ratio of μs':μa of 1:100. 

Table 2: Comparative Simulation Parameters 

Simulation Method Fx L* Photon # Voxel Size 

MCCL 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e7 1mm 

Fourier 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e5 1mm 

Fourier 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e7 1mm 

Fourier 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e9 1mm 

Gardner 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e5 1mm 

Gardner 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e7 1mm 

Fourier 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 1e7 0.5mm 

Fourier 0 to 0.50 (ten) 0.5, 1.0, 2.0, 4.0 4e7 0.5mm 

Diff Approx 0 to 0.50 (ten) NA NA NA 

Table 3: OPs Of Defined L* Values 

L* μa μs' μs (g=0.71) 

0.5 0.0198 1.98 6.828 

1.0 0.00990 0.99 3.414 

2.0 0.00495 0.495 1.707 

4.0 0.002475 0.2475 0.8535 
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3.1.1 Comparison between MC Simulation Results and Diffusion Approximation by 

Spatial Frequency 

 

Fig. 11: Comparison of simulation results using a Fourier source approach with Monte Carlo 

Extreme (MCX), Gardner method approach using MCX, Gardner method approach using 

MCCL, and the Diffusion Approximation Equation. 

For Figures 11-14, diffuse reflectance (Rd) is displayed as a function of spatial frequency 

(fx) for varying L* values at a constant ratio of μs∕μa = 100. 

Figure 11 serves to illustrate the similarities and differences between simulation 

methods. These results clearly demonstrate the high level of similarity between MCX Gardner 

and MCCL Gardner approaches, as well as their divergence from diffusion approximation at 
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higher spatial frequencies and L* values, indicative of the limitations of an approximation-based 

approach (Khan et al, 2021). The use of a Fourier-source based approach produces very 

different results, with the overall changes being dependent both on spatial frequency and L* 

value. Importantly, it is not immediately obvious if the Fourier or Gardner approach would be 

more suitable for LUT generation in practice, given their differing levels of adherence to a 

theoretical model. Due to the more direct analogy to the clinical practice in the Fourier 

simulation, the alterations made may be a closer approximation of a practical scenario. 

3.2 Comparative Performance of Fourier & Gardner Simulation Methodologies with 

Varying Photon Counts 

Further simulations with 1e5 (Gardner & Fourier) and 1e9 (Fourier) photon counts were 

run for comparison of the effects of photon count changes with the previously mentioned spatial 

frequencies and simulated tissue phantoms. 
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3.2.1 Comparison Between MCX Simulation Results by Simulated Photon Density 

 

Fig. 12: Comparison of simulation results using Fourier source and Gardner method approaches 

with MCX at a reduced simulated photon count (105) and g=0.9.  

We then tested the effects of altered photon counts for simulation on the MCX Fourier 

and MCX Gardner methods, shown in Figures 12-13; Figure 13b lacks a simulation of the 

Gardner method in MCX using 10^9 photons due to the extraordinary memory requirements this 

entailed. In conjunction with previous comparisons of Fourier vs. Gardner with identical photon 

counts (see Figure 12), these results demonstrate that while Gardner is less sensitive to a 

reduced photon count, the post-processing memory requirements pose issues for attempting to 

elevate the overall number of simulated photons The Fourier approach, though requiring a 

higher baseline to avoid a ‘plateau’ effect at high spatial frequencies, can continue to benefit 

from improvements in computational power for further increases in the number of simulated 

photons. 
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Fig. 13. a) Comparison of simulation results using a Fourier source approach with MCX 

at several different simulated photon counts (105, 107, and 109). b) Comparison of simulation 

results using a Gardner method approach with MCX at two different simulated photon counts 

(105 vs 107).   

3.3 Effects of Reduced Voxel Scaling on Fourier Method 

We performed simulations with the Fourier method using previously mentioned 

simulated tissue phantoms and spatial frequencies, with an anisotropy factor of 0.71, using 1e7 

photons with 1mm voxels, 1e7 photons with 0.5mm voxels, and 4e7 photons with 0.5mm 

voxels, in order to test the effects of altered voxel size to investigate the capacity for more direct 

simulations of skin layers at their approximate thickness, as well as if these effects could be 

ameliorated by increasing the photon count proportionally to maintain cross-sectional area 

density of photons vs bin count for diffuse reflectance determinations. Due to the relationship 

between linear and area dimensions, a halving of voxel size results in a quadrupling of cross-

section voxel count, resulting in the quadrupling of photon count to test cross-sectional photon 

density compensation. As illustrated in Figure 14: the ratio of photon count to voxels per 

horizontal layer is identical for 1.0mm voxels with 1e7 photons and 0.5mm voxels with 4e7 

photons, but reduced by a factor of 4 for the 0.5mm voxels with 1e7 photons tests. 
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Fig 14: Comparison of simulation results using a Fourier source approach with MCX at 

different photon counts.  

The results show that reduced voxel size makes a significant difference, as expected, 

due to the pixel-by-pixel demodulation process which is severely impacted by noisy data; 

smaller voxels results in smaller ‘pixels’ which means more numerous bins with fewer photons 

each, resulting in a reduction in accuracy. Increasing the photon count accordingly only helps at 

higher L* values (anticipated path-lengths), as the total propensity for noise in the data is still 

increased by the more numerous bins exacerbating small differences in photon endpoints. 

Figure 14 also points towards a cause for the plateauing effect demonstrated previously with 

higher l* values at higher spatial frequencies with insufficient photon counts - both higher spatial 

frequency and higher l* values present more opportunities for noise with a greater change in 

photon intensity projected over a given area and a longer photon path creating more possible 
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endpoints. As reduced voxel size - with associated increase in voxel count via linear-cubic 

relationship - rapidly balloons memory requirements for simulation, the associated requirement 

to simulate additional photons to maintain a similar density of simulated photons per voxel layer 

increases computational requirements significantly, such that further reductions in voxel size 

placed a very significant strain on available resources for simulation, up to and including 

frequent computer crashes. As MCX is intended for easy implementation on personal 

computers, laptops, and readily available lab computational resources, this analysis conducted 

no further tests along this line of inquiry. Skin layer tests were thus performed with an applied 

optical property weighting factor to account for the altered layer thickness in the simulation such 

that encountered scattering and absorption effects should match (as scattering and absorption 

coefficients are measured per unit distance) (Meglinski & Matcher, 2007). 

3.4 Comparative Speed Performance of MCX and MCCL 

MCCL, MCX Gardner, and MCX Fourier were used to run several simulations across a 

total of 51 spatial frequencies uniformly distributed from 0 to 0.50mm-1 on four different 

homogenous simulated tissue phantoms with defined L* values of 0.5, 1.0, 2.0, and 4.0, with a 

constant ratio of μs':μa of 1:100 to determine relative times required for similar computations. 

3.4.1 Comparison between MC Simulation Computation Time Requirements 

We next tested the performance of MCX compared to MCCL in terms of computational 

time requirements for a range of 51 spatial frequencies evenly distributed from 0.0mm -1 to 

0.5mm-1 across a range of simulated tissue optical properties based on established L* values. 

Table 1 demonstrates the significant advantages in performance offered by MCX’s GPU 

acceleration and voxel-based simulations, (~114x speed boost at L*=0.5; ~24x speed boost at 

L*=4). This offers a clear advantage in using MCX for generating LUTs using higher photon 

counts, and/or generating a greater number of LUTs so as to cover a wider variety of situations. 

As the Gardner method implemented in MCX here has a shorter runtime (Table 4) than 

an equivalent simulation performed using MCCL Gardner while producing nearly identical 
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results, the following elements of this analysis will be focused on the results of the MCX 

Gardner and MCX Fourier based simulation approaches and the behavior of LUT inversion 

algorithms based on these results. 

Table 4: Comparative Time Trial Performance for 51-Frequency Runs 

L* Val MCX Fourier MCX Gardner MCCL Gardner 

0.5 382.56 sec 141.25 sec 43614.75 sec 

1.0 233.42 sec 122.73 sec 19311.29 sec 

2.0 158.37 sec 99.92 sec 8360.78 sec 

4.0 122.45 sec 87.27 sec 2941.06 sec 

Table 4: Representative time trials of 51-frequency runs of 1e7 photon count simulations. 

Simulations using lower l* values take longer as a result of higher scattering coefficients 

resulting in a greater number of scattering events and attendant calculations; MCX Fourier is 

more impacted as a result of the computational cost of simulations dominate computational 

resource costs as compared to the level of post-processing required by MCX Gardner. 

3.5 Homogenous LUT Generation 

The MCX Fourier approach and the Gardner method in MCX were each used to 

construct a set of LUTs based on simulated homogenous tissue phantoms. The physical 

parameters of the simulated tissue phantoms used to produce these LUTs are shown in Table 

5. The generation process was used for iterative testing to find suitable geometric parameters 

and ensure effective MCXLAB implementation of the LUT generation process for both methods, 

with a final set of generated homogenous LUTs used alongside an extant popular MCCL 

Gardner method-based homogenous LUT (LUT_Homogenous_Large_1e6.mat) to extract 

optical properties from an available physical homogenous tissue phantom imaged with via 

VISNIR using a Modulim Reflect RS and these extracted optical properties compared to DOSI 
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determined optical properties to ensure practical applicability and test relative accuracy. 

Table 5: Homogenous Simulated Tissue Phantom Properties 

Parameters Fourier MCX Gardner MCCL Gardner 

Photon # 1e7 1e7 1e6 

Spatial Frequencies 

(mm-1) 

0.0, 0.1 0.0, 0.1 0.0, 0.1 

n 1.4 1.4 1.4 

g 0.82 0.82 0.82 

μa 0 - 0.2 (100 steps) 0 - 0.2 (100 steps) 0 - 0.5 (400 steps) 

μs’ 0.01 - 5.0 (100 steps) 0.01 - 5.0 (100 steps) 0.2 - 7.0 (300 steps) 

Voxel size 1mm 10mm N/A 

Simulated Tissue 

Phantom Dimensions 

140mm x 100mm x 

20mm 

200mm x 200mm x 

200mm 

N/A 

Illuminated Area 100mm x 60mm N/A N/A 

3.6 Multilayer LUT Generation and Comparison of Gardner & Fourier Methods 

The MCX Fourier approach used a three-layer system wherein the top layer represents 

the epidermis with μa and μs’ values weighted based on relative thickness compared to the voxel 

sizes used, the middle layer represents the dermis with fixed optical properties with fixed μa and 

μs’ values weighted based on similar metrics, and the bottom layer represents a significantly 

thicker adipose tissue adequately comparable to the semi-infinite tissue layers used in other 

multi-layer SFDI studies. The Gardner method used a two-layer system similar to previous work 

with only a skin layer and an adipose tissue layer. Table 6 shows the optical properties of the 

various layers used, as well as the modeled thickness (theoretic thickness being simulated) and 

the voxel depth (actual depth of voxels used to represent the layer for the simulation) 
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Table 6: Multilayer LUT Layer Specifications 

  

Layer μa μs n g modeled thickness 

(mm) 

voxel depth 

Fourier dynamic adipose 

(bottom) layer 

0 - 0.20 0.01 - 5.0 1.4 0.82 16 16 

Fourier static dermis 

(middle) layer 

0.04292 2.267 1.4 0.82 1.8 2 

Fourier light epidermis 

(top) layer (3% mel.) 

0.66766 6.413 1.4 0.82 0.1 1 

Fourier dark epidermis 

(top) layer (42% mel.) 

9.10784 6.413 1.4 0.82 0.1 1 

Gardner dynamic 

adipose (bottom) layer 

0 - 0.20 0.01 - 5.0 1.4 0.82 39 39 

Gardner light epidermis 

(bottom) layer (3% mel.) 

0.66766 6.413 1.4 0.82 0.1 1 

Gardner dark epidermis 

(bottom) layer (42% 

mel.) 

9.10784 6.413 1.4 0.82 0.1 1 

Fourier static bottom 

layer (DOSI-matched) 

0.002793 6.49313 1.4 0.82 16 16 

Fourier dynamic top 

layer 

0 - 9.9 0 - 29.7 1.4 0.82 0.1 1 
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3.6.1 Comparison between MCX Multilayer Simulation Based LUT Inversion Algorithms: 

Fourier vs Gardner 

 

Figure 15: Comparison of LUT inversion algorithms based on three-layer Fourier source and 

two-layer MCX Gardner method approaches with a light simulated skin layer. (a) and (b) Optical 

properties versus AC Rd and DC Rd, respectively, for the MCX Gardner LUT. (c) and (d) Optical 

properties versus AC Rd and DC Rd, respectively, for the Fourier LUT.  

For Figures 15, 18, 19, 23, and 24, Rd values are shown both in the color dimension and 

as labeled isolines for the entire range of simulated μa and μ’s values. 

For Figures 16, 20, and 21, optical property values (μa and μ’s) are shown both in the 

color dimension and as labeled isolines for the entire range of resulting Rd values. 

An example of the effects of simulation method on LUT inversion algorithms for a three-

layer phantom using optical properties that simulate a lighter-skin tone (3% melanosome 

content) is shown in Figure 15, using two spatial frequencies and comparing Gardner method 

and Fourier source approaches in MCX. The Fourier and Gardner approaches demonstrate 

significant differences in coverage values but a very similar structure in the distribution pattern 

as shown by the isolines, with Fourier in particular covering a wider range of potential diffuse 
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reflectance values (approx. 0-0.71 vs approx. 0-0.6), suggesting a possible increase in 

specificity during OP extraction. 

This appears to be confirmed by Figure 16, which compares the theoretic 

extracted/projected optical properties for every combination of diffuse reflectance values which 

the LUTs contain, with μa optical property extraction in particular being especially affected, 

particularly for high Rd values returned from planar sources (DC).  

 

Figure 16: Comparison of optical property extractions using LUT inversion algorithms based on 

three-layer MCX Fourier source and two-layer MCX Gardner method approaches with light 

simulated skin layers. (a) and (b) Rd values versus μa and μs’, respectively, for the MCX Gardner 

2-layer LUT. (c) and (d) Rd values versus μa and μs’, respectively, for the Fourier 3-layer LUT. 

Figure 17 illustrates both the absolute and relative discrepancies between MCX Gardner 

and Fourier methods in their overlapping area, with the greatest differences appearing near the 

overlap region’s borders, particularly the regions where the extracted optical properties are at 

their highest or lowest.  
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Figure 17: Impact on optical property extractions of the MCX Gardner two-layer LUT inversion 

algorithm shown as absolute and relative differences compared to the Fourier three-layer case, 

with light simulated skin layers. (a) and (b) Absolute differences in μa and μ’s determinations, 

respectively. (c) and (d) Relative differences in μa and μ’s determinations, respectively. 

Figure 18 demonstrates that the relationship established by Figure 16  holds true when 

modeling a dark-skinned (42% melanosome content) epidermal model as well; the Fourier 

method demonstrates an improved dynamic range when modeling optical properties against 

diffuse reflectance values. 
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Figure 18: Comparison of LUT inversion algorithms based on three-layer MCX Fourier source 

and two-layer MCX Gardner method approaches with a dark simulated skin layer (42% 

melanosome content). (a) and (b) Optical properties versus AC Rd and DC Rd, respectively, for 

the dark skin MCX Gardner LUT. (c) and (d) Optical properties versus AC Rd and DC Rd, 

respectively, for the dark skin Fourier LUT. 

3.7 Multilayer LUT Generation and Skin Type Comparison 

The MCX Fourier approach and the Gardner method in MCX were each used to 

construct a set of LUTs based on simulated multi-layer tissue phantoms. These LUTs were 

produced using simulated tissue phantoms with physical parameters aimed to compare the 

effects of the generation method and assumed skin color on multi-layer LUTs (Table 6).  

For these LUTs, the optical properties of the non-adipose layers were fixed based on 

existing known OPs of the dermis and epidermis given a specific melanosome concentration 

(Meglinski & Matcher, 2002), while the adipose (bulk layer) tissue optical properties serve as the 

free parameters of the inversion algorithm. 
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3.7.1 Comparison between MCX Fourier-source three-layer Simulation-Based LUT 

Inversion Algorithms: Light Skin vs Dark Skin 

 

Figure 19: Comparison of LUT inversion algorithms based on three-layer MCX Fourier source 

method approaches with a light (melanosome content: 3%) and dark (melanosome content: 

42%) simulated skin layer. (a) and (b) Optical properties versus AC Rd and DC Rd, respectively, 

for the light skin Fourier LUT. (c) and (d) Optical properties versus AC Rd and DC Rd, 

respectively, for the dark skin Fourier LUT. 

 To evaluate the necessity of discrete LUTs for different skin colors, we used MCX 

Fourier to compare LUTs generated using simulated tissues with optical properties based on 

low melanosome content versus high melanosome content epidermal tissue to examine the 

impacts of light skin versus dark skin on returned diffuse reflectance values. Figure 19 depicts a 

heatmap colorized version of the LUTs so generated, showing extremely dissimilar Rd values 

but with very similar structures of those values. 
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Figure 20: Comparison of lookup tables generated using dark (melanosome content: 42%) vs 

light (melanosome content: 3%) simulated skin layers in MCX. (a) and (b) Rd values versus μa 

and μs’, respectively, for the light skin Fourier LUT. (c) and (d) Rd values versus μa and μs’, 

respectively, for the dark skin Fourier LUT, with identical axis scaling. 

Figures 20 and 21, which have optical properties matching to varying Rd values are 

shown for both AC and DC frequencies, demonstrate the significant differences in these LUTs. 

Both figures are of the same data, but Figure 20 uses proportional representation with identical 

scaling on axes between light and dark simulated skin layers, while Figure 21 uses scaled 

representation, expanding the axis scaling for the dark simulated skin layer. These also show, 

however, that this difference is primarily scalar, such that LUTs generated using optical 

properties based on dark skin should still function normally for individuals with matching 

complexions. 
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Figure 21: Comparison of lookup tables generated using dark (melanosome content: 42%) vs 

light (melanosome content: 3%) simulated skin layers in MCX. (a) and (b) Rd values versus μa 

and μs’, respectively, for the light skin Fourier LUT. (c) and (d) Rd values versus μa and μs’, 

respectively, for the dark skin Fourier LUT, with relative axis scaling.  

Figure 22, generated by direct division of the light by the dark plots in Figure 19 and 

calculation of the standard deviation of the resulting plots, shows that for light (3%) vs dark 

(42%) melanosome content in the skin layers, the regions with the greatest divergence from this 

scalar pattern occur at extremely low values for μs’ where the Rd values are lowest and μa would 

dominate; this is likely exacerbated due to the stochastic nature of photon scattering in such a 

regime resulting in a relatively elevated impact of noise. The mean of relative Rd values for 

Figure 22 was 7.875 with a standard deviation of 0.612 for the DC comparison, and 6.305 with a 

standard deviation of 0.913 for the AC comparison. 
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Figure 22: Comparison of relative LUT inversion algorithm output patterns based on three-layer 

MCX Fourier source method approaches with light vs dark simulated skin layers. (a) and (b) 

relative values of light vs dark skin Fourier LUT for AC Rd and DC Rd, respectively. (c) and (d) 

standard deviation values of plots (a) and (b), respectively. 

3.8 Physical Tissue Phantom OP Extraction 

We examined the performance of our LUT generation process by using the LUTs to 

process imaging data taken of real tissue phantoms and compare the resulting extracted optical 

properties to optical properties obtained through non-SFDI processes known to be reliable. 

3.8.1 Roblyer Lab Phantoms (Homogenous & Two-Layer) 

Multilayer phantom imaging data was provided by collaborating members of the Darren 

Roblyer lab with BOTlab, with DOSI-confirmed OPs for calibration phantom only, used to 

practically test lookup tables generated, esp. comparing different simulated skin type LUT-

based extraction results for different multilayer phantoms vs. homogenous LUT against 

homogenous top and base layer phantoms. Imaging data provided consisted of 2 cm thick 

homogenous bulk tissue phantoms labeled bpav4, Skin2, Skin3, Skin4, Skin5, and Skin6, as 

well as images of combined tissue phantoms consisting of an approx. 2 millimeter thick skin 

layer on top of the bulk bpav4 phantom, for each skin tissue phantom provided. 
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3.8.2 Phantom Comparisons 

 

Figure 23: Comparison of LUT inversion algorithms based on homogenous Fourier source and 

MCX Gardner method approaches, overlaid by extracted Optical Property values of real tissue 

phantoms provided by the Roblyer lab shown here as red dots. (a) and (b) Optical properties 

versus AC Rd and DC Rd, respectively, for the Fourier LUT. (c) and (d) Optical properties versus 

AC Rd and DC Rd, respectively, for the MCX Gardner LUT.  

Figures 23 and 24 show the extracted optical properties of collaborator-provisioned 

phantom imaging data processed with homogenous and multilayer Fourier and MCX Gardner 

based LUT inversion algorithms respectively, plotted against those same inversion algorithms 

for context. Without DOSI-provisioned data for comparison, only the relative positions of the 

homogenous and multilayer tissue setups serve as useful bases from which to draw meaningful 

conclusions from. The data showed unsurprising results: the multilayer tissue set-ups 

demonstrate a reduced overall absorption coefficient compared to the skin layers on top of them 

due to the thickness of the extremely low absorption bulk tissue phantom (bpav4), and an 

elevated scattering coefficient which may be the result of imperfect border between the bulk 

tissue phantom (bpav4) and the thin skin tissue phantoms, as they were distinct tissue 

phantoms, not cohesive blocks. 
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Figure 24: Comparison of LUT inversion algorithms based on three-layer Fourier source and 

three-layer MCX Gardner method approaches with a light simulated skin layer, overlaid by 

extracted Optical Property values of real tissue phantoms provided by [Roblyer Lab]. (a) and (b) 

Optical properties versus AC Rd and DC Rd, respectively, for the MCX Gardner LUT. (c) and (d) 

Optical properties versus AC Rd and DC Rd, respectively, for the Fourier LUT.  

3.8.3 Tilbury Lab Phantoms (Homogenous) 

Phantom imaging data for testing purposes was acquired in-house via VISNIR using 

Modulim Reflect RS (see Appendix for specifications). Using DOSI-confirmed optical properties 

as a comparison base allowed us to test error rates of homogenous single-layer LUTs 

generated with each method. 
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Table 7: Comparative Error Of Distinct LUT Generation Methods vs Real Tissue Phantom 

LUT λ μa μs' GT μa GT μs' μa Error μs' Error 

MCCL Gardner 659 0.0071 1.4115 0.00279

3 

1.168783 154.2% 20.8% 

MCCL Gardner 691 0.0069 1.3428 0.00270

2 

1.087909 155.3% 23.4% 

MCCL Gardner 731 0.0069 1.263 0.00281

5 

0.999159 145.1% 26.4% 

MCX Fourier 659 0.0037 0.9226 0.00279

3 

1.168783 32.5% 21.1% 

MCX Fourier 691 0.0032 0.8796 0.00270

2 

1.087909 18.4% 19.1% 

MCX Fourier 731 0.0029 0.8282 0.00281

5 

0.999159 3.0% 17.1% 

MCX Gardner 659 0.0049 1.4989 0.00279

3 

1.168783 75.4% 28.2% 

MCX Gardner 691 0.0046 1.4275 0.00270

2 

1.087909 70.2% 31.2% 

MCX Gardner 731 0.0045 1.346 0.00281

5 

0.999159 59.8% 34.7% 

Table 7 Caption: DOSI-derived values labeled with GT (ground truth). 

In testing the performance of homogenous LUTs generated by MCX Fourier, MCX 

Gardner, and MCCL Gardner against real-world tissue phantoms against optical properties 

extracted by DOSI at key wavelengths, the MCX Fourier homogenous LUT demonstrates 

reduced error compared to MCX Gardner-based homogenous LUTs and previously preferred 

homogenous LUTs generated via MCCL, especially in absorption coefficient (μa) extraction, 
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confirming previous predictions of improved performance relative to MCX Gardner and the 

Gardner method more broadly. 

3.9 Impacts of Inaccurate Multilayer LUT Skin Assumptions 

To examine the relative accuracy of generated LUTs against various skin types, and the 

useful range of complexions a lookup table built with a particular set of assumptions regarding 

melanosome concentration in the epidermis is able to remain accurate for, a sensitivity analysis 

was conducted. By generating LUTs based on a variable top layer and a static base layer, 

rather than the static top layer and variable top layer as in previous/standard multilayer LUTs 

(see Figure 25), the sensitivity analysis is able to reflect the limited but significant impact of 

melanin, which, in human skin, is entirely concentrated in the epidermis, which the top layer of 

the simulated tissue phantom represents. The diffuse reflectance values for this variable top 

layer LUT were then treated as source data from which to attempt to extract optical properties 

using standard multilayer LUT models with varying top layer properties, with the expectation that 

differences between the top layer optical properties would result in varying levels of error in the 

extracted underlying optical properties of the underlying static layer. This was then used to 

calculate maximum acceptable deviances from true top layer properties and determine the 

useful range of lookup tables built with a given set of assumptions regarding top layer OPs, and 

accordingly, when new lookup tables must be generated to fit a patient's skin complexion. 
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Fig. 25: Representation of the differences in approach for multilayer LUT tissue 

simulations with static or dynamic tissue layers. The tissue layer which has variable optical 

properties across the LUT is switched from the bottom bulk layer to the top layer (representing 

the epidermis), effectively simulating a wide range of skin types over static tissue. a) Standard 

multilayer LUT setup, with static top layer OPs over dynamic OPs of a bulk or flesh layer. b) 

Swapped multilayer LUT setup, with dynamic top layer OPs over a static set of OPs for the bulk 

or flesh layer. 

To confirm the efficacy of this method, DOSI-confirmed values from an in-house tissue 

phantom were included to establish a known baseline for the static bulk layer (using the ground 

truth values in Table 7) of the simulated tissue phantom used in this sensitivity analysis; error in 

extracted OPs was treated as departure from these known values. 

3.9.1 Sensitivity Analysis 

For Figure 26, Rd values are shown both in the color dimension and as labeled isolines 

for the entire range of simulated μa and μ’s values. For Figure 27, optical property values (μa 



49 
 

   

 

and μ’s) are shown both in the color dimension and as labeled isolines for the entire range of 

resulting Rd values. 

 

Figure 26: Comparison of LUT inversion algorithms based on a three-layer Fourier source 

approach with a light static simulated skin layer vs one with a dynamic simulated skin layer. (a) 

and (b) Optical properties versus AC Rd and DC Rd, respectively, for the MCX Gardner LUT. (c) 

and (d) Optical properties versus AC Rd and DC Rd, respectively, for the Fourier LUT.  

To determine the relative accuracy when a LUT with an incorrect set of skin optical 

properties is used for skin testing, we performed a sensitivity analysis comparing LUTs 

generated with static or dynamic top layer optical properties. Figure 26 shows clearly how this 

shift impacts the LUTs behavior, as this is now testing for and focused on changing skin optical 

properties in a very shallow layer with significantly larger range of optical property values. Figure 

27 does so similarly, with the altered shape demonstrating the qualitative difference between 

large shifts in a thin top layer’s optical properties as compared to smaller shifts in a bottom layer 

of tissue.  
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Figure 27: Comparison of optical property extractions using LUT inversion algorithms based on 

a three-layer MCX Fourier source with a light static simulated skin layer vs one with a dynamic 

simulated skin layer. (a) and (b) Rd values versus μa and μs’, respectively, for the light skin 

Fourier LUT. (c) and (d) Rd values versus μa and μs’, respectively, for the dark skin Fourier LUT, 

with relative axis scaling. 

Figure 28 shows how the resulting error fits the patterns mostly as expected; absorption 

and scattering are largely independent of each other outside of edge cases; top layer absorption 

coefficient change has comparatively little impact on bottom layer scattering coefficient 

extraction, while changes in top layer scattering coefficient has a slightly greater but still low 

impact on bottom layer absorption coefficient extraction. Alterations in top layer scattering 

coefficients affect extracted scattering coefficients in the bottom layer, as expected, which can 

serve as useful confirmation but has little direct bearing as melanosome concentration should 
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not significantly influence scattering properties. However, absorption coefficient changes in the 

top layer have a very large impact on the extraction of absorption coefficients in the bottom layer 

over a range of values covering human skin complexion, very effectively demonstrating the 

inadequacy of any single LUT for use on all skin tones. 

 

Figure 28: Comparison of absolute error in determined optical properties caused by 

inaccurate skin top layer optical property assumptions, using DOSI phantom properties as base 

of comparison. (a) error in extracted μa vs degree of inaccuracy in assumed top layer optical 

properties. (b) error in extracted μs’ vs degree of inaccuracy in assumed top layer optical 

properties. 

3.10 Conclusions 

SFDI’s medical utility is heavily dependent on the availability of accurate and applicable 

LUTs to reference, a lack of which has resulted in reduced health outcomes for marginalized 

patients. Taking full advantage of the potential of Monte Carlo modeling for simulations to 
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generate LUTs requires adapting to new and evolving computation abilities. MCX is able to 

make use of modern GPUs to vastly improve the speed of LUT generation, making more 

accurate simulation models practical as well as generating additional LUTs to account for a 

variety of skin types 

We found that MCX can not only recreate the results of MCCL to a high degree of 

accuracy for Gardner method-based simulations, but produce the relevant LUTs up to two 

orders of magnitude faster thanks to GPU-based acceleration. This speed advantage is only 

partially mitigated when running Fourier-based simulations, which require more simulations to 

be performed per lookup table, but involve less post-processing of results. This speed 

advantage was most extreme for shorter anticipated pathlengths and higher scattering 

coefficients. The simulations with the greatest speed advantage were also those with the 

greatest overall time requirements. Together, this suggests that the processing of multiple 

scattering events is the primary bottleneck and that GPU-based acceleration can significantly 

ease the computational requirements for SFDI simulations, 

The results of testing with adjusted photon counts show that while Gardner is less 

severely impacted by inadequate photon count simulations, Fourier is able to take advantage of 

increasing computing power for more directly analogous simulations with elevated potential 

accuracy. The voxel-based system of tissue simulation requires adaptation for multilayer testing, 

but these are surmountable problems with appropriate modifications to simulated optical 

properties in the relevant voxels for a given tissue layer. The alternate solution is significantly 

less plausible: memory problems become a serious issue at granular enough voxel densities to 

model the layer depths more precisely, as does the required increase in photon count to 

maintain sufficient area density to match distributions per surface voxel (for binning purposes), 

without providing a clear advantage based on our testing. 

Fourier-based LUTs appear to be distinct from but comparable to Gardner LUTs, with 

the potential for more specificity in extracted optical properties based on returned diffuse 
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reflectance values. This holds true across homogenous LUTs, dark-skin based multilayer LUTs, 

and light-skin based multilayer LUTs. Similarly, both dark and light-skin based multilayer LUTs 

present in similar patterns, albeit at very different size scales, demonstrating the necessity of 

handling these skin types differently in SFDI. 

Testing against real-world tissue phantom data show no serious disparities from 

expectations in multilayer tissue phantom testing (albeit with limited data), and show a serious 

accuracy advantage in homogenous tissue phantom testing in absorption coefficient extraction 

for Fourier LUTs over both MCX Gardner and MCCL Gardner LUTs. 

Sensitivity analysis revealed a high level of error in extracted optical properties 

introduced by differences in LUT assumptions of top-layer optical properties from the true value 

of skin-layer optical properties in sample tissues. This was especially prevalent with regards to 

absorption coefficient error in the top layer propagating into error in extracted optical property 

values. Given melanin concentration differences in human populations primarily affect this 

parameter, it is particularly important to address. This clearly demonstrates the necessity of a 

range of LUTs to cover varied skin complexions for appropriate clinical use. 

Overall, MCX Fourier patterned photon simulations show enormous promise in terms of 

fully utilizing modern computational resources for LUT generation, expanding the range of well-

characterized skin types for more accurate use of SFDI. To take full advantage of this and 

ensure the correct LUTs are used for each patient, there’s a need for clinically viable methods to 

efficiently and objectively approximate skin melanin concentrations to a close degree of 

specificity. Any follow up work should acquire a large range of high quality tissue phantoms of 

diverse skin tones to test against, with complete DOSI data, which we were unable to acquire 

during this testing. Easier generation will make it much more viable to generate and utilize a 

range of LUTs for varying skin tones to use with SFDI, a necessity given the clear and urgent 

need for better care of a diverse population. 
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APPENDIX 

Computer specifications used for bulk of simulations: 

Processor: Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz   2.90 GHz 

RAM: 16.0 GB 

Windows 10 

MATLAB R2021a 

GPU: NVIDIA GeForce GTX 1660 

 

PC used to run e9 photon count Fourier source simulations: 

Processor: Processor Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 3192 Mhz, 6 Core(s), 12 

Logical Processor(s) 

RAM: 32 GB 

Windows 10 Pro 

MATLAB R2021a 

GPU: NVIDIA Quadro RTX 4000 

 

MCCL Parameters 

1e7 photons 

MersenneTwister RNG type 

Continuous Absorption Weighting (not Discrete) 

HenyeyGreenstein phase function type 

pMCDiffuseReflectance database 

No russian roulette 

Directional point source at 0,0,0, direction vector 0,0,1 

Mus 1e-10 scattering for infinite layers on either side 

200mm thick tissue 

L* values  

<"Mua": 0.0198, 

          "Mus": 6.8276, 

          "G": 0.71, 

          "N": 1.33, 

          "Musp": 1.98> 

51 fx from 0 to 0.5mm^-1 

ROfFx detector 
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Scripts and Coding Files 

All MATLAB scripts and code used are available in the following git repository: 

https://github.com/DaemonDikeman/MCXFourier2024/ 

We used LUT_Graphs for early LUT testing and verification, and Multilayer_Models_Plot 

for early comparisons of multilayered LUTs during testing. 

In order to acquire the visualization plots, we used a number of scripts: to generate 

contour lined heat map comparisons, we used [Contours (list)]; to generate cross-method line 

plot comparisons, we used Triple_Comparison_Plot; to generate line plot comparisons of 

performance with variable photon counts, we used LStar_Combined Plot.  

To generate the data used for the line plot comparisons, we used 

Two_Layer_LUT_DRef_Comparison, Multi_Layer_Gardner_Dref_Comp, and 

Single_Layer_Homogenous_Dref_Comp. 

LUTs were generated using a variety of scripts: SFDI_MCX_Start_Traj was used for 

early prototyping; SFDI_MCX_Fourier_LUT_Gen.m for both homogenous and multilayer Fourier 

LUTs; SFDI_MCX_Fourier_LUT_Gen_Flipped.m for sensitivity analysis; 

Single_Layer_Homogenous_LUT_Generation_mba for homogenous Gardner LUTs; and 

Two_Layer_LUT_Generation_MCX for generating Gardner LUTs. 

 We used a modified version of Analysis_Workflow as part of our practical tests of 

performance on real tissue phantoms. 

Single_photon_Pencil_Source_Display 

ChromophoreSpectraPlot - credit to camorbit code by FINNSTAR7 
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Figure A.1. Relative Error in OP Extraction vs Skin Layer OP Divergence 
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Figure A.2. Error in OP Extraction vs Rd  
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