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Microgrids have emerged as a promising solution for ensuring the reliability and resilience of

future grids, especially with the increasing integration of distributed energy resources (DERs) such

as solar, wind, and energy storage systems (ESSs). However, this integration presents significant

challenges in the dynamic control of voltage and frequency. Microgrids exhibit a distinctive

characteristic marked by a high 𝑅/𝑋 ratio, resulting in voltage sensitivity to both active and

reactive power, while frequency sensitivity is confined to active power. This unique attribute

often leads to interference between voltage and frequency support schemes, potentially triggering

protection mechanisms and causing localized or cascaded power outages.

To address these challenges, this dissertation introduces a novel approach based on moving

horizon estimation (MHE), model predictive control (MPC), and droop control. MHE provides

online estimates of microgrid parameters and dynamic states from noisy measurements, which then

serve as inputs for MPC and droop control for the computation of reference inverter currents. The

integrated MHE-MPC-droop framework is designed to provide dynamic voltage and frequency

support, coupled with steady-state frequency support. Notably, the secondary controller ensures

that steady-state frequency support is unnecessary, as it consistently maintains the frequency at the

nominal value in steady-state conditions.



One of the strengths of the proposed approach lies in its flexibility, allowing for the tuning

of performance based on specific requirements. The simulation study conducted on Cordova

microgrid benchmark from Alaska demonstrates the effectiveness of this approach in providing

near-optimal voltage and frequency support while accommodating the physical constraints inherent

in ESSs. Different case studies show that the proposed approach reduces the voltage and frequency

deviation as well as provide flexibility to prioritize different aspects of voltage and frequency

support. Further, assessment of computational traceability shows that it is real-time applicable

and robust against computational delay. The research contributes to the advancement of microgrid

operations, particularly in the context of the growing penetration of renewable DERs. By mitigating

the challenges associated with dynamic voltage and frequency control, the proposed approach offers

a robust solution for achieving reliable and resilient microgrids of the future.
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CHAPTER 1

INTRODUCTION

Microgrids have emerged as a promising solution to ensure the reliability and resilience of

future power grids. They offer numerous advantages, including resilience, autonomous operation,

enhanced efficiency, integration of renewable energy, and energy security. The popularity of

microgrids has been on the rise. As of the beginning of 2023, the United States had installed 692

microgrids with a total capacity of 4.4 GW [1].

With the growing prevalence of converter-based generation in microgrids, the system’s inertia

and voltage sensitivity are subject to variation, depending on different grid configurations and the

mix of generation. This variation has introduced challenges in controlling voltage and frequency.

Synchronous generators are commonly employed in isolated or islanded microgrids to regulate

the system’s voltage and frequency. Additionally, Distributed Energy Resources (DERs), such as

photovoltaic, wind, and Energy Storage Systems (ESSs), can serve as secondary support for voltage

and frequency control. However, the large-scale integration of renewable DERs in a microgrid

introduces several challenges in terms of dynamic voltage and frequency regulation.

Microgrids are distinct from conventional interconnected power systems in several aspects.

These include size, feeder type, high cross-coupling between voltage and frequency dynamics [2],

a potential high share of converter-based renewable sources, and low-inertia [3]. Traditionally,

voltage and frequency controllers have been designed separately, under the assumption that the

system’s voltage and frequency dynamics are decoupled [4]. In contrast, microgrids are typically

operated at low to medium voltage levels, resulting in a relatively high 𝑅/𝑋 ratio [5]. Moreover,

due to the small size of microgrids, changes in the system voltage are often reflected as changes in

the system load [2, 6, 3]. Compared to conventional grids, these factors result in a closer coupling

between voltage and frequency dynamics in microgrids.
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Figure 1.1. Transition of the power system from synchronous generators-based resources towards
converter-dominated.

1.1 Power Coupling in Microgrid and Multiple Timescales of Voltage-Frequency Dynamics

Microgrids possess a unique characteristic where voltage and frequency are coupled via active

power. The sensitivity of voltage to active power depends upon the 𝑅/𝑋 ratio, with a higher ratio

leading to increased sensitivity as demonstrated in [7]. In a conventional power system, the 𝑅/𝑋

ratio is typically small, resulting in voltage being primarily sensitive to reactive power and frequency

being sensitive to active power. This allows for the development of independent voltage and

frequency support/control techniques. However, this does not apply to microgrids. Characterized

by a high 𝑅/𝑋 ratio, microgrids exhibit voltage sensitivity to both active and reactive power, while

frequency remains predominantly sensitive to active power. This presents a significant challenge

to voltage and frequency support as they are coupled, rendering independent control/support

techniques unsuitable. Furthermore, the timescales of voltage and frequency dynamics differ

significantly. Voltage dynamics possess a time constant on the order of a few milliseconds,

whereas frequency dynamics have a time constant on the order of a few seconds. Consequently,

the time resolution (also referred to as step time or sample time) should be based on the time

constant of voltage dynamics, and the time horizon should be based on the time constant of

frequency dynamics. The number of timesteps in the integrated voltage-frequency support would be

exceedingly large, leading to a substantial computational burden. Therefore, the classical approach
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to developing/designing integrated controllers is no longer suitable for microgrids, necessitating a

novel multi-timescale approach.

1.2 Recent Trends and Voltage-Frequency Events

Recent reports and studies have shown that voltage and frequency stability to be a matter

of significant concern. Recently, there have been several power system outages reported due to

frequency events in the power system. In some power systems, power quality issues have also

been reported. For example, on August 9th, 2019 a power outage in Great Britain affected around

1 million people for 15-45 minutes [8]. Two large generation losses caused the frequency of the

system to dip below the Under Frequency Load Shedding (UFLS) setting. This leads to more

generation tripping (since protection schemes are designed to protect generation). This affected

critical infrastructure like hospitals, rail transit systems, city traffic lights, etc. Similarly, in 28th

September 2016, there was a power outage in Southern Australia that affected 850,000 people [9].

Honolulu rail transit system caused power quality issues in Honolulu, Hawaii, USA [10]. Power

outages and brownouts were reported because bursts of power are required to start moving trains.

This sudden burst of power causes instantaneous voltage to dip. One potential solution is to install

STATCOM which is typically expensive.

1.3 Standard on Voltage-Frequency Limits on Microgrids

Microgrids can be operated in three modes: grid-connected, islanded, or isolated mode. In

grid-connected mode, a microgrid is connected to the main grid. In this case, frequency is controlled

by the main grid. Voltage is also controlled by the main grid up to a certain extent. Voltage variation

due to line impedance and integration of renewables still exists. In islanded mode, the microgrid

is disconnected from the main grid (in a planned or due to a fault in the main grid) whereas in

the isolated mode of operation, the microgrid is designed to never be connected to the main grid.

Regardless of whether the microgrid is in islanded or isolated mode, it needs to control its voltage

and frequency since the microgrid does not receive any support from the main grid. Owing to their
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smaller size and reduced inertia, they experience large frequency and voltage deviation that might

be outside the standard limits compromising the stability of the system. Following are the existing

standards for power systems:

1.3.1 Standards for grid-connected microgrid

The Electric Reliability Council of Texas (ERCOT) has defined specific parameters for frequency

regulation in the power grid. The maximum allowable deadband, or the range within which the

system frequency can fluctuate without triggering a response from the governors, is set at ±0.036

Hz. This means that the governors are required to respond when the system frequency deviates

outside this range from the nominal value. In addition to this,ERCOT has also specified UFLS

levels. These are set at 59.5 Hz, 58.9 Hz, and 58.5 Hz, corresponding to load shedding levels of

5%, 15%, and 25% respectively.

Similarly, the North American Reliability Corporation (NERC) recommends that the first stage

of UFLS should be triggered within the frequency range of 59.5 Hz to 59.3 Hz. This highlights the

importance of maintaining frequency stability in the power grid and the role of regulatory bodies

in setting these standards.

The ERCOT and NERC recommend the voltage limits of 0.95 per unit (pu)-1.05 pu in the

pre-contingency state. This limit is extended to the range 0.90 pu-1.10 pu for the post-contingency

state. This wider range allows the system to accommodate the larger voltage fluctuations that can

occur after contingency. Please note that the voltage limits are defined for steady-state operation.

No standard limits are defined for dynamic voltage.

1.3.2 Standards for islanded/isolated microgrid

There are no specific standards defined for isolated/islanded microgrid systems. While IEEE

2030.7 provides specifications for microgrid controllers, it does not offer specific guidelines on

the operation limits of microgrids. It merely recommends adhering to the one prescribed by grid

codes. However, isolated/islanded microgrids often experience significant voltage and frequency

excursions due to their standalone nature and the variability of renewable energy sources. These
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Figure 1.2. Frequency/voltage standards for microgrid systems.

fluctuations can exceed the standard limits set for grid-connected operations. Therefore, there

is a need for more flexible standards that take into account the unique conditions of isolated

microgrids. These standards should allow for larger voltage and frequency deviations compared

to grid-connected systems, while still ensuring the stability and reliability of the microgrid. The

development of such standards would require a thorough understanding of the dynamics of isolated

microgrids, as well as extensive testing and validation to ensure their effectiveness and safety. It is

an area that certainly warrants further research and development. The standards are summarized

in Fig. 1.2.

1.4 Concept of Fast Voltage-Frequency Support

In any power system, fluctuations in power –due to changes in load, generation, or reconfiguration

–result in deviations from the nominal voltage and frequency. Various mechanisms exist to

counteract these deviations. However, these mechanisms are predominantly mechanical and thus

5



exhibit a slow response time. Despite their slow response, they are capable of restoring the system

to its nominal state in steady-state conditions. Nevertheless, transient deviations can be substantial.

In certain instances, these deviations may surpass the prescribed limits, triggering the protection

scheme to disconnect various generators. This could potentially lead to system instability and, as

previously discussed, a blackout.
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Figure 1.3. Block diagram representing the concept of ESS based voltage-frequency support.

The term ‘fast voltage/frequency support’ refers to the mechanism designed to minimize

transient deviations. Given that the timescale of voltage dynamics is on the order of milliseconds,

the support mechanism must be capable of adjusting power within this same timescale. A Battery

Energy Storage System (BESS) is an optimal choice for this mechanism. Fig. 1.3 depicts a general

block diagram of a BESS-based voltage-frequency support system.

1.5 Energy Storage Systems for Voltage-Frequency Support

ESS are versatile entities that can provide various ancillary services, including load leveling,

energy arbitrage, voltage support, and frequency support, among others. These services operate on

various timescales, each with its unique requirements and impacts on the ESS.

Services that operate on very short timescales, such as dynamic voltage support, and those

on short timescales, like frequency support and steady-state voltage support, necessitate power

exchanges in brief time intervals. This rapid exchange of power can significantly affect the
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lifespan of an ESS, necessitating careful management and compensation strategies. Recognizing

the importance of these services and the strain they place on ESS, the Federal Energy Regulatory

Commission (FERC) has issued several orders, specifically FERC Order No. 755, 784, and 890.

These orders permit ESS to participate in ancillary services, thereby acknowledging their crucial

role in maintaining grid stability and reliability. Furthermore, these orders facilitate the creation of a

market structure that compensates for these shorter timescales for ancillary services. This structure

ensures that ESS are adequately compensated for their services, promoting their continued operation

and contribution to grid stability.

1.6 Motivation and Objectives

Dynamic voltage-frequency support is a power-intensive service and might require large power

demands and ramp rates from the energy source. The ESS should be able to operate in a fraction of

the millisecond range. Further, ESS has physical constraints on maximum inverter currents and/or

ramp rates.

The objective of this dissertation is to develop a dynamic voltage and frequency support along

with a steady state voltage support framework for microgrids using ESS. The developed framework

should be:

• Flexible to tune performance based on available resources

• Able to incorporate physical constraints of the ESS such as maximum currents, ramp rate

limits, etc.

• Adaptable to change in microgrid parameters (line impedance, inertia, damping, etc)

1.7 Outline and Contributions

The dissertation is divided into three major chapters. Chapter 2 introduces the basic concept

of voltage and frequency support. A review of existing methods for voltage and frequency support

is presented. A detailed comparison between different existing techniques is also presented.
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Chapter 3 presents the development of a model that represents the voltage and frequency dynamics

of microgrids. These models will be utilized in later chapters for state/parameter estimation and

predictive control. Validation (partial) of developed models is also presented. Chapter 4 introduces

a novel mechanism for online estimation of microgrid parameters. The microgrid parameters may

change with time based on the number of generations that are online. The estimate of microgrid

parameters will allow for improved control strategy as well as protection schemes. Parameter

identifiability analysis and design of perturbation signal for parameter estimation is also presented.

Chapter 5 presents MPC based dynamic voltage support for microgrids. The state and parameter

estimation from chapter 4 is combined with MPC. Finally, Chapter 6 presents droop control

combined with MHE and MPC to provide dynamic voltage and frequency support along with

steady state voltage support. Note that steady-state frequency support is not required since the

secondary power controller takes care of steady-state frequency response. The conclusions of the

dissertation are summarized in Chapter 7.

The main contributions of this dissertation are as follows:

• MHE based approach for online states and parameter estimation for microgrid voltage and

frequency dynamics using noisy local measurements[11].

• MPC based approach to provide dynamic voltage support. The mechanism provides flexibility

to provide desired performance as well as incorporate physical constraints within the control

formulation[12].

• Droop-MHE-MPC based framework to provide dynamic voltage and frequency support and

steady-state voltage support.
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CHAPTER 2

STATE OF THE ART VOLTAGE AND FREQUENCY SUPPORT

Voltage-Frequency support is a combination of control algorithm, ESSs, and power electronics

converter that absorbs/supplies power during the transient to reduce voltage and frequency deviation.

For the voltage and frequency support, multiple possible control algorithms have been used in the

real world and proposed in the literature.

2.1 Chapter Objectives and Contributions

The main objective of this chapter is to provide a detailed literature review of the current

state-of-the-art voltage and frequency support approaches in power systems.

2.2 Approaches for Voltage and Frequency Support

In this section, different approaches for voltage and frequency support are discussed. It should

be noted that some are applicable for either voltage or frequency support only.

2.2.1 Droop Based Control

V/f

P/Q P/Q

V/f

(a) (b)

deadband

lower saturation
limit

upper saturation
limit

Figure 2.1. Generic droop curve for voltage/frequency support: a) linear droop curve b) droop with
deadband and saturation.
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Droop is the simplest control strategy for voltage and frequency support. The power injected

into the grid is proportional to the control error in the voltage and frequency i.e.,

Δ𝑞 = 𝐾𝑣 (𝑣𝑟𝑒 𝑓 − 𝑣), and Δ𝑝 = 𝐾𝜔 (𝜔𝑟𝑒 𝑓 − 𝜔). (2.1)

In other words, droop control is a proportional controller. When there is a control error in the

voltage or frequency, the proportional amount of power (active and reactive) is injected/absorbed.

Since the powers cannot be zero when voltage/frequency support is required, the control error

cannot be exactly zero. This is advantageous since this allows coordination between multiple

resources without extra communication to provide voltage/frequency support. The disadvantages

of this approach are

1. Less precise control: there is always steady-state control error which has to be eliminated by

secondary control

2. Reduced system stability: with droop, there is not much flexibility for pole placement and as

a result, might cause stability concern

3. Poor performance for non-linear and/or asymmetrical loads

Other than the above-mentioned disadvantages, they are designed assuming the voltage is affected

by reactive power only and frequency is affected by active power only. This assumption becomes

weak in the microgrid as voltage is affected by active power as well. As a result, both voltage and

frequency support cannot be provided simultaneously by droop control only.

2.2.2 PID Based Control

Proportional-Integral-Derivative (PID) control-based approach has also been popular. In this

approach, a control signal is given as:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖
∫

𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)
𝑑𝑡

. (2.2)

The controller gains 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are chosen based on the pole placement method or bode-plot

method. Both approach requires a linear or linearized model of the system along with the
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parameters. PID control provides greater accuracy as compared to just proportional (or droop)

control as it has more flexibility (three tunable parameters). As compared to other advanced

methods, the computational requirement is also low. The main disadvantages are:

1. Nonlinear systems: tuning nonlinear systems can be complex and in fact, might perform

worse for highly nonlinear systems.

2. Adaptability issues: no inherent adaptability.

In [13], an adaptive way to adjust the 𝐾𝑝 and 𝐾𝑖 is proposed for frequency control of the

islanded microgrids. An Artificial Neural Network (ANN) is used whose inputs are power changes,

frequency deviation, etc and outputs are the value of 𝐾𝑝 and 𝐾𝑖. The training of the ANN is done

online such that Mean Squared Error (MSE) of the control error (frequency deviation) is minimized.

After training, the values of 𝐾𝑝 and 𝐾𝑖 are updated online. In this approach, no voltage support is

considered.

In [14], a model reference adaptive PID control-based approach for voltage control of islanded

microgrid is proposed. In this approach, the model of a reference plant is considered. The reference

plant refers to the plant whose response is used as a reference for real plants. The error between

the response of the reference plant and the actual plant is used to adjust the gain of the controllers.

2.2.3 Reinforcement Learning Based

Reinforcement learning is the training of a model to make a sequence of decisions. The agent

interacts with the environment to learn the control policy as shown in Fig. 2.2. The policy maps

states of the environment to the control action. A reward is a scalar value that represents how the

agent is performing. A reward is collected every time the agent interacts with the environment.

𝑄-value, represented mathematically as𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) represents the predicted value of an accumulated

reward an agent would collect over the future when the agent takes action 𝑎𝑡 at the current timestep

and policy 𝜋 thereafter. The agent learns to approximate the 𝑄-value, which is often represented

by a neural network. In RL, the objective is to maximize accumulated reward. Thus, the optimal
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control action is:

𝑎∗𝑡 = argmax
𝑎𝑡

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡). (2.3)

Figure 2.2. Diagram representing basic of reinforcement learning.

The main advantage of a reinforcement-learning approach is that it does not require a mathematical

model of the system. This is useful when the system is complex and a simple mathematical model

cannot accurately represent the system. The major drawbacks of reinforcement learning are:

• Sample inefficiency: they require a large number of samples to learn effectively

• Computationally intensive: The training process in reinforcement learning is computationally

expensive

• Real-world training: they require interaction with the environment to learn which is challenging

to perform safely in the real world. This becomes more of a concern in power systems where

reliability and safety are of utmost importance.

In literature, several methodologies have been proposed that leverage reinforcement learning

and adaptive dynamic programming. These methodologies involve learning from data without the
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need for a predefined model. A notable drawback of this approach is the extensive interaction

required between the agent and the system, the duration of which is contingent on the system’s

complexity.

The paper [15] employed a deep-deterministic policy gradient (DDPG) approach to tackle the

voltage control problem in medium-voltage distribution networks. The DDPG methodology utilizes

two neural networks: an actor network, which maps the system’s state variables to a control variable,

and a critic network, which predicts the future accumulated reward. The controller developed in

this study is adaptive, enabling the agent to adjust its behavior in response to varying conditions.

Similarly, [16] proposed a dynamic voltage support based on a soft actor critic. This approach

was successful in reducing voltage deviation by a factor of 2.5 to 4.5 times and demonstrated

computational efficiency post-training.

The paper in [17] proposed a reinforcement learning-based control scheme for optimal frequency

synchronization in a lossy inverter-based microgrid. This scheme can be utilized to minimize

frequency deviations across multiple inverters. In a similar vein, This paper [18] developed a fast

frequency support based on a soft actor critic. This study also compared the performance of the

soft actor critic-based approach with that of a Model Predictive Control (MPC). Although the soft

actor critic-based approach reduced frequency deviation more than the MPC, the Rate of Change

of Frequency (Rate of Change of Frequency (ROCOF)) was still larger compared to that of the

MPC. Furthermore, due to the multi-timescale nature of frequency dynamics, the episode length

was significantly large, leading to a substantial increase in training time.

However, to the best of my knowledge, no work has been done leveraging reinforcement learning

based approach for integrated voltage and frequency support.

2.2.4 LQR and MPC Based Approach

Linear Quadratic Regulator (LQR) and MPC are popular model-based optimal control approach.

In these approaches, a cost function is defined which is minimized over finite (or infinite horizon)

subject to the mathematical model of the systems. For LQR, the cost function has to be quadratic
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and the mathematical model to be linear. No other constraints are supported. The discrete-time

LQR can be formulated as:

min
𝑥0:𝑁+1, 𝑢0:𝑁

𝑁−1∑︁
𝑘=0

(
𝑥⊤𝑘 𝑄𝑥𝑘 + 𝑢

⊤
𝑘 𝑅𝑢𝑘 + 2𝑥⊤𝑘 𝑆𝑢𝑘

)
+ 𝑥⊤𝑁𝑄𝑁𝑥𝑁 (2.4a)

subject to

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 ∀ 𝑘 ∈ {0, 1, ..., 𝑁 − 1} (2.4b)

where 𝑁 represents horizon length of LQR. Since the cost is quadratic and is subject to only

linear equality constraints, it is possible to get analytical solutions. The main advantage of this

approach is that it is simple and computationally efficient. However, it is limited to linear systems

and operational constraints cannot be imposed.

LQR based approach for frequency control has been proposed in the literature. In [19], LQR

based virtual inertia is proposed. LQR was able to reduce frequency deviations and ROCOF when

parameters are known accurately. When errors in the parameters were introduced, the performance

was drastically compromised especially in terms of reducing ROCOF. In [20], LQR is compared

with Fuzzy Logic Control (FLC) for load frequency control of three area power system. A

state-space model of three area power system is developed which is used as a prediction model for

LQR. However, there are always model uncertainties and disturbances. Thus, they propose fuzzy

logic control. The paper concludes that LQR performs better in terms of most quality measures

(percentage overshoot, energy consumption, etc). However, FLC performs better in terms of model

uncertainties and disturbances.

MPC is another model based optimal control approach. MPC is very similar to LQR except

MPC can handle nonlinear system as well along with physical constraints. In [21, 22], MPC based

frequency control of low inertia power grids is proposed. The paper presents the performance

of MPC at different values of weights. The paper also evaluates the effect of imposing physical

constraints. The paper also proposes MHE based state and parameter estimation approach that can

be used to make MPC adaptive with changing grid condition.
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2.3 Approaches for Combined Voltage-Frequency Support

Historically, voltage and frequency support mechanisms have been designed independently.

Specifically, voltage has been assumed to be influenced solely by reactive power, while frequency

has been assumed to be affected exclusively by active power. In the study [23], a droop control

method is utilized, wherein active and reactive power are employed to regulate frequency and

voltage, respectively. Although this approach is suitable for conventional power systems, it is not

applicable to microgrids. Similarly, in [24], a piecewise linear-elliptic droop control scheme is

proposed for voltage and frequency support. The drooping curve of piecewise linear-elliptical

droop is shown in Fig. 2.3. For smaller variations in voltage/frequency, the droop curve behaves

as a linear droop. For large variations, an elliptical function is employed. Piecewise linear-elliptic

droop control has performed better in terms of reduction of the voltage/frequency deviation as well

as oscillations. However, in this paper as well, frequency support is achieved through active power

only, and voltage support is achieved through reactive power only. The coupling is not considered

and as a result, significant oscillation is still observed in the voltage and frequency response.

P/Q

V/f

narrow linear
region

lower saturation
limit

upper saturation
limit

Figure 2.3. Piecewise linear-elliptical droop curve.

In the paper [2], a frequency control method based on voltage modulation is proposed. This

method is particularly effective when the majority of the load power is sensitive to voltage deviations.

However, a voltage-based frequency controller often interferes with a voltage controller, thereby

complicating the simultaneous achievement of both controls.
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In a more recent study [25], an integrated voltage and frequency support for microgrids based on

Model Predictive Control (MPC) is proposed. The study demonstrates the feasibility of achieving

simultaneous voltage and frequency control. Nevertheless, a significant challenge associated with

this approach is the multi-timescale nature of the system. Given that the timescale of voltage

dynamics is on the order of milliseconds and that frequency dynamics is on the order of seconds,

the MPC will have an exceedingly large horizon length, which significantly increases computational

time.

The above discussion regarding different existing approaches directs us to use MPC. However,

because of large computational time, MPC cannot be used for dynamic voltage as well as frequency

support. Thus, we propose to combine droop and MPC for dynamic voltage and frequency support.

Droop control provides dynamic voltage support.

MPC requires a value of state variables at a given timestep which is not readily available. This

is because not all state variables are directly measurable. Even if, in some cases, it is possible to

measure all state variables, it might not be economical to put the sensor in the system for all state

variables. Even if, in some cases, it is economical, the sensor still introduces some noise which

needs to be filtered out. The state estimator provides an estimate of the state variable using input

and output measurements of the system. Further, a state estimator can also be used to provide

an online estimate of the parameters of the system. The following section provides a review of

different approaches for state/parameter estimation.

2.4 State Estimator

State estimator usually combines two different information: measurement from the system and

mathematical model of the system. Measurement represents actual behavior of the system and

mathematical model represents how different state variable are related and how they evolve with

time. However, neither of them are 100% accurate. Measurement is always corrupted by sensor

noise. Similarly, mathematical model of the system is also approximated since simpler model are

desired because of computational constraint. Thus, we consider following as mathematical model
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for the dynamics and measurement of the system:

𝒙𝑘+1 = 𝒇 (𝒙𝑘 , 𝒖𝑘 ) + 𝒘𝑘 (2.5a)

𝒚𝑘 = 𝒉(𝒙𝑘 ) + 𝒗𝑘 (2.5b)

where 𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘 and 𝑣𝑘 represent state variable, input variable, error in dynamic model (process

noise), and error in measurement (measurement/sensor noise) respectively.

When parameter estimations are also required, the following is used:

𝒙𝑘+1 = 𝒇 (𝒙𝑘 , 𝒖𝑘 , 𝒑𝑘 ) + 𝒘𝑘 (2.6a)

𝒚𝑘 = 𝒉(𝒙𝑘 , 𝒑𝑘 ) + 𝒗𝑘 (2.6b)

such that 𝒑𝑘+1 = 𝒑𝑘 + 𝒘̄𝑘 (assumptions of constant parameters) where 𝒑 represents parameters

to be estimated and 𝒘̄𝑘 represents small allowed variablity in the parameter [26]. This allows the

state estimator to be able to track changes in the parameters. Almost all of the state estimators

are formulated considering the model of the form (2.5). There exists a way to transform the

mathematical model of form (2.6) into form (2.6). This can be achieved by augmenting original

states and parameters into a new state vector as 𝒙̃𝑘 =

[
𝒙𝑘 𝒑𝑘

]⊤
and augmenting original state

equation with constantness of parameters as:

𝒙̃𝒌+1 =


𝒇 (𝒙𝑘 , 𝒖𝑘 ) + 𝒘𝑘

𝒑𝑘 + 𝒘̄𝑘

 = 𝒇 (𝒙̃𝑘 , 𝒖𝑘 ) + 𝒘̃𝑘 (2.7)

as shown in [27]. This allows us to use a state estimator formulated in the form (2.5) to estimate

parameters as well. Further, we will assume that 𝒘𝑘 , 𝒘̄𝑘 and 𝒗𝑘 follows Gaussian distribution with

zero mean and covariance of 𝑸𝑤, 𝑸̄𝑤 and 𝑹𝑣 respectively.

2.5 Approaches for States and Parameter Estimation

Different types of state estimators have been discussed in the literature.

17



2.5.1 Luenberger Observer

The simplest one is the Luenberger observer. Luenberger observer requires a linear model of

the system. Linearized form of (2.5) can be written as

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 (2.8a)

𝒚𝑘 = 𝑪𝒙𝑘 . (2.8b)

Here, the effects of noises are ignored. The dynamics of the estimated variable are represented as

𝒙̂𝑘+1 = 𝑨𝑥𝑘 + 𝑩𝒖𝑘 + 𝑳(𝒚𝑘 − 𝒚̂𝑘 ) (2.9a)

𝒚̂𝑘 = 𝑪𝒙̂𝑘 (2.9b)

where 𝐿 represents observer gain. All variable with ·̂ represents estimated corresponding variable.

The error is defined as 𝑒𝑘 = 𝑥𝑘 − 𝑥𝑘 from which error dynamics can be written as

𝒆𝑘+1 = (𝑨 − 𝑳𝑪)𝒆𝑘 . (2.10)

The error dynamics is an autonomous (no external input) linear system. This observer is stable if

and only if all the eigenvalues of 𝐴 − 𝐿𝐶 are within the unit circle. If the observer is stable, the

error 𝑒𝑘 goes to zero in a steady state. Further, if there is no model mismatch (ideal scenario), the

value of 𝑒𝑘 remains at zero for all time once it reaches zero. However, in the real words, there is

always some mismatch in the model, and hence, (2.10) will also have some extra residual term that

acts like external input. Thus, the value of 𝑒𝑘 does not necessarily stay at zero, and hence some

error between true and estimated states variable should be expected.

2.5.2 Kalman Filter

1 Kalman filter is an optimal state estimator that considers the effects of noises thus making it

superior as compared to Luenberger observer. Linearized form of (2.5) can be written as

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝒘𝑘 (2.11a)

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘 . (2.11b)

1The discussion of Kalman filter and its variants have been extracted from [28] where the candidate collaborated.
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The KF operates recursively, i.e., it combines estimates from the previous discrete time with

a prediction model and current discrete-time measurement to provide the estimate at the current

discrete time. The process consists of two steps: the prediction step and the update step. In the

prediction step, the states and their respective covariance (which are estimated at the previous

discrete time instant) are passed through the state equation to compute the prior states and their

covariance [29]. This occurs in the following two equations:

𝒙̂−𝑘 = 𝑨𝒙̂𝑘−1 + 𝑩𝒖𝑘−1 (2.12a)

𝑷̂
−
𝑘 = 𝑨𝑷̂𝑘−1𝑨

⊤ + 𝑸 (2.12b)

where at discrete time instant 𝑘 (and 𝑘 − 1 indicates the previous timestep/estimate), 𝒙̂𝑘−1 and 𝑷̂𝑘−1

represent the previous estimated states and their covariance matrices, respectively, and 𝒙̂−𝑘 and 𝑷̂
−
𝑘

are the prior estimate of states and their covariance matrices, respectively.

In the update step, these prior states and their covariances are combined with the measurement

to calculate the Kalman gain (𝑲𝑘 ). Using the Kalman gain, the posterior states and their covariance

are calculated:

𝑲𝑘 = 𝑷̂
−
𝑘𝑪

⊤(𝑪𝑷̂
−
𝑘𝑪

⊤ + 𝑹)−1 (2.13a)

𝒙̂𝑘 = 𝒙̂−𝑘 + 𝑲𝑘 (𝒚𝑘 − 𝑪𝒙̂−𝑘 ) (2.13b)

𝑷̂𝑘 = (𝑰 − 𝑲𝑘𝑪) 𝑷̂
−
𝑘 (2.13c)

where 𝑰 is a unit identity matrix, and 𝒙̂𝑘 and 𝑷̂𝑘 are the estimate of posterior state and their

covariance matrices, respectively. Because the Kalman filter is based on a Bayesian framework,

which is a recursive process, the posterior states and their covariance are used as the prior time step

states and covariance for the next step.

Because of its simplicity and yet effective estimation, Kalman Filter (KF) has been used in a

lot of applications. In [30], KF was used to provide state estimates for MPC to provide frequency

support in power systems. A simplified third-order model was used as a prediction model for KF

and MPC. Similarly, in [31], the data-driven model is first developed and used as a prediction

model for KF and MPC for fast frequency support.
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2.5.3 Extended Kalman Filter

The extended Kalman filter is very similar to the Kalman filter. The nonlinear model is linearized

to obtain the matrix 𝐴 and 𝐶. The linearized equations are used except for (2.12b) and (2.13b)

where original nonlinear equations are used.

2.5.4 Unscented Kalman Filter

The unscented Kalman filter uses an unscented transformation that allows us to estimate the

result of applying a nonlinear transformation to a probability distribution. Unscented transformation

uses a set of sigma points which are a set of deterministic points from a distribution. These sigma

points are passed through a nonlinear function to get the resulting distribution. Since Gaussian

distribution is assumed, estimating mean and covariance is sufficient since any Gaussian distribution

can be completely characterized by its mean and covariance.

Let (·) (𝑖) represent the 𝑖th column of a matrix, and (X̂𝑘−1) ∈ R𝑛𝑥×(2𝑛𝑥+1) represent the matrices

of sigma points. Then generate 2𝑛𝑥 + 1 sigma points from 𝒙̂𝑘−1 as below [32, 27]:

X̂
(𝑖)
𝑘−1 =



𝒙̂𝑘−1 for 𝑖 = 0

𝒙̂𝑘−1 +
(√︁
𝛼2(𝑛𝑥 + 𝜅) 𝑷̂𝑘−1

1/2) (𝑖) for 𝑖 = 1, 2, ..., 𝑛𝑥

𝒙̂𝑘−1 −
(√︁
𝛼2(𝑛𝑥 + 𝜅) 𝑷̂

1/2
𝑘−1

) (𝑖−𝑛𝑥)
for 𝑖 = 𝑛𝑥 + 1, 𝑛𝑥 + 2, ...., 2𝑛𝑥

(2.14)

where 𝛼 and 𝜅 are the parameters that determine the spread of sigma points around the mean value.

Now, these sigma points are transferred through (2.5) to obtain modified sigma points X̂
−
𝑘 ∈

R𝑛𝑥×(2𝑛𝑥+1) for estimating prior states and its covariance matrix as:

X̂
(𝑖)−
𝑘 = 𝒇 𝑘−1(X̂

(𝑖)
𝑘−1, 𝒖𝑘−1), for 𝑖 = 0, 1, ..., 2𝑛𝑥 (2.15)

The prediction step from the prior KF type estimators is then replaced as:

𝒙̂−𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑤
(𝑖)
𝑚 X̂

(𝑖)−
𝑘 (2.16)

𝑷̂
−
𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑤
(𝑖)
𝑐 (X̂(𝑖)−

𝑘 − 𝒙̂−𝑘 ) (X̂
(𝑖)−
𝑘 − 𝒙̂−𝑘 )

⊤ + 𝑸 (2.17)
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where

𝑤
(𝑖)
𝑚 =


1 − 𝑛𝑥

𝛼2 (𝑛𝑥+𝜅)
for 𝑖 = 0

1
2𝛼2 (𝑛𝑥+𝜅)

for 𝑖 = 1, 2, ..., 2𝑛𝑥
(2.18)

𝑤
(𝑖)
𝑐 =


(2 − 𝛼2 + 𝛽) − 𝑛𝑥

𝛼2 (𝑛𝑥+𝜅)
for 𝑖 = 0

1
2𝛼2 (𝑛𝑥+𝜅)

for 𝑖 = 1, 2, ..., 2𝑛𝑥 .
(2.19)

In the above equations, 𝛽 is the parameter to incorporate prior knowledge of the distribution of

the state. For a Gaussian distribution, 𝛽=2 is optimal, and 𝑤 (𝑖)
𝑚 and 𝑤 (𝑖)

𝑐 are the constant weights

for calculation of mean and covariance, respectively [32].

Generate 2𝑛𝑥 + 1 new sigma points X̂𝑘 ∈ R𝑛𝑥×(2𝑛𝑥+1) from 𝒙̂−𝑘 following the same procedure

of generating sigma points as mentioned above. Propagate those sigma points through the

measurement model below:

Ŷ
(𝑖)
𝑘 = 𝒉𝑘 (X̂

(𝑖)
𝑘 ) for 𝑖 = 0, 1, ..., 2𝑛𝑥 (2.20)

Compute prior mean (𝒎̂−
𝑘 ) ∈ R𝑛𝑦 and prior covariance (𝑺̂𝑘 ) ∈ R𝑛𝑦×𝑛𝑦 of the measurement, and

then cross-covariance of states and measurement (𝒁̂𝑘 ) ∈ R𝑛𝑥×𝑛𝑦 as below:

𝒎̂−
𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑤
(𝑖)
𝑚 Ŷ

(𝑖)
𝑘 (2.21)

𝑺̂𝑘 =
2𝑛𝑥∑︁
𝑖=0

𝑤
(𝑖)
𝑐 (Ŷ

(𝑖)
𝑘 − 𝒎̂−

𝑘 ) (Ŷ
(𝑖)
𝑘 − 𝒎̂−

𝑘 )
⊤ + 𝑹 (2.22)

𝒁̂𝑘 =
2𝑛𝑥∑︁
𝑖=0

𝑤
(𝑖)
𝑐 (X̂(𝑖)−

𝑘 − 𝒙̂−𝑘 ) (Ŷ
(𝑖)
𝑘 − 𝒎̂−

𝑘 )
⊤ (2.23)

The update step is replaced with:

𝑲𝑘 = 𝒁̂𝑘 𝑺̂
−1
𝑘 (2.24)

𝒙̂𝑘 = 𝒙̂−𝑘 + 𝑲𝑘 (𝒚𝑘 − 𝒎̂−
𝑘 ) (2.25)

𝑷̂𝑘 = 𝑷̂
−
𝑘 − 𝑲𝑘 𝑺̂𝑘𝑲

⊤
𝑘 (2.26)
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2.6 Machine Learning Based State Estimator

Several methodologies that incorporate machine learning have been proposed in the literature.

The primary advantage of these machine learning-based approaches is that they allow for the

development of a state estimator without necessitating the system’s model.
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yn :ne

Figure 2.4. Diagram representing loss calculation for neural state estimator.

In [33], a Neural State Estimator (Neural State Estimator (NSE)) is proposed to estimate the

states of power system frequency dynamics. The paper presents various scenarios where different

levels of model information are available, including full information on the model and parameters,

availability of the model but not the parameters, and unavailability of both the model and its

parameters. The general block diagram of the NSE is depicted in Fig. 2.4.

The paper also conducts a comparative analysis of NSE and Moving Horizon Estimator (MHE)

in terms of estimation accuracy and computation time. The study concludes that the performance

of NSE and MHE is quite similar in terms of accuracy, but NSE is computationally more efficient.

However, a significant drawback of NSE is that it requires data from the actual system with proper

perturbation, and NSE must be trained offline initially to be utilized online.

2.7 Moving Horizon Estimation

The MHE is an optimization-based technique that utilizes the horizon of the most recent input

and output measurements to estimate the states of a system. Unlike Kalman filters, MHE is capable

of handling nonlinear systems and estimating parameters without state augmentation. Moreover,

MHE allows for constraints to be imposed on estimated states and parameters, thereby enhancing

stability compared to Kalman filters.
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However, MHE necessitates more computational resources than Kalman filters, making it a

viable choice only when the computational requirement can be justified. In [34], MHE was used

for state and parameter estimation for power system frequency dynamics. Similarly, [11] employed

MHE for states and parameter estimation for voltage and frequency dynamics of microgrids.

In a comparative analysis of different Kalman filters and moving horizon estimators for power

system frequency dynamics conducted in [28], it was concluded that MHE outperforms Kalman

filters in terms of estimation accuracy. Therefore, despite the larger computational requirements,

MHE is employed in this work. Further details of MHE and a justification for its computational

time are provided in the subsequent chapter.

2.8 Chapter Conclusions

This chapter provided a review of different existing methods of control and estimation encountered

in power systems. A brief introduction of the approach along with its advantages and disadvantages

were highlighted.
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CHAPTER 3

MODEL DEVELOPMENT FOR MICROGRID VOLTAGE AND FREQUENCY

DYNAMICS

The model of a power system plays a significant role in its study, stability analysis, etc. Utilizing

MPC and MHE also requires a prediction model of the system. The prediction model should be

simple so that the MPC and MHE problems can be solved in real-time. This chapter will be devoted

to developing and validating a simplified prediction model of voltage and frequency dynamics of

microgrids.

3.1 Chapter Objectives and Contributions

The main objective of this chapter is to develop a model of voltage and frequency dynamics.

The specific contributions are:

• development of a model that represents voltage dynamics of microgrids

• development of a model that represents frequency dynamics of microgrids

• Validation (partial) of above developed models

3.2 Voltage Dynamics Model

The voltage dynamics model represents how voltage and related state variables vary with time.

Voltage dynamics can have different timescales based on the source of variation. The changes in

power (load/generation) may cause changes in variation via network dynamics, or via the response

of the excitation system of the generation or there might be another source. In this work, the

variation due to network dynamics is considered.

3.2.1 Derivation

Any complex power grid when observed from one bus, where an ESS is connected, can be

represented by the Thevenin equivalent model as shown in Fig. 3.1 where 𝑅, 𝐿 and 𝑣g represents line
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resistance, inductance, and Thevenin voltage respectively. Similarly, the ESS (which we assume

has grid-following inverter) can be represented as a controlled current source with 𝑖inv being the

injected current and 𝐶 being the capacitance of the inverter filter.

CC-VSI
PCC Grid

C
Voltage
source

iinv

vc ig

RL vg

Figure 3.1. Representation of grid by Thevenin equivalent model and ESS by controlled current
source.

Using Kirchhoff’s current and voltage law, we can write the differential equation of the simplified

model as :

𝑑𝑖g,abc

𝑑𝑡
=
𝑣c,abc − 𝑣g,abc − 𝑖g,abc𝑅

𝐿
(3.1a)

𝑑𝑣c,abc

𝑑𝑡
=
𝑖inv,abc − 𝑖g,abc

𝐶
. (3.1b)

Any three phase quantity λabc can be transformed to dq0 frame as:

λdq0 = 𝑇λabc (3.2)

where𝑇 = 2
3


cos (ω𝑡) cos

(
ω𝑡 − 2π

3

)
cos

(
ω𝑡 + 2π

3

)
− sin (ω𝑡) − sin

(
ω𝑡 − 2π

3

)
− sin

(
ω𝑡 + 2π

3

)
1
2

1
2

1
2


is the transformation matrix. Differentiating

(3.2) with respect to time 𝑡, we get

𝑑λdq0

𝑑𝑡
= 𝑇

𝑑λabc
𝑑𝑡

+ 𝑑𝑇
𝑑𝑡

λabc. (3.3)
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Now, 𝑑𝑇
𝑑𝑡

can be written as

𝑑𝑇

𝑑𝑡
=

2
3
ω


− sin (ω𝑡) − sin

(
ω𝑡 − 2π

3

)
− sin

(
ω𝑡 + 2π

3

)
− cos (ω𝑡) − cos

(
ω𝑡 − 2π

3

)
− cos

(
ω𝑡 + 2π

3

)
0 0 0


𝑑𝑇

𝑑𝑡
= −ω


0 −1 0

1 0 0

0 0 0


2
3


cos (ω𝑡) cos

(
ω𝑡 − 2π

3

)
cos

(
ω𝑡 + 2π

3

)
− sin (ω𝑡) − sin

(
ω𝑡 − 2π

3

)
− sin

(
ω𝑡 + 2π

3

)
1
2

1
2

1
2


𝑑𝑇

𝑑𝑡
= −ω𝑇𝑟𝑇 (3.4)

where

𝑇𝑟 =


0 −1 0

1 0 0

0 0 0


is the 90◦ rotation matrix from 𝑑-axis to 𝑞-axis.

Substituting the value of 𝑑𝑇
𝑑𝑡

in (3.3), we get

𝑇
𝑑λabc
𝑑𝑡

=
𝑑λdq0

𝑑𝑡
+ ω𝑇𝑟𝑇λabc

𝑇
𝑑λabc
𝑑𝑡

=
𝑑λdq0

𝑑𝑡
+ ω𝑇𝑟λdq0 (3.5)

Now, we can multiply on both sides of (3.1) by 𝑇 and use (3.5) to obtain

𝑑𝑖g,dq0

𝑑𝑡
+ ω𝑇𝑟𝑖g,dq0 =

𝑣𝑐,𝑑𝑞0 − 𝑣𝑔,𝑑𝑞0 − 𝑖𝑔,𝑑𝑞0𝑅

𝐿
(3.6a)

𝑑𝑣c,dq0

𝑑𝑡
+ ω𝑇𝑟𝑣c,dq0 =

𝑖inv,dq0 − 𝑖g,dq0

𝐶
. (3.6b)

The above equation with some simplification can be written as:

𝑑𝑖gd

𝑑𝑡
= −𝑅

𝐿
𝑖gd + ω𝑖gq +

𝑣cd
𝐿

−
𝑣gd

𝐿
(3.7a)

𝑑𝑖gq

𝑑𝑡
= −ω𝑖gd −

𝑅

𝐿
𝑖gq +

𝑣cq

𝐿
−
𝑣gq

𝐿
(3.7b)

𝑑𝑣cd
𝑑𝑡

= −
𝑖gd

𝐶
+ ω𝑣cq +

𝑖invd
𝐶

(3.7c)

𝑑𝑣cq

𝑑𝑡
= −

𝑖gq

𝐶
− ω𝑣cd +

𝑖invq

𝐶
(3.7d)
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The above equation can be converted to pu to obtain the following:

𝑑𝑖gd

𝑑𝑡
= ω0

(
−𝑅
𝐿
𝑖gd + ω𝑖gq +

𝑣cd
𝐿

−
𝑣gd

𝐿

)
(3.8a)

𝑑𝑖gq

𝑑𝑡
= ω0

(
−ω𝑖gd −

𝑅

𝐿
𝑖gq +

𝑣cq

𝐿
−
𝑣gq

𝐿

)
(3.8b)

𝑑𝑣cd
𝑑𝑡

= ω0

(
−
𝑖gd

𝐶
+ ω𝑣cq +

𝑖invd
𝐶

)
(3.8c)

𝑑𝑣cq

𝑑𝑡
= ω0

(
−
𝑖gq

𝐶
− ω𝑣cd +

𝑖invq

𝐶

)
(3.8d)

In (3.8), all the quantities are in pu except for ω0 (nominal frequency in rad/s) which is in

Système International (SI) unit.

3.2.2 Validation

CC-VSI
PCC Grid

C
Voltage
source

iinv

vc ig

RL vg

PLL
vc

abc-
dq0

vc
ig

vc,dq

ig,dq

ωt

Figure 3.2. Simplified model used to validate the developed model.

To validate the developed voltage dynamics model, a simplified Thevenin model will be utilized

in this chapter. A detailed model requires estimation of Thevenin equivalent parameters (impedance,

voltage, etc) and hence, it will be validated in Chapter 4. We consider a model shown in Fig. 3.2

in MATLAB/Simulink simulation environment. The system being considered is assumed to be a

100 kVA, 208 V system. The value of 𝑅, 𝐿, and 𝐶 are chosen to be 0.08 Ω, 0.22 mH and 220 μF

respectively.
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In order to access the dynamic performance of the model, the grid voltage 𝑣𝑔 is perturbed with

a step change (from 1.00 pu to 1.05 pu) at 𝑡=1 s. Further, 𝑑 and 𝑞 components of inverter current

are perturbed with a step change (from 0.0 pu to 0.05 pu and from 0.0 pu to 0.10 pu respectively)

at 𝑡=1.010 s and 𝑡=1.015 s respectively. Note that any reasonable random changes can be used to

assess the accuracy of the model. Further, we will consider PCC voltage (𝑣𝑐) as a reference to

transform voltages and currents from 𝑎𝑏𝑐 to 𝑑𝑞. The values of 𝑣g,dq and 𝑖inv,dq from the Simulink

model were passed to the mathematical model to solve for 𝑖gd, 𝑖gq, 𝑣cd and 𝑣cq. Their comparison

is shown in Fig. 3.3.
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Figure 3.3. Comparison of response from simulation model and mathematical model.

To assess how close the mathematical model is to the Simulink model, Normalized Root Mean

Square Error (NRMSE) is used which is given by

NRMSE(𝑦) =
����𝑦true − 𝑦

����
2����𝑦true − mean(𝑦true)

����
2
× 100% (3.9)

which calculates NRMSE of 𝑦 against 𝑦true. Using the formula, the NRMSE of 𝑖gd, 𝑖gq, 𝑣cd and 𝑣cq

are found to be 2.58%, 2.50%, 3.97% and 4.99% respectively.

28



3.2.3 Time Constant of Voltage Dynamics

The time constant of a system gives important information about how fast or slow the dynamics

are. It also provides a good idea of the magnitude of sample time to be used in the controller.

In order to find the time constant of voltage dynamics, the eigenvalue of the state matrix of state

equation (3.8) is required [25]. The time constant is the negative inverse of the real part of the

eigenvalue. The state matrix from (3.8) is given by

𝐴v = ω0



−𝑅
𝐿

ω 1
𝐿

0

−ω −𝑅
𝐿

0 1
𝐿

− 1
𝐶

0 0 ω

0 − 1
𝐶

−ω 0


. (3.10)

The eigenvalues of 𝐴v is given by

eig(𝐴𝑣) = ω0

©­­­­«
− 𝑅

2𝐿
±

√︂
𝑅2 − 4𝐿

𝐶
− 4ω2𝐿2 ± 4ω𝐿

√︃
4𝐿
𝐶

− 𝑅2

2𝐿

ª®®®®¬
. (3.11)

Generally, 4𝐿
𝐶

≫ 𝑅2, and thus the voltage dynamics time constant can be calculated by

𝑇v =
2𝐿
ω0𝑅

. (3.12)

Note that 𝑅 and 𝐿 are in pu. For a typical value used in Subsection 3.2.2, we get a time constant

value of 5.5 ms approximately. The formula also shows that a higher 𝑅/𝑋 ratio leads to a smaller

time constant. For a 𝑅/𝑋 ratio of 5 (typical higher range), the time constant is approximately 1.06

ms.

3.3 Frequency Dynamics Model

The frequency dynamics of a power system refers to the changes in the frequency of the

system when there is a change in power (load/generation). The inertia of the system is primarily

responsible for maintaining the frequency of the system. Lower inertia corresponds to a higher

frequency deviation. After inertia, the governor with droop control is responsible for maintaining
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frequency. These controller response times are generally within 10 seconds. The secondary control

also exists whose goal is to bring the frequency back to nominal value. This controller is very slow

whose response time is in the order of a few tens of seconds to a few minutes.

3.3.1 Derivation

Ki
s

1
Rp

1
Tgs+1

1
Ms+D

Speed-regulation
droop

Secondary
power Turbine-governor

dynamics Δpe

Δpm
ΔpL

Δω

ΔωΔps

Generator
dynamics

Figure 3.4. General diagram of the isolated power system illustrating the generator dynamics and
the primary frequency control loop.

In a power system, multiple generators can be represented by a single generator with equivalent

parameters. Consequently, the frequency dynamics of the power system can be modeled using

the swing equation and the differential equation representing the turbine-governor dynamics, as

illustrated in Fig. 3.4. The block diagram also includes a secondary power control loop; nevertheless,

this secondary power control loop is disregarded, as our primary focus is on fast frequency support,

and the dynamics of secondary power are considerably slower compared to inertial and droop

responses. The following differential equations define the linearized frequency dynamics of the

system:

𝑀 ¤Δω + 𝐷Δω = Δ𝑝m + Δ𝑝e − Δ𝑝L (3.13a)

𝑇g ¤Δ𝑝m + Δ𝑝m = Δ𝑝𝑠 − 𝑅−1
p Δω (3.13b)

¤Δ𝑝s = −𝐾iΔω (3.13c)

where 𝑀 , 𝐷, 𝑅p, 𝑇g and 𝐾𝑖 represent the equivalent inertia, damping, droop coefficient, governor

time constant, and secondary controller gain respectively. Δω, ¤Δω, Δ𝑝m, Δ𝑝e, and Δ𝑝L represent
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the frequency deviation, ROCOF, changes in mechanical power, ESS power, and load power. The

above equations can be rearranged to obtain:

𝑑Δω

𝑑𝑡
= −𝐷

𝑀
Δω + 1

𝑀
Δ𝑝m + 1

𝑀
Δ𝑝e −

1
𝑀

Δ𝑝L (3.14a)

𝑑Δ𝑝𝑚

𝑑𝑡
= − 1

𝑅p𝑇g
Δω − 1

𝑇g
Δ𝑝m + 1

𝑇g
Δ𝑝s (3.14b)

𝑑Δ𝑝s
𝑑𝑡

= −𝐾iΔω. (3.14c)

Further, the dynamics of secondary power can be neglected as it is slower compared to inertial

and governor response. Thus, we can set 𝑑Δ𝑝𝑠
𝑑𝑡

= 0. Further, we define Δ𝑝∗𝑚 = Δ𝑝𝑚 − Δ𝑝𝑠. Then,

𝑑𝑝∗𝑚
𝑑𝑡

=
𝑑𝑝𝑚

𝑑𝑡
− 𝑑𝑝𝑠

𝑑𝑡
=
𝑑𝑝𝑚

𝑑𝑡
. (3.15)

Then (3.14) can be written as:

𝑑Δω

𝑑𝑡
= −𝐷

𝑀
Δω + 1

𝑀
Δ𝑝∗m + 1

𝑀
Δ𝑝s +

1
𝑀

Δ𝑝e −
1
𝑀

Δ𝑝L (3.16a)

𝑑Δ𝑝∗𝑚
𝑑𝑡

= − 1
𝑅p𝑇g

Δω − 1
𝑇g

Δ𝑝∗m (3.16b)

which can be rewritten as

𝑑Δω

𝑑𝑡
= −𝐷

𝑀
Δω + 1

𝑀
Δ𝑝∗m + 1

𝑀
Δ𝑝e −

1
𝑀

Δ𝑝∗L (3.17a)

𝑑Δ𝑝∗𝑚
𝑑𝑡

= − 1
𝑅p𝑇g

Δω − 1
𝑇g

Δ𝑝∗m (3.17b)

where Δ𝑝∗
𝐿
= Δ𝑝𝐿 − Δ𝑝𝑠. It should be noted that the value of Δ𝑝∗

𝐿
cannot be measured directly

and hence should be treated as a disturbance.

3.3.2 Validation

To validate the developed frequency dynamics model, a detailed generator model from Simulink

is considered. The generator has an inertia of 3.3 s, and a damping constant of 1.0. A governor

with a time constant of 0.2 and droop control of 𝑅p = 0.05 are added. Finally, a secondary control

of gain 2.0 is added. The generator is connected with a load of 0.7 pu which is connected to ESS.

The value of the load is kept constant. Perturbation is created by active power injection via ESS.

The perturbation signal is a square wave of 0.025 pu with a frequency of 0.5 Hz.
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=

ESS Generator
Load

Figure 3.5. Simulink model used to validate the developed frequency dynamics model.

The response of the Simulink model is compared with the developed third and second-order

models. The response of the mathematical model is very close to the Simulink model. The

ω

Figure 3.6. Comparison of response from Simulink generator model and mathematical model.

NRMSE of Δω from third-order and second-order model with respect to Simulink model is 0.46%

and 6.41%. The NRMSE of Δ𝑝m from third-order and second-order models are 0.31% and 1.97%.

The NRMSE of Δ𝑝s from the third-order model is 0.87%. A slightly larger error is observed when

the second-order model is used. This is because the dynamics of secondary power are neglected

which introduces some error. Further, this error is expected to increase when the frequency of
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perturbation is decreased. This is because at lower frequencies, dynamics of secondary power

become more significant, and hence neglecting it causes larger errors. Since the second-order

model performs satisfactorily, the second-order model will be used in the following chapters.

3.3.3 Time Constant of Frequency Dynamics

In order to find the time constant of frequency dynamics, the eigenvalue of the state matrix of

state equation (3.17) is required. Since the secondary controller is slower in response, multiple time

constants exist. Since we are interested in the smallest time constant, we can neglect the dynamics

of secondary power. Then, the state matrix from (3.17) is given by

𝐴ω =


− 𝐷
𝑀

1
𝑀

− 1
𝑅p𝑇g

− 1
𝑇g

 . (3.18)

The eigenvalues of 𝐴ω is given by

eig(𝐴ω) = − 𝐷

2𝑀
− 1

2𝑇𝑔
±

√︃
𝐷2𝑇2

𝑔 − 2𝑀𝐷𝑇𝑔 + 𝑀2 − 4𝑀𝑇𝑔
𝑅𝑝

2𝑀𝑇𝑔
(3.19)

The 4𝑀𝑇𝑔
𝑅𝑝

term within the square root is much larger than the other terms, allowing us to approximate

the frequency dynamics time constant by

𝑇ω =
2𝑀𝑇𝑔
𝑀 + 𝐷𝑇𝑔

. (3.20)

For a typical value used in Subsection 3.3.2, we get a time constant value of approximately 0.377 s.

3.4 Benchmark Description

This section will describe the simulation benchmark that will be used in the remaining chapter.

The benchmark considered here is a modified Cordova benchmark from Alaska. Two substations

are considered: ORCA and HBC. ORCA substation has a voltage level of 12.47 kV with four

generators. HBC substation has a voltage level of 0.48 kV with three generators. A load of value

𝑃𝐿 is connected along with another load of Δ𝑃𝐿 which can be switched on/off to create a step

change in load. Finally, an ESS of size about 30% of total generation size is connected near the
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Figure 3.7. Modified benchmark from Cordova, Alaska.

ORCA substation. This ESS can be utilized to provide different types of grid ancillary services.

The ESS also serves as creating perturbation in the system to estimate the system parameters as

well as to provide voltage and frequency support. The voltage at the connection point of ESS

(also known as Point of Common Coupling (PCC)), 𝑣𝑐 is used as a reference voltage to calculate

frequency and phase via Phase Locked Loop (PLL). The parameters of generators are summarized

in Table 3.1. The droop coefficient and governor time constant are 0.05 and 0.2 s respectively for

all generators.

Table 3.1. Summary of generator parameters.
Generators 𝑀 [s] 𝐷 𝑋𝑑 [pu] 𝑋′

𝑑
𝑋′′
𝑑

𝑋𝑞 𝑋′
𝑞 𝑋𝑙

𝐺1 1.88 1.0 1.38 0.227 0.12 0.76 0.120 0.1
𝐺2 1.88 1.0 1.38 0.227 0.12 0.76 0.120 0.1
𝐺3 3.3 1.0 1.76 0.46 0.248 1.06 0.248 0.05
𝐺4 3.3 1.0 1.76 0.46 0.248 1.06 0.248 0.05
𝐺5 6 0.3 1.20 0.22 0.20 0.8 0.20 0.16
𝐺6 6 0.3 1.20 0.22 0.20 0.8 0.20 0.16
𝐺7 6 0.3 1.20 0.22 0.20 0.8 0.20 0.16

3.5 Chapter Conclusions

In this chapter, the model for voltage and frequency dynamics was developed. The developed

models were validated in the simulation environment, using NRMSE as an error metric to assess

the accuracy of the developed models. The NRMSEs were found to be very small (less than 10%),

demonstrating the efficacy of the developed models. Furthermore, mathematical expressions for
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the time constants corresponding to the dynamics were derived from the developed models and

calculated for typical values encountered in microgrids. Finally, the description of the benchmark

is also provided which will be used in the following chapters.
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CHAPTER 4

MOVING HORIZON ESTIMATION BASED STATE AND PARAMETER ESTIMATION

OF MICROGRIDS FOR VOLTAGE AND FREQUENCY DYNAMICS

The increase of converter-based generation in power systems and microgrids is leading to a

greater variation of power system parameters. This in turn makes the control of voltage and

frequency more challenging. Furthermore, monitoring system states and parameters can be a

valuable tool for microgrid operators to ensure stable and reliable operation. There is a need for the

design of parameter and state estimators that operate under noisy conditions and that are subject to

unknown disturbances. Microgrid parameter estimation is crucial for enabling optimal voltage and

frequency control using Distributed Energy Resources (DER). The parameters of the microgrid can

vary over time, such as during generation re-dispatch or commitment and microgrid reconfiguration.

Additionally, sensor measurements are prone to noise. Using a low-pass filter could potentially

filter out fast dynamic measurements. Thus, a robust states and parameter estimation method is

necessary. In this work, MHE has been employed to perform state and parameter estimation. The

proposed approach estimates the states, including frequency, rate of change of frequency, grid

voltage, and current, as well as system parameters like inertia, damping, and equivalent impedance.

The MHE is formulated as an optimization problem using data over a fixed past horizon and solved

online, aiming to minimize the sum of the square of measurement noise and process noise.

4.1 Chapter Objectives and Contributions

The main objective of this chapter is to develop a state and parameter estimation framework for

microgrid voltage and frequency dynamics. The specific contributions are:

• Parameter identifiability analysis for parameter estimation of the model developed in Chapter 3

• Moving horizon estimation framework to perform state and parameter estimation
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4.2 Parameter Identifiability Analysis

Parameter identifiability analysis is a valuable tool to check necessary conditions on perturbation

signals to be able to estimate the unknown parameters. Let 𝑥 ∈ R𝑛𝑥 be the state of the system,

𝑢 ∈ R𝑛𝑢 be the input to the system, 𝑝 ∈ R𝑛𝑝 be the unknown parameter of the system, and

𝑦 ∈ R𝑛𝑦 be the measurement output variable of the system. Let 𝑓𝑐 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑝 → R𝑛𝑥 and

ℎ𝑐 : R𝑛𝑥 × R𝑛𝑝 → R𝑛𝑦 are continuous-time state equation and output equation. Then, the system

can be written as

¤𝑥 = 𝑓𝑐 (𝑥, 𝑢, 𝑝) (4.1a)

𝑦 = ℎ𝑐 (𝑥, 𝑝). (4.1b)

The observability matrix can be written as [35]

O =



𝜕
𝜕𝑥
ℎ𝑐 (𝑥, 𝑝)

𝜕
𝜕𝑥
(𝐿 𝑓𝑐ℎ𝑐 (𝑥, 𝑝))

𝜕
𝜕𝑥
(𝐿2

𝑓𝑐
ℎ𝑐 (𝑥, 𝑝))
...

𝜕
𝜕𝑥
(𝐿𝑛𝑥+𝑛𝑝−1

𝑓𝑐
ℎ𝑐 (𝑥, 𝑝))


(4.2)

where 𝑥 = [𝑥⊤ 𝑝⊤]⊤ represents augmented state vector and 𝐿𝑖
𝑓𝑐
ℎ𝑐 (𝑥) =

𝜕𝐿𝑖−1
𝑓𝑐
ℎ𝑐 (𝑥,𝑢)
𝜕𝑥

𝑓𝑐 (𝑥, 𝑢) +∑𝑖
𝑗=0

𝜕𝐿𝑖−1
𝑓𝑐
ℎ𝑐 (𝑥,𝑢)

𝜕𝑢 ( 𝑗 )
𝑢( 𝑗+1) represents the 𝑖th Lie derivative of ℎ with respect to 𝑥 along 𝑓 , and 𝑢( 𝑗)

represents 𝑗 𝑡ℎ derivative of 𝑢 with respect to 𝑡. The Lie derivative can be calculated recursively

as [35]

𝐿𝑖𝑓𝑐ℎ𝑐 (𝑥, 𝑝) =
𝜕𝐿𝑖−1

𝑓𝑐
ℎ𝑐 (𝑥, 𝑝)
𝜕𝑥

𝑓𝑐 (𝑥, 𝑢, 𝑝) +
𝑖−2∑︁
𝑗=0

𝜕𝐿𝑖−1
𝑓𝑐
ℎ(𝑥, 𝑝)

𝜕𝑢( 𝑗)
𝑢( 𝑗+1) (4.3)

with 𝐿 𝑓𝑐ℎ𝑐 (𝑥, 𝑝) =
𝜕ℎ𝑐 (𝑥,𝑝)

𝑥
𝑓𝑐 (𝑥, 𝑢, 𝑝). The system is fully observable (all states and parameters

can be estimated) only if the rank of O is equal to the number of elements in 𝑥. If the matrix O is

rank-deficit, then each column can be removed at a time, and the rank of the resulting matrix can be

calculated to check which column does not contribute to the rank. The variable (state or parameter)

that corresponds to the column that does not contribute to the rank of O is unobservable.
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4.3 Moving Horizon Estimation

y k

One
Sample Time

Measurements
Estimate at
current time

time (k)

Estimation
Window

Figure 4.1. Basic concept of MHE.

MHE is an online optimization-based approach for states and parameter estimation. Past

measurements over finite horizon are collected which are used to estimate states and parameters at

the current discrete time. Recent developments in highly efficient Quadratic Programming (QP)

solvers have made the real-time implementation of the MHE problem feasible [36]. The concept of

MHE is illustrated in Fig. 4.1. The crosses (⊗) represent the measurements from the system while

the circles (◦) represent the predicted system output based on the measurement and the prediction

model. The measurement horizon is set to a fixed length of 𝑀 i.e., the measurement from 𝑀

discrete time instants are considered. At each discrete time, the optimization problem is solved

that provides the estimate of states and parameters. At the next time-step, the window is moved

forward i.e., the oldest measurement is discarded and the newest is added. Since the most recent

data of fixed timesteps is considered, the information from the data behind the horizon window is

completely lost. To solve this issue, arrival cost is used. Arrival cost is a technique to incorporate

the information from data before the starting point of the window by using an approximate function.

This allows us to estimate the state and parameters accurately even with smaller horizon lengths.
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4.3.1 General Formulation of MHE

Let 𝑀 represent the horizon length of the MHE. This 𝑀 represents a number of past data

measurements to be considered for estimation. Let us also define L = 𝑞 − 𝑀 . If H = {𝑞 − 𝑀, 𝑞 −

𝑀 +1, ..., 𝑞} = {L,L+1, ..., 𝑞} represents the set of sampling instant, then MHE can be formulated

as shown in eq. 4.4:

min
𝑥𝑘 ,𝑝

𝐽𝐻 = 𝜙L (𝑥L) +
𝑞∑︁

𝑘=L

��������𝑦𝑘 − ℎ(𝑥𝑘 , 𝑝)��������2
𝑉

+
𝑞−1∑︁
𝑘=L

��������𝑤𝑘 ��������2
𝑊

(4.4a)

subject to

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑝) + 𝑤𝑘 ∀ 𝑘 ∈ H/{𝑞} (4.4b)

𝑝min ≤ 𝑝 ≤ 𝑝max (4.4c)

where | |𝑎 | |2
𝐴

:= 𝑎⊤𝐴⊤𝐴𝑎, 𝑝min and 𝑝max represents minimum and maximum possible value of

parameters 𝑝. This 𝑝min and 𝑝max can also be used to force the parameters value. This is useful

when we already have an estimation of parameters and want to perform state estimation only. The

first term in the cost function i.e., 𝜙L (·) represents the arrival cost at sample instant 𝑞. Since we

consider data from 𝑘 = L, ..., 𝑞 only, the data information from 𝑘 = 0, ...,L − 1 would be lost.

Incorporating that data directly would increase the size of the optimization problem. Arrival cost is

the technique to summarize the information contained in data from 𝑘 = 0, ...,L with approximate

function. The second term in the cost function represents the residual due to measurement noise

and the third term represents the residual due to process noise where 𝑉 ∈ R𝑛𝑥×𝑛𝑥 and 𝑊 ∈ R𝑛𝑦×𝑛𝑦

represents their corresponding weights. The first constraint (4.4b) represents the discretized state

equation of the system and the second constraint (4.4c) represents reasonable limits on the value of

parameters. The solution to the above optimization problem gives the value of 𝑥𝑘 and 𝑝 which are

the estimates of states and parameters and are respectively denoted by 𝑥𝑘 |𝑞 and 𝑝𝑞.

39



4.3.2 Arrival Cost in MHE

The objective of the arrival cost is to approximate the information contained in data from

𝑘 = 0, ..., 𝑞 − L i.e., to find the approximate representation of the following function:

min
L∑︁

𝑘=−∞
| |𝑦𝑘 − ℎ(𝑥𝑘 , 𝑝𝑘 ) | |2𝑉 +

L−1∑︁
𝑘=−∞

| |𝑤𝑘 | |2𝑊 (4.5)

subject to

𝑥L = 𝑓 (𝑥L−1, 𝑢L−1, 𝑝L−1) + 𝑤L−1 (4.6)

Different technique exists to approximate the above function. For a constrained estimation problem,

it is nearly impossible to calculate the exact arrival cost. Thus, a lot of research has been focused

on approximating the arrival by a suitable function that is computationally tractable. For example,

extended Kalman filter-based approach has been proposed in [37]. Unscented Kalman filter-based

implementation has been proposed in [38]. QR factorization-based approach is proposed in [26].

In this paper, we have used the method proposed in [26]. In this method, the arrival cost (4.5) is

approximated by

𝜙L (𝑥L) =

�������
�������𝑥L − 𝑥L

𝑝𝑞 − 𝑝L

�������
�������
2

𝑃L

. (4.7)

Value of 𝑥L and 𝑝L gives estimation summary of states and parameters while 𝑃L gives

uncertainty in the estimation summary. The recursive update relation for 𝑥𝑞−L , 𝑝L and 𝑃L is given

in [26]. First, 𝑓 (·) and ℎ(·) are expanded as

𝑓 = 𝑥 + 𝑋𝑥𝑥L + 𝑋𝑝𝑝L (4.8)

ℎ = ℎ̃ + 𝐻𝑥𝑥L + 𝐻𝑝𝑝L (4.9)
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where

𝑋𝑥 =
𝜕 𝑓

𝜕𝑥

�����
𝑥=𝑥L|𝑞−1,𝑝=𝑝𝑞−1

; 𝑋𝑝 =
𝜕 𝑓

𝜕𝑝

�����
𝑥=𝑥L|𝑞−1,𝑝=𝑝𝑞−1

𝐻𝑥 =
𝜕ℎ

𝜕𝑥

�����
𝑥=𝑥L|𝑞−1,𝑝=𝑝𝑞−1

;𝐻𝑝 =
𝜕ℎ

𝜕𝑝

�����
𝑥=𝑥L|𝑞−1,𝑝=𝑝𝑞−1

We define a matrix 𝑆 ∈ R(2𝑛𝑥+2𝑛𝑝+𝑛𝑦)×(2𝑛𝑥+2𝑛𝑝) and vector 𝑠 ∈ R2𝑛𝑥+2𝑛𝑝+𝑛𝑦 as :

𝑆 :=

©­­­­­­­­«

𝑃L 0

−(𝑉𝐻𝑥 | 𝑉𝐻𝑝) 0

−𝑊̄
©­­«
𝑋𝑥 𝑋𝑝

0 I

ª®®¬ 𝑊̄

ª®®®®®®®®¬
(4.10)

𝑠 :=

©­­­­­­­­­­­­«

−𝑃L
©­­«
𝑥L

𝑝L

ª®®¬
𝑉 (𝑦L − ℎ̃)

−𝑊̄
©­­«
𝑥

0

ª®®¬

ª®®®®®®®®®®®®¬
(4.11)

where 𝑊̄ =
©­­«
𝑊 0

0 𝑊𝑝

ª®®¬ and𝑊𝑝 ∈ R𝑛𝑝×𝑛𝑝 is the weight for parameter noise. Then, QR decomposition

of 𝑆 is taken i.e.,

QR = 𝑆 (4.12)

where Q is unitary matrix and R is upper triangular matrix. Then,

𝜌 =

©­­­­­«
𝜌1

𝜌2

𝜌3

ª®®®®®¬
= Q⊤𝑠 (4.13)

R =

©­­­­­«
R1 R12

0 R2

0 0

ª®®®®®¬
(4.14)
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where 𝜌1, 𝜌2 ∈ R𝑛𝑥+𝑛𝑝 , 𝜌3 ∈ R𝑛𝑦 and R1,R2,R12 ∈ R(𝑛𝑥+𝑛𝑝)×(𝑛𝑥+𝑛𝑝) . Then, arrival cost update can

be written as

𝑃L+1 = R2 and
©­­«
𝑥L+1

𝑝L+1

ª®®¬ = −R−1
2 𝜌2. (4.15)

The recursive update (4.15) is used to update the arrival cost function every timestep.

4.3.3 Weight Selection in MHE

The proper value of weights in eq. (4.4a) i.e., 𝑉 and 𝑊 should be chosen to ensure good

performance of MHE. These weights are based on errors in their corresponding term. Modeling

error decides the value of 𝑊 and measurement noise decides the value of 𝑉 . Those weights are

inverse of their corresponding noise i.e., 𝑊 = 𝑄
−1/2
𝑤 and 𝑉 = 𝑅

−1/2
𝑣 . The values of 𝑄𝑤 and 𝑅𝑣

are not readily available. Thus, proper estimation of 𝑄𝑤 and 𝑅𝑣 is required. We have used the

autocovariance least square (ALS) estimation technique to estimate𝑄𝑤 and 𝑅𝑣 [39]. In this method,

an observer is designed with the following as the error dynamics of the observer

𝜀𝑘 = 𝐴̄𝜀𝑘−1 + 𝐺̄𝑤̄𝑘−1 (4.16a)

𝒴𝑘 = 𝑦𝑘 − 𝐶𝑥− (4.16b)

where 𝑥−
𝑘
= 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1, 𝐴̄ = 𝐴− 𝐴𝐿𝐶, 𝐺̄ = [𝐺, − 𝐴𝐿], 𝑤̄𝑘 = [𝑤⊤

𝑘
, 𝑣⊤

𝑘
]⊤ and𝐺 in this work is

an identity matrix of dimension 𝑛𝑥 × 𝑛𝑥 . Matrices 𝐴, 𝐵 and 𝐶 are state, input, and output matrices

of the linearized model respectively. This observer does not need to be optimal; it only needs to be

stable. Estimate of autocovariance of 𝒴𝑘 is calculated as

𝒞̂𝑗 =
1

𝑁𝑑 − 𝑗

𝑁𝑑−1∑︁
𝑖=1

𝒴𝑖𝒴
⊤
𝑖+ 𝑗 (4.17)

where 𝑗 represents lag and 𝑁𝑑 represents the number of data. From the estimate of autocovariance

for 𝑗 = 0, 1, ..., 𝑁 − 1, autocovariance matrix (ACM) is created as

ℛ̂(𝑁) =
©­­­­­«
𝒞̂0 . . . 𝒞̂𝑁−1
...

. . .
...

𝒞̂
⊤
𝑁−1 . . . 𝒞̂0

ª®®®®®¬
(4.18)
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where 𝑁 is maximum lag chosen. For stationary data, autocovariance approaches zero at higher

lag. Thus, value of 𝑁 is chosen such that autocovariance at lag greater than 𝑁 is non-significant.

The expression for autocovariances and hence, ACM can be derived from observer dynamics

equation (4.16). The expression for ACM will be matrix with number of elements determined by

the value of 𝑁 . Thus equating ℛ̂(𝑁) with an expression of ACM results in 𝑁2 number of equations

which, generally, is greater than the total number of unknown elements in 𝑄𝑤 and 𝑅𝑣 matrices.

Hence, it is formulated as a least square optimization problem such that the sum of squares of

difference in each of the equations is minimized. As shown in [39], the least square optimization

problem can be written as

min
𝒳

��������𝒜𝒳 − 𝑏̂
��������2

2
(4.19)

where

𝒜 =

(
𝐷 (𝐺 ⊗ 𝐺) |𝐷 (𝐴𝐿 ⊗ 𝐿) + [Ψ ⊕ Ψ + 𝐼𝑛2

𝑦𝑁
2]ℐ𝑛𝑦 ,𝑁

)
,

𝐷 = [(𝒪 ⊗ 𝒪) (𝐼𝑛2
𝑥
− 𝐴̄ ⊗ 𝐴̄)−1 + (Γ ⊗ Γ)ℐ𝑛𝑥 ,𝑁 ],

𝒪 =

©­­­­­­­­«

𝐶

𝐶𝐴̄

...

𝐶 𝐴̄𝑁−1

ª®®®®®®®®¬
, Γ =

©­­­­­­­­«

0 0 0 0

𝐶 0 0 0
...

. . .
...

𝐶 𝐴̄𝑁−2 . . . 𝐶 0

ª®®®®®®®®¬
,

𝑏̂ = vec
(
ℛ̂(𝑁)

)
,Ψ = Γ

[
𝑁⊕
𝑗=1

(−𝐴𝐿)
]
,

and 𝒳 =
©­­«
vec(𝑄𝑤)

vec(𝑅𝑣)

ª®®¬
The solution to optimization problem (4.19) gives estimates of 𝑄𝑤 and 𝑅𝑣 which are denoted by

𝑄𝑤 and 𝑅𝑣. Thus,𝑊 = 𝑄
−1/2
𝑤 and 𝑉 = 𝑅

−1/2
𝑣 are chosen as weights for MHE.
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4.4 Implementation of MHE

MHE, when parameter estimations are involved, is generally a nonlinear optimization problem.

Generalized Gauss-Newton (GGN) is a method to solve nonlinear optimization problems by

transforming it into a sequence of quadratic problems. GGN solves the nonlinear problem of

the following form:

min
𝑟

| |𝐽 (𝑟) | |22 (4.20a)

subject to

𝐺 (𝑟) = 0 (4.20b)

𝐻 (𝑟) ≤ 0 (4.20c)

where 𝑟 is an unknown variable for which the problem needs to be solved. The problem (4.20) is

solved successively with quadratic approximation. The approximated quadratic problem is

min
Δ𝑟𝑘

| |𝐽 (𝑟𝑘 ) + ∇𝑟𝐽 (𝑟𝑘 )⊤Δ𝑟𝑘 | |22 (4.21a)

subject to

𝐺 (𝑟𝑘 ) + ∇𝑟𝐺 (𝑟𝑘 )⊤Δ𝑟𝑘 = 0 (4.21b)

𝐻 (𝑟𝑘 ) + ∇𝑟𝐻 (𝑟𝑘 )⊤Δ𝑟𝑘 ≤ 0. (4.21c)

The above problem is solved for Δ𝑟𝑘 and 𝑟𝑘 is updated as 𝑟𝑘+1 = 𝑟𝑘 +Δ𝑟𝑘 . This process is continued

till some termination criteria are reached (e.g., | |Δ𝑟𝑘 | |2 < 𝜖). With a good initial guess, the solution

can be achieved in a very small number of iterations. In MHE, solutions from previous time steps

can be shifted with one timestep to get an initial guess. This initial guess can be utilized to make

the MHE computationally efficient.
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The qpOASES solver is used to solve the optimization problem. The qpOASES solver solves

the optimization problem of the following form:

min
𝑧

1
2
𝑧⊤𝐻𝑧 + 𝑔⊤𝑧 (4.22a)

subject to

𝑧𝑙 ≤ 𝑥 ≤ 𝑧𝑢 (4.22b)

𝑎𝑙 ≤ 𝐴𝑧 ≤ 𝑎𝑢 . (4.22c)

where 𝑧 is an unknown variable for which the optimization problem has to be solved. It should be

noted that only inequality constraint is supported in qpOASES directly. Equality constraint can be

written as inequality constraint with equal upper and lower bounds. The qpOASES is used to solve

the optimization problem (4.21) with following:

𝑧 := Δ𝑟𝑘 (4.23)

𝐻 := 2∇𝑟𝐽 (𝑟𝑘 )⊤∇𝑟𝐽 (𝑟𝑘 ) (4.24)

𝑔 := 2∇𝑟𝐽 (𝑟𝑘 )⊤𝐽 (𝑟𝑘 ). (4.25)

Constraints can be rewritten accordingly. The important part is the computation of jacobians

(∇𝑟𝐽 (𝑟𝑘 ), ∇𝑟𝐺 (𝑟𝑘 ), etc). CasADi [40] offers algorithmic differentiation which can be utilized to

compute the jacobians. Further, CasADi offers C-code generation which makes the computation

of Jacobians efficient. It should be noted that this approach can be used for MPC as well.

4.5 State/Parameter Estimation for Voltage Dynamics

MHE for voltage dynamics (named ‘V-MHE’) will be discussed in this section. For state

and parameter estimation of voltage dynamics of microgrids, the model developed in Chapter 3

for voltage dynamics is used. The Runge-Kutta method of order 4 is used to discretize the

state equation (3.8). The state variables are 𝑥 =

[
𝑖𝑔𝑑 𝑖𝑔𝑞 𝑣𝑐𝑑 𝑣𝑐𝑞

]⊤
and input variables are

𝑢 =

[
𝑖𝑖𝑛𝑣𝑑 𝑖𝑖𝑛𝑣𝑞

]⊤
. The unknown parameters to be estimated is 𝑝 =

[
𝑅 𝐿 𝑣𝑔𝑑 𝑣𝑔𝑞

]⊤
. Further,
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all four state variables are measurable. Thus,

ℎ(𝑥, 𝑝) = 𝑥. (4.26)

4.5.1 Simulation Setup
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Figure 4.2. Setup of microgrid benchmark for V-MHE.

To test the proposed estimation framework, the benchmark described in Chapter 3 is used. The

setup is shown in Fig. 4.2. The measured 𝑖g and 𝑣c (which are in 𝑎𝑏𝑐 frame) is transformed into 𝑑𝑞

frame. The phase calculated by PLL is used for the transformation. The perturbation is provided

via ESS which varies the 𝑑 and 𝑞 components of inverter current. The measured 𝑖𝑔,𝑑𝑞 and 𝑣𝑐,𝑑𝑞

along with the perturbation signal are passed to V-MHE that provides the estimates of 𝑖𝑔,𝑑𝑞, 𝑣𝑐,𝑑𝑞,

𝑣𝑔,𝑑𝑞, 𝑅 and 𝐿. The noise added in the measurement has standard deviations of 0.02 pu which

makes the measurement noise covariance diag(4, 4, 4, 4) × 10−4. The horizon length of V-MHE is

set to 16 (which is two times the number of variables to be estimated as recommended in [41]). The

sample time should be chosen 10-20 times smaller than the system time constant. In Chapter 3, the

typical time constant for voltage dynamics was calculated as 1.06 ms. Thus, a sample time of 0.1

ms was chosen which is approximately 10 times smaller than the typical sample time.

4.5.2 Results and Analysis

This section will first analyze the identifiability of the system to check whether it is possible to

estimate the parameters of interest. This also gives information about the minimum requirements
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for the perturbation signal. Then, the weight selection of MHE cost function is discussed. Finally,

the performance of MHE in terms of accuracy of state estimation is performed.

4.5.2.1 Identifiability Analysis

Identifiability analysis was performed using a mathematical model of voltage dynamics developed

in Chapter 3 and output equation (4.26). First, the observability matrix was calculated which whose

rank was found to be 8 which is the same as 𝑛𝑥 + 𝑛𝑝 = 4 + 4 = 8. This shows that it is possible to

estimate all 4 states and 2 parameters. After that, the maximum derivative order of the input signal

(𝑖𝑖𝑛𝑣𝑑 and 𝑖𝑖𝑛𝑣𝑞) is checked which was found to be 6. Then, the 6th derivative of the input signal was

set to zero and rank was rechecked. This is followed by setting 6th and 5th derivative of the input

signal to zero and the rank was rechecked. This is repeated till all the order of derivatives of the

input signal is set to zero. In all the cases, the rank of the observability matrix was found to be 8.

A signal with all orders of derivative zero means it is a constant signal. With a constant signal, the

system goes to a steady state. The value of state variables at steady state can be found by setting

𝑓 (𝑥, 𝑢, 𝑝) = 0 and solving for 𝑥. With the value of steady state 𝑥, we can recalculate the rank of the

observability matrix for steady-state conditions under constant excitation. Now, the rank was found

to be reduced to 6. This shows that the system should not go to a steady state although excitation

can be constant (temporarily to avoid a steady state condition). Square wave is a good candidate

to fulfill this criterion. The observability matrix can be further inspected for the column that does

not contribute to rank by removing one column at a time and rechecking the rank. It was found

that 5th and 6th columns do not contribute to the rank. This column corresponds to 𝑅 and 𝐿. This

shows that the estimation of 𝑅 and 𝐿 requires an excitation signal and when 𝑅 and 𝐿 are known,

the estimation of 𝑣𝑔𝑑 and 𝑣𝑔𝑞 does not require an excitation signal.

4.5.2.2 Weight Selection

To identify noise covariances, the microgrid is perturbed with a square wave of frequency 100 Hz

for both 𝑑 and 𝑞 components and amplitude 0.05 pu and 0.15 pu for 𝑑 and 𝑞 components respectively

of inverter current. The initial guess of 𝑄𝑤 and 𝑅𝑣 are chosen to be diag(5, 3, 2, 2) × 10−3 and
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diag(2, 2, 5, 5) × 10−3. It should be noted that this initial guess can be chosen arbitrarily. The only

requirement is that it should make the observer stable.

With the above settings, the simulation was run for 0.5 seconds (after the system attained a

steady state). The simulation was run 200 times with different random seed values for the noise

generator. First, the autocovariance matrix for different values of lag was calculated using (4.17).

For most of the cases, it was found that the value of autocovariance is very small after the lag of

5. Thus value of maximum lag was chosen to be 𝑁 = 5. With this value of 𝑁 , covariances are

estimated for all 200 simulation datasets. The mean of estimated covariances (a diagonal term only)

is found to be 𝑄𝑤 = diag(3.18, 5.11, 10.9, 2.64) × 10−5 and 𝑅𝑣 = diag(2.3, 5.7, 3.1, 4.49) × 10−4.

Then, 𝑊 = 𝑄
−1/2
𝑤 and 𝑉 = 𝑅

−1/2
𝑣 are chosen as weights for MHE cost function. It should be

noted that the value of estimated measurement noise (𝑅𝑣) is close to the injected noise covariances

diag(4, 4, 4, 4) × 10−4 which is obtained as the square of the standard deviation of measurement

noise injected.
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Figure 4.3. Estimation of state variables and estimated parameters. The time domain plot of state
variables is shown whereas a histogram of estimated parameters is shown.
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4.5.2.3 States and Parameter Estimation

To assess the performance of MHE, the value of the load is set to 0.5 pu. Since parameter

estimation is also performed, a perturbation signal is required. The microgrid is perturbed with a

square wave of frequency 100 Hz for both 𝑑 and 𝑞 components and amplitude 0.05 pu and 0.15 pu

for 𝑑 and 𝑞 components respectively of inverter current. The larger 𝑞 component was required to

create a large variation in the 𝑞 component of state variables.

The results of the estimation are shown in Fig. 4.3. Estimation of 𝑖gd and 𝑖gq is shown in

Fig. 4.3(a) and Fig. 4.3(b) respectively. It can be observed that the noise in these variables is largely

reduced. The NRMSE of estimated value with respect to true are 15.76%, 12.89%, 13.25% and

18.84% for 𝑖𝑔𝑑 , 𝑖𝑔𝑞, 𝑣𝑐𝑑 and 𝑣𝑐𝑞 respectively. The mean value of estimated parameters are 0.716

pu and 0.500 pu for 𝑅 and 𝐿 respectively. RMSE of estimated parameters against mean value is

1.63% and 1.58% respectively.

4.6 State/Parameter Estimation for Frequency Dynamics

For state and parameter estimation of frequency dynamics of microgrids, the model developed

in Chapter 3 for frequency dynamics is used. The Runge-Kutta method of order 4 is used to

discretize the state equation (3.17). The state variables are 𝑥 =

[
Δω Δ𝑝∗𝑚

]⊤
and input variables

are 𝑢 =

[
𝑖𝑖𝑛𝑣𝑑

]⊤
. The unknown parameters to be estimated is 𝑝 =

[
𝑀 𝐷 Δ𝑝∗

𝐿

]⊤
. Further, only

Δω is measurable. Thus,

ℎ(𝑥, 𝑝) =
[
1 0

]
𝑥 = Δω. (4.27)

4.6.1 Simulation Setup

To test the proposed estimation framework, the benchmark described in Chapter 3 is used.

The setup is shown in Fig. 4.4. The frequency is measured by using PLL (from which frequency

deviation is calculated as Δω = 1 − ω). A Gaussian noise with a variance of 10−7 is added to

emulate real-world scenarios. The horizon length of F-MHE is set to 10 (which is two times the

number of variables to be estimated as recommended in [41]). The sample time should be chosen
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Figure 4.4. Setup of microgrid benchmark for F-MHE.

10-20 times smaller than the system time constant. In Chapter 3, the typical time constant for

frequency dynamics was calculated as 0.377 s. Thus, a sample time of 20 ms was chosen which is

approximately 18 times smaller than the typical sample time.

4.6.2 Results and Analysis

4.6.2.1 Identifiability Analysis

Identifiability analysis was performed using a mathematical model of frequency dynamics

developed in Chapter 3 and output equation (4.27). The rank of the observability matrix was found

to be 5 which is the same as 𝑛𝑥 + 𝑛𝑝 = 2 + 3 = 5. Then, the maximum order of derivative of the

input signal (𝑖𝑖𝑛𝑣𝑑) was checked and found to be 3. Starting from higher order, the derivative of the

signal was set to zero (similar as done for the case of voltage dynamics). It was found that the rank

of the observability matrix remains at 5 even for constant excitation. However, when a steady state

condition was imposed, the rank was reduced to 3. This shows that it is not possible to estimate all

states and parameters when the system is in a steady state. Thus, constant excitation can be only

temporary. The square wave is a good candidate that fulfills this criterion. However, Δω, Δ𝑝𝑚, and

𝑤𝑑 can be estimated at all conditions of the excitation signal.

4.6.2.2 Weight Selection

To identify noise covariances, the microgrid is perturbed with a square wave of frequency 1

Hz amplitude of 0.05 pu for 𝑑 component of inverter current. The initial guess of 𝑄𝑤 and 𝑅𝑣 are
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chosen to be diag(10−7, 10−7) and 10−7. It should be noted that this initial guess can be chosen

arbitrarily. The only requirement is that it should make the observer stable.

With the above settings, the simulation was run for 100 seconds (after the system attained a

steady state). The simulation was run 200 times with different random values of seed for the noise

generator. First, the autocovariance matrix for different values of lag was calculated using (4.17).

For most of the cases, it was found that the value of autocovariance is very small after the lag of

8. Thus value of maximum lag was chosen to be 𝑁 = 8. With this value of 𝑁 , covariances are

estimated for all 200 simulation datasets. The mean of estimated covariances (a diagonal term

only) is found to be 𝑄𝑤 = diag(0.018, 0.061) × 10−7 and 𝑅𝑣 = 0.87 × 10−7. Then, 𝑊 = 𝑄
−1/2
𝑤

and 𝑉 = 𝑅
−1/2
𝑣 are chosen as weights for MHE cost function. It should be noted that the value of

estimated measurement noise (𝑅𝑣) is close to the injected noise covariances 1 × 10−7.

4.6.2.3 States and Parameter Estimation

To assess the performance of MHE for frequency dynamics, the value of the load is set to

0.5 pu. A square wave of 1 Hz and amplitude of 0.05 pu for 𝑑 component of inverter current

is used as a perturbation signal. The 𝑞 component of inverter current is set to zero since the

𝑞 component corresponds to reactive power and reactive power has a non-significant effect on

frequency dynamics. The results of the estimation is shown in Fig. 4.5.

Fig. 4.5(a) shows the perturbation signal. Fig. 4.5(b) shows the comparison of estimated value

against noisy measurement. It can be observed that the estimated frequency is very close to the true

value. Further, the effect of noise can be observed to be reduced. The NRMSE of Δω was found

to be 17.7%. Similarly, ¤Δω was estimated from estimated value of Δω, Δ𝑝𝑚, Δ𝑝𝑒 and Δ𝑝𝐿 using

(3.17)(a). The reason for comparing ¤Δω is that frequency support (to be discussed in Chapter 6)

required both Δω and ¤Δω to be reduced. The estimated value is then compared with the calculated

value of ¤Δω as shown in Fig. 4.5(c). The value was calculated using a derivative of Δω. The

NRMSE was found to be 44.98%. The larger NRMSE is because the derivative was used and the

derivative amplifies the noise/distortion even if it is very small. Fig. 4.5(d) shows the estimation of
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Figure 4.5. Estimation of state variables and estimated parameters. The time domain plot of state
variables is shown whereas a histogram of estimated parameters is shown.

Δ𝑝𝐿 which is nearly zero since the parameter estimation was performed after the system reached

a steady state. The scenario where estimation is performed with load change will be discussed in

Chapter 6. Fig. 4.5(e) and (f) show the histogram of 𝑀 and 𝐷 estimates. The mean of 𝑀 and

𝐷 were found to be 2.72 s and 1.27. Their corresponding Root Mean Square Error (RMSE) with

respect to the mean was found to be 0.76% and 8.8% respectively.

4.6.2.4 Effects of Noise

The above simulation was run by increasing the noise covariance by 10 times (from 10−7 to

10−6). With this, the value of 𝑉 was reduced by
√

10. The NRMSE of Δω and ¤Δω are found to be

20.4% and 44.54% respectively which are slightly larger than the case where noise covariance was

10−7. The RMSE against mean value was found to be 0.66% and 22.85% for 𝑀 and 𝐷 respectively.
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Figure 4.6. Estimation of state variables and estimated parameters when noise covariance is
increased by 10 times.

Other than the estimation of 𝐷, there is no significant change in error even if noise covariance was

increased by 10 times. This shows the robustness of the proposed approach against noise.

4.7 Computational Tractability

The C-code for the V-MHE and F-MHE are run on i7 11th generation with 16 GB of RAM on

Windows 11. The C-code was compiled with GCC compiler with level three optimization enabled.

The average computation time to solve the V-MHE for one timestep was found to be 0.0193 ms.

Similarly, the computation time of F-MHE was found to be 0.0152 ms. Both of these times are

very small compared to their corresponding sample time.
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4.8 Chapter Conclusions

In this chapter, parameter identifiability analysis for microgrid parameter estimation was

performed which was used to check whether the parameters of interest can be estimated. It

also gave the necessary criteria for perturbation signals. Then, an online method to estimate state

and parameters related to voltage and frequency dynamics was introduced. The proposed approach

was able to provide estimates from noisy measurements. The MHE showed good performance with

a smaller value of error metrics (RMSE and NRMSE). These state and parameter estimates will be

utilized to provide voltage and frequency support as presented in Chapters 5 and 6.
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CHAPTER 5

MODEL PREDICTIVE CONTROL BASED DYNAMIC VOLTAGE SUPPORT

The rapid integration of renewable energy sources (RES) into the power system is revolutionizing

the energy landscape, offering significant advantages such as reduced greenhouse gas emissions and

improved energy sustainability. However, this integration also poses voltage stability challenges,

including fluctuations, harmonics, flickering, imbalanced loads, and power oscillation. Microgrids

face increased vulnerability to voltage instability due to the presence of diverse generation sources,

reactive power limitations, and load dynamics [42]. In microgrids, voltage instability occurs in a

major event like a sudden change in power demand or output from RES or when a generator stops

working. Even small changes in demand can cause voltage instability, especially in systems already

operating near their limits. In conventional power systems, the 𝑅/𝑋 ratio of the transmission/distribution

lines is lower, and the voltage is sensitive to reactive power only; hence, reactive power management

techniques ensure a reliable power supply by reducing fluctuations. In contrast, microgrids typically

operate at low to medium voltage ranges and have a high 𝑅/𝑋 ratio [5], resulting in high voltage

sensitivity to both active and reactive power. Depending on the ratio, the voltage could be more

sensitive to active power. Thus, the traditional voltage control approach used in conventional power

systems is not applicable to microgrids. The control approach should consider both active and

reactive power as control signals. This chapter is devoted to developing a MPC based approach for

dynamic voltage support.

5.1 Chapter Objectives and Contributions

The main objective of this chapter is to develop a control framework based on model predictive

control for dynamic voltage support. The specific contribution is:

• Design of dynamic voltage support framework that achieves required performance while

incorporating physical constraints of the ESS
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5.2 Proposed MHE-MPC Framework

Figure 5.1. Proposed MHE-MPC framework for voltage support. The MHE provides estimates of
states and MPC provides ESS control signals.

The proposed MHE-MPC framework is shown in Fig. 5.1. The proposed approach contains

integrated MHE and MPC. The MHE performs states and parameter estimation from the noisy

measurement. MHE can also estimate the effect of unknown disturbance of the system e.g., the

effect of change in load. These estimates are used in MPC to generate a control signal for ESS.

The MHE and MPC are formulated as an optimization problem that uses a simplified model of the

system voltage dynamics, informational/operational constraints, and cost function. The solution

to the MHE optimization problem at each time step gives state and parameter estimates and the

solution to the MPC optimization problem gives control signals to be applied to the system. Further,

an external dispatch controller is also included so that the proposed scheme provides voltage support

at transient only and supplies normal dispatch power in a steady state.

5.3 Model Predictive Control

MPC is an online optimization-based control approach where a mathematical model is used to

predict the future trajectory and compute the control signal such that the trajectory of the system

is close to the desired trajectory. The period up to which prediction is made is called prediction

horizon. The cost function is defined as how close the trajectory is to the desired trajectory. The
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Figure 5.2. Illustration of MPC concept.

control problem takes the form of an optimization problem which is solved at every time step. The

concept is illustrated in the Fig. 5.2. At any given instant (e.g 𝑡 = 𝑞), the actual value of state

(𝑥) which the state estimator generally provides is passed to MPC problem to solve for control

input. MPC calculates the value of control input for the entire horizon from which the first one is

applied at 𝑡 = 𝑞. At the next timestep (𝑡 = 𝑞 + 1), a new value of 𝑥 is obtained which is passed

to MPC to calculate the control signal again. It should be noted that actual 𝑥 at 𝑡 = 𝑞 + 1 might

be slightly different than the one predicted in the previous timestep because of some error in the

prediction model. Thus, control input, although calculated for entire horizon, cannot be used for

future timesteps and has to be recalculated at every timesteps.

5.3.1 Formulation of MPC

Let 𝑁 represent the horizon length of MPC. This 𝑁 represents the number of timesteps in the

future for which a prediction is made. Let us also define 𝐾 = 𝑞 + 𝑁 . Let Γ = {𝑞, 𝑞 + 1, ..., 𝑞 + 𝑁}

represents the set of sampling instants where 𝑞 represents the current timestep. Then, MPC can be
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formulated as

min
𝑥𝑘 ,𝑢𝑘

𝐽Γ =

𝐾∑︁
𝑘=𝑞

��������𝑙𝑘 (𝑥𝑘 , 𝑢𝑘 )��������2
2
+ 𝜓𝐾 (𝑥𝐾) (5.1a)

𝑥𝑞 = 𝑥𝑞 (5.1b)

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑝𝑞) ∀ 𝑘 ∈ Γ/{𝐾} (5.1c)

𝑔𝑙𝑘 ≤ 𝑔(𝑥𝑘 , 𝑢𝑘 ) ≤ 𝑔𝑢𝑘 ∀ 𝑘 ∈ Γ/{𝐾} (5.1d)

𝑔𝑙𝐾 ≤ 𝑔(𝑥𝐾) ≤ 𝑔𝑢𝐾 . (5.1e)

Here,
��������𝑙𝑘 (𝑥𝑘 , 𝑢𝑘 )��������2

2
represents stage cost. The stage cost is written in terms of the square of the

L2 norm because this makes the implementation using GGN easier as explained in Chapter 4. The

stage cost represents the error between the desired and actual trajectory. The function 𝜓𝐾 (𝑥𝐾)

represents a terminal cost. This cost represents approximate value of the sum of stage cost from

𝑘 = 𝐾 to 𝑘 → ∞. Equation 5.1b represents the state variable at the current timestep 𝑞 must be

equal to the externally provided value, which comes from measurement or state estimator. The

equation (5.1c) represents a discrete-time state equation that is utilized to make predictions. The

equation (5.1d) represents the general constraint of the system such as the physical limit of the

actuator. The equation 5.1e represents terminal constraint.

For MPC that provides dynamic voltage support, the following is the formulation:

min
𝑖invd,k,𝑖invq,k,𝑥𝑘

𝐽Γ =

𝐾−1∑︁
𝑘=𝑞

[��������𝑣cdk − 𝑣ref

��������2
𝑄

+
��������𝑢𝑘 ��������2

𝑆

]
+ 𝜓𝐾 (𝑥𝐾) (5.2a)

subject to

𝑥𝑞 = 𝑥𝑞 (5.2b)

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑝𝑞) ∀ 𝑘 ∈ Γ/{𝐾} (5.2c)

|𝑖invd,𝑘 | ≤ 𝐼dmax ∀ 𝑘 ∈ Γ/{𝐾} (5.2d)

𝑖2invd,𝑘 + 𝑖
2
invq,𝑘 ≤ 𝐼2

max ∀ 𝑘 ∈ Γ/{𝐾} (5.2e)

where 𝑣ref is the reference voltage, 𝐼max and 𝐼dmax are maximum inverter current (based on kVA

rating) and maximum d-component of inverter current (based on available active power for voltage
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support), 𝑥𝑞 represents estimate of states at current discrete-time provided by MHE, and 𝑄 and 𝑆

are 1 × 1 and 2 × 2 matrix respectively which are the weights for their corresponding term. The

first term in eq. 5.2a represents the control error penalty and the second term represents the cost

of utilizing ESS power. Matrices 𝑄 and 𝑆 are weighting matrices that can be used to set different

priorities. For example, a higher value of 𝑄 prioritizes good QoS over ESS utilization and vice

versa.

5.3.2 Terminal Cost

The objective of the terminal cost is to approximate the cost function for 𝑘 = {𝑞 + 𝑁, ...,∞}

i.e., to find an approximate representation of the following function:

min
∞∑︁
𝑘=𝐾

��������𝑣cdk − 𝑣ref

��������2
𝑄

+
∞∑︁
𝑘=𝐾

��������𝑢𝑘 ��������2
𝑆

subject to (5.1c) (5.3)

Different technique exists to approximate the above function. In this work, a process similar

to MHE arrival cost will be followed to derive MPC terminal cost. Further, we will represent the

terminal cost with a quadratic approximation of the following form

𝜓𝐾 (𝑥𝐾) =
��������𝑥𝐾 − 𝑥𝐾

��������2
𝑃𝐾

. (5.4)

From standard dynamic programming, we can write

𝜓𝐾 (𝑥𝐾) = min
𝑢𝐾

[ ��������𝑣cdK − 𝑣ref

��������2
𝑄

+
��������𝑢𝐾 ��������2

𝑆

+ 𝜓𝐾+1(𝑥𝐾+1)
]

(5.5)

subject to

𝑥𝐾+1 = 𝑓 (𝑥𝐾 , 𝑢𝐾 , 𝑝𝐾). (5.6)
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A linear approximation of state equation is desired for closed form solution and thus 𝑥𝐾+1 =

𝑥 + 𝑋𝑥𝑥𝐾 + 𝑋𝑢𝑢𝐾 . Then, the terminal cost 𝜓𝐾 (𝑥𝐾) can be written as

𝜓𝐾 (𝑥𝐾) = min
𝑢𝐾

����������
����������
𝑄(𝑣cdK − 𝑣ref)

𝑆𝑢𝐾

𝑃𝐾+1(𝑥𝐾+1 − 𝑥𝐾+1)

����������
����������
2

2

(5.7)

= min
𝑢𝐾

�������
�������𝑠 + 𝑆 ©­­«

𝑢𝐾

𝑥𝐾

ª®®¬
�������
�������
2

2

(5.8)

where 𝑆 =

©­­­­­«
0 𝑄

(
0 0 1 0

)
𝑆 0

𝑃𝐾+1𝑋𝑢 𝑃𝐾+1𝑋𝑥

ª®®®®®¬
and 𝑠 =

©­­­­­«
−𝑄𝑣ref

0

𝑃𝐾+1(𝑥 − 𝑥𝐾+1)

ª®®®®®¬
. With QR = 𝑆 being QR

decomposition of 𝑆, we can write

𝜓𝐾 (𝑥𝐾) = min
𝑢𝐾

�������
�������Q⊤𝑠 + Q⊤QR

©­­«
𝑢𝐾

𝑥𝐾

ª®®¬
�������
�������
2

2

(5.9)

= min
𝑢𝐾

����������
����������
©­­­­­«
𝜌1

𝜌2

𝜌3

ª®®®®®¬
+
©­­­­­«
R1 R12

0 R2

0 0

ª®®®®®¬
©­­«
𝑢𝐾

𝑥𝐾

ª®®¬
����������
����������
2

2

(5.10)

=

��������𝜌2 + R2𝑥𝐾

��������2
2

(5.11)

(5.12)

where

©­­­­­«
𝜌1

𝜌2

𝜌3

ª®®®®®¬
= Q⊤𝑠. Note that constant term is neglected. Then,

𝑃𝐾 = R2 and 𝑥𝐾 = −R−1
2 𝜌2 (5.13)

This calculates 𝑃𝐾 and 𝑥𝐾 from the value of 𝑃𝐾+1 and 𝑥𝐾+1. This process should be done

recursively till 𝑃𝐾 and 𝑥𝐾 converge.
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5.3.3 External Controller

An external dispatch controller is required since we need ESS to support voltage at transients

only. In a steady state, the active power should be the same as the dispatch reference (𝑖dref). To do

this, an external integral controller is added. This controller varies the value of 𝑣ref until 𝑖invd is the

same as 𝑖dref . Time scale for this controller must be very slow as compared to the dynamics of the

system and MPC. The structure of this controller is shown in Fig. 5.3. where 𝐾𝑒 is the gain of the

Figure 5.3. Structure of external controller.

controller that determines the time-scale of the controller. The approximate time constants can be

derived with the following assumptions:

1. external controller operates at a very slower time scale compared to dynamics of the system

and MPC

2. steady-state value of 𝑣gd and 𝑣gq are constant

The first assumption allows us to discard the q-component to derive time constants and the

second assumption allows us to represent the transfer function of the system and MPC with constant

gain. Further, with the second assumption, 𝑣𝑟𝑒 𝑓 ≈ 𝑣𝑐𝑑 also holds true. With these assumptions, we

can derive the time constant of the external controller which can be used to select the proper value

of gain 𝐾𝑒. First, we set the left-hand side of (3.8) zero (steady state of the system) and solve for

𝑖𝑖𝑛𝑣𝑑 , 𝑖𝑖𝑛𝑣𝑞, 𝑖𝑔𝑑 , 𝑖𝑔𝑞. The expression for 𝑖𝑖𝑛𝑣𝑑 we get is given by

𝑖invd =

−𝐶𝐿2𝜔3𝑣cq − 𝐶𝑅2𝜔𝑣cq + 𝐿𝜔𝑣cq − 𝐿𝜔𝑣𝑔𝑞 + 𝑅𝑣cd − 𝑅𝑣gd

𝑅2 + 𝜔2𝐿2 (5.14)

For steady state, 𝑣cq = 0. Thus, we can write

𝑖invd =
−𝜔𝐿𝑣gq + 𝑅𝑣cd − 𝑅𝑣gd

𝑅2 + 𝜔2𝐿2 (5.15)
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Further, we can neglect 𝜔𝐿𝑣gq as compared to 𝑅𝑣gd since 𝑅 > 𝜔𝐿 and 𝑣gd >> 𝑣gq. This gives,

𝑖invd =
𝑅𝑣cd − 𝑅𝑣gd

𝑅2 + 𝜔2𝐿2 (5.16)

Thus, we can write gain Δ𝑖invd
Δ𝑣cd

=
Δ𝑖invd
Δ𝑣ref

= 𝑅

𝑅2+𝜔2𝐿2 . Then, the closed-loop transfer function with the

external controller can be derived as

𝐺 (𝑠) = 𝐾e𝑅

𝐾e𝑅 + 𝜔2𝐿2𝑠 + 𝑅2𝑠
(5.17)

From above equations, the time constant can be written as

𝜏 =
𝑅2 + 𝜔2𝐿2

𝐾e𝑅
. (5.18)

Thus, the value of 𝐾e determines the time for which dynamic voltage support is to be provided.

Larger 𝐾e gives a smaller time constant which means dynamic voltage support is provided for a

smaller amount of time during transient and vice-versa.

5.4 Simulation Setup
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Figure 5.4. Simulation setup of MHE-MPC based dynamic voltage support.

To assess the performance of the proposed approach, the benchmark described in Chapter 3 is

used. The voltage at PCC is used as a reference to transform the voltage and current in 𝑎𝑏𝑐 frame to

𝑑𝑞 frame. The noise of same amount used in Chapter 4 was used to emulate real-world scenarios.

The state estimates provided by V-MHE (discussed in Chapter 4) is passed to MPC which computes
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the 𝑑 and 𝑞 component of inverter current. The sample time of MPC was set to 0.1 ms which is

about 10 times smaller than the typical sample time computed in Chapter 3. The horizon length of

MPC was set to 12 timesteps. The initial load of 0.3 pu is connected along with the step load of

0.15 pu. The step load is used to create voltage deviation in the system to test the performance of

the proposed approach. The weights of MPC are tuned based on desired performances. The effect

of the weight of MPC has been analyzed in the following sections.

5.5 Results and Analysis

In this section, the performance of the proposed approach is discussed. First, the performance

with different weights of MPC is discussed. After that, the effect of different components of the

proposed approach is discussed.

5.5.0.1 Performance of Voltage Support

5.000 5.005 5.010
time [s]

(a)

0.925

0.950

0.975

1.000

v c
d [

pu
]

5.000 5.005 5.010
time [s]

(b)

0.00

0.02

i in
vd

 [p
u]

5.000 5.005 5.010
time [s]

(c)

-0.06

-0.04

-0.02

0.00

i in
vq

 [p
u]

no control Q = 1.0 Q = 1.0 (current limited) Q = 0.1

Figure 5.5. Plot showing the performance of MPC under difference scenarios. Scenarios with
different values of weight and limits on ESS currents are considered.

The performance of MPC under different scenarios is shown in Fig. 5.5. Three cases with

MPC is considered. In all scenarios, value of 𝑠11 and 𝑠22 are set to 0.5 and 0.05. In the first

scenario, value of 𝑄 is set to 1.0 with no limit in currents i.e., constraints from (5.2d) and (5.2e)

are deactivated. This makes MPC utilize large amount of inverter current; however, at the same

time, it provides better voltage support. In the second scenario, constraints from (5.2d) and (5.2e)

are activated with value of 𝐼dmax and 𝐼max set to 0.02 pu. The results show that voltage support
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is compromised (voltage deviation has increased) since the inverter current is limited. In the real

world, this scenario may represent the situation when limited inverter power is available for voltage

support. The third scenario is derived from first scenario by setting the value of𝑄 to 0.1. Reducing

the value of 𝑄 means we give less priority to the voltage support and more priority to reducing

inverter currents. Thus, in this scenario, inverter currents are highly reduced and as a result, voltage

support is also compromised.

In all the scenarios, it can be noticed that oscillation in the voltage is reduced. Also, it can be

noticed that the magnitude of 𝑖invq in steady state is larger than 𝑖invd. It is because we provided

smaller weight for 𝑖invq (𝑠22) and as a result, a larger magnitude of 𝑖invq is utilized. Thus, depending

on the available power and required performance of voltage support, the ESS operator can tune the

weights to find the right balance between them.

Figure 5.6. Response of voltage support for different value of external controller gain.
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5.5.0.2 External Dispatch Controller

To assess the performance of the external dispatch controller, the value of 𝐾e is set to 0, 1.0,

5.0 and 20.0. The values of 𝑄, 𝑠11 and 𝑠22 are set to 1.0, 0.5, and 0.05 respectively. The limits

on inverter current are deactivated. The initial value of 𝑣ref was set to 0.998 pu (the steady state

voltage before load change). The response of voltage support for different values of 𝐾e is shown

in the Fig. 5.6. When no dispatch controller is used, value of 𝑣ref remains constant and as a result,

some amount of inverter currents are utilized in the steady state. When dispatch controller is used

𝑣ref is goes to the value of voltage when no controller is used in a steady state. The rate at which 𝑣ref

approaches that value of voltage is determined by value of 𝐾e. For smaller value of 𝐾e, 𝑣ref changes

very slowly and as a result, 𝑖invd approaches zero slowly. On the other hand, with the larger value

of 𝐾e, the inverter currents (𝑖invd and 𝑖invq) go to zero faster. The ESS operator can use different

values of 𝐾e to provide dynamic voltage support for the desired amount of time during transient. If

voltage support is required even in the steady state, the value of 𝐾e can be set to zero.

Generally, there are other voltage controllers in the microgrid that can regulate the voltage at a

slower timescale. Based on timescale of this controller, the ESS operator can choose the value of

𝑘e such that the proposed approach slowly give up the voltage control task and other slower control

can take over.

5.5.1 Effects of Arrival Cost

To assess the performance of using arrival cost (of MHE), two scenarios, one with arrival cost

and another without arrival cost are considered. The values of𝑄, 𝑠11 and 𝑠22 are set to 1.0, 0.5, and

0.05 respectively. The limits on inverter current are deactivated. The results of using arrival cost

and not using arrival cost is shown in Fig. 5.7. Fig. 5.7 (a) shows the voltage when there is a load

change whereas Fig. 5.7 (b) shows ESS currents. When arrival cost is not used, there are slightly

more oscillations in 𝑖invdq and significantly more oscillations in 𝑖invdd than when arrival cost is used.

This is because, with no arrival cost, the performance of MHE is compromised. This compromise

results in MPC getting state estimates with more noise components. This noise results in calculated
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Figure 5.7. Performance of MPC when arrival cost is activated and deactivated.

ESS currents being oscillatory. With no arrival cost, MHE would required larger horizon length

which is not suitable for fast voltage support because of tight constraint on computational time.

5.5.2 Effects of Terminal Cost

Figure 5.8. Performance of MPC when terminal cost is activated and deactivated.

Two scenarios, one with terminal cost and another without terminal cost are considered to

assess the performance of using terminal cost. The values of 𝑄, 𝑠11 and 𝑠22 are set to 1.0, 0.5,

and 0.05 respectively. The limits on inverter current are deactivated. The results of using terminal

cost and not using terminal cost is shown in Fig. 5.8. Fig. 5.8 (a) shows the voltage when there

is a load change whereas Fig. 5.8 (b) shows ESS currents. There is no significant difference in
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maximum voltage deviation although overall voltage deviation is reduced. During steady state, the

voltage deviations are 0.0072 pu and 0.0050 pu for the case with no terminal cost and terminal

cost respectively which might not be very significant however, there is a significant difference in

the ESS currents. When there is no terminal cost, a large magnitude of 𝑑-component current and

a small magnitude of 𝑞-component current are utilized. However, when the terminal cost is used,

there is a reduction in the magnitude of 𝑑-component current. The 𝑑-component corresponds to

active power; hence, a magnitude reduction is desirable.

5.5.3 Computational Performance

The average computation time of the proposed MPC was found to be 0.0129 ms which is

significantly smaller than the sample time (0.1 ms). This shows that the proposed approach is

computationally feasible.

5.5.4 Effect of Computational Delay

Figure 5.9. Plot showing effect of computational delay on the performance of voltage support.

To assess the effect of computational delay on the voltage support performance, the values

of 𝑄, 𝑠11, and 𝑠22 are set to 1.0, 0.5, and 0.05 respectively. The limits on inverter current are

deactivated. The output of MHE and MPC are delayed by their corresponding computation time.

The performance comparison is shown in Fig. 5.9. It can be seen that the voltage deviation has
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increased slightly but the difference is very small. This shows that the proposed approach is robust

against delay which usually arises in the real world.

5.6 Chapter Conclusions

In this chapter, a control framework for dynamic voltage support for microgrids was developed.

The framework used MHE to get state estimates which was utilized by MPC to achieve a flexible

framework. Through the simulations performed in a Cordova benchmark from Alaska, it was

illustrated that the MPC can achieve significant reductions in voltage deviation. Further, oscillation

was also found to be improved. The different weights provided in MPC could also adjust the

performance which allows the ESS operator to tune the Quality of Service (QoS) provided. Also,

the effects of different components of the proposed approach (terminal cost, external dispatch

controller, etc) were also discussed.
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CHAPTER 6

INTEGRATED VOLTAGE-FREQUENCY SUPPORT FOR MICROGRIDS

Microgrids have been proposed as a solution to achieve reliable and resilient grids of the

future [43]. In isolated/islanded microgrids, synchronous generators are often responsible for

maintaining the voltage and frequency of the system. The distributed energy resources (DERs),

such as solar and energy storage systems (ESSs), typically act as passive elements or might have

a secondary supporting role regarding voltage and frequency control. The large-scale integration

of renewable DERs brings various challenges regarding dynamic voltage and frequency control.

Microgrids have intrinsic differences compared to traditional interconnected power systems in terms

of size, feeder type, high cross-coupling between voltage and frequency dynamics, a high share

of converter-based renewable sources, and low inertia [3, 5]. Furthermore, microgrids operating

in isolated/islanded mode are starting to become more common in distribution networks. In an

isolated/islanded mode of operation, the primary controller is responsible for maintaining the

voltage and frequency of the system. The loss of a single generator, inverter, or load, without

proper coordination, can cause significant power imbalance and lead to large voltage and frequency

deviations that compromise power quality and reliability. Thus, improved control techniques for

DERs are required to maintain proper operation.

Traditionally, the voltage and frequency controllers are designed independently under the

assumption that the voltage and frequency dynamics of the system are decoupled [4]. However,

microgrids are typically operated at low to medium voltage ranges, hence the 𝑅/𝑋 ratio is typically

very high [5]. Furthermore, changes in the system voltage will also be reflected as changes in the

system load owing to the relatively small size of the microgrid. All these factors contribute to a

stronger coupling between voltage and frequency dynamics in microgrids as compared to traditional

grids. For combined voltage and frequency control, droop-based controllers have been traditionally

used [23]. In this approach, the 𝑑 and 𝑞 components of the current are used to support the frequency

and voltage, respectively, as a proxy for active and reactive power support. In general, droop-based
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approaches assume that voltage and frequency dynamics are decoupled. Another proposed method

is to utilize the voltage dependency of active power to control frequency [2]. In this method,

voltage is modulated to regulate the frequency, but this does not work when the majority of load

power is insensitive to voltage deviations. Furthermore, a voltage-based frequency controller often

conflicts or interferes with a voltage controller, making it difficult to achieve both control goals

simultaneously. Model predictive control (MPC)-based approaches have been previously proposed

in [44, 21, 45] under the assumption that the voltage and frequency dynamics are decoupled.

Because of the ability of MPC to handle operational constraints and operational flexibility, this

project proposes using MPC for integrated voltage and frequency support.

6.1 Chapter Objectives and Contributions

The main objective of this chapter is to develop a control framework based on droop and model

predictive control for integrated voltage and frequency support. The specific contribution is:

• Design of integrated voltage and support framework that achieves required performance while

incorporating physical constraints of the ESS

6.2 Preliminary Study on Integrated Voltage-Frequency Support

In previous work, MPC based approach was employed to provide integrated voltage and

frequency support, as tested on a simplified system [25]. This study utilized an extensive MPC

horizon length, approximately 1250 timesteps, due to the sample time being determined by the

time constant of voltage dynamics. It was essential for the MPC horizon to encompass a substantial

portion of the frequency dynamics, which have a larger time constant, thereby necessitating

a significant number of timesteps. The performance of the MPC, as depicted in Fig. 6.1,

demonstrated its capability to provide concurrent frequency and voltage support. The findings

of this study confirmed the theoretical possibility of achieving simultaneous voltage and frequency

support. However, the computational load associated with this approach is substantial, rendering
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Figure 6.1. Comparison of voltage and frequency support for different weighting parameters.
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real-time operation infeasible. Consequently, this necessitates the exploration of unconventional

methodologies.

6.3 Proposed Framework
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Figure 6.2. Proposed MHE-Droop-MPC framework for voltage support. The MHE provides
estimates of states and MPC provides ESS control signals.

The proposed framework for MHE-Droop-MPC for integrated voltage and frequency support

is shown in Fig. 6.2. The proposed approach contains two MHEs: one for voltage dynamics

estimation (named V-MHE) and the other for frequency dynamics estimation (named F-MHE).

They are described in detail in Chapter 4. The MHEs estimate states (and parameters occasionally).

The droop is utilized to provide voltage support (especially dynamic) and MPC is utilized to provide

frequency support and steady-state voltage support.

6.4 Droop Control

The droop is one of the simplest control approaches. As described in Chapter 2, the droop is

a proportional control where some saturation and deadband might also be incorporated. In this
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work, droop is formulated as follows

𝑖
droop
inv,dq = (𝑣𝑟𝑒 𝑓 − 𝑣𝑐𝑑)


𝐾𝑑

−𝐾𝑞

 (6.1)

where 𝑣𝑟𝑒 𝑓 is the reference voltage, and 𝐾𝑑 and 𝐾𝑞 are the droop coefficients for the 𝑑 and 𝑞

components of inverter current, respectively. Larger values of droop coefficients provide better

voltage support; however, the system can become oscillatory and even unstable. Thus, it is necessary

to select the proper value of droop coefficients. Since droop has just a proportional gain, it can be

designed similarly to a proportional controller.

6.5 Model Predictive Control

MPC is an online optimization-based control approach where a mathematical model is used to

predict the future trajectory and compute the control signal such that the trajectory of the system is

close to the desired trajectory. The basic concept of MPC and its generic formulation is described

in the Chapter 5. Here, MPC for integrated voltage-frequency support is described.

6.5.1 Steady State Voltage Behavior

Since MPC provides steady-state voltage support as well, a mathematical equation representing

steady-state voltage behavior is required. At a steady state, a derivative of state variables with

respect to time is zero. Thus, we can set the right-hand side of (3.8) to zero and solve for 𝑣𝑐𝑑 .

AFter some approximation, we get

𝑣cd = 𝑣gd + 𝑅𝑖invd − 𝜔𝐿𝑖invq. (6.2)

This equation will be used as a constraint within the MPC formulation.
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6.5.2 Formulation of MPC

Let 𝑁 be the horizon length of MPC, and Γ = {𝑞, ..., 𝑞 + 𝑁 − 1} be the discrete time steps

throughout the forward prediction horizon. Then, the MPC formulation takes the following form:

min
𝑢𝑘∀𝑘∈Γ

𝑞+𝑁−1∑︁
𝑘=𝑞



����������
����������
𝑣cd,𝑘 − 𝑣ref

Δ𝜔𝑘

¤Δ𝜔𝑘

����������
����������
2

𝑄

+
��������𝑢𝑘 ��������2

𝑆


+ 𝜓𝐾 (𝑥𝐾) (6.3a)

subject to

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑤𝑑) ∀ 𝑘 ∈ Γ (6.3b)

¤Δ𝜔𝑘 = −𝐷
𝑀

Δ𝜔𝑘 +
1
𝑀

Δ𝑝∗𝑚,𝑘 +
1
𝑀
𝑖𝑖𝑛𝑣𝑑,𝑘 −

1
𝑀

Δ̂𝑝
∗
𝐿,𝑞 (6.3c)

𝑣cd,𝑘 = 𝑣̂gd,q + 𝑅𝑖invd,𝑘 − 𝜔𝐿𝑖invq,𝑘 ∀ 𝑘 ∈ Γ (6.3d)

|𝑖invd,𝑘 | ≤ 𝐼d,𝑚𝑎𝑥 ∀ 𝑘 ∈ Γ (6.3e)

𝑖2invd,𝑘 + 𝑖
2
invq,𝑘 ≤ 𝐼2

𝑚𝑎𝑥 ∀ 𝑘 ∈ Γ (6.3f)

𝑖invd,𝑘 = 𝑖
mpc
invd,𝑘 + 𝑖

droop
invd,𝑘 ∀ 𝑘 ∈ Γ (6.3g)

𝑖invq,𝑘 = 𝑖
mpc
invq,𝑘 + 𝑖

droop
invq,𝑘 ∀ 𝑘 ∈ Γ (6.3h)

𝑖
droop
invd,𝑘 = 𝐾𝑑 (𝑣ref − 𝑣cd,𝑘 ) ∀ 𝑘 ∈ Γ (6.3i)

𝑖
droop
invq,𝑘 = −𝐾𝑞 (𝑣ref − 𝑣cd,𝑘 ) ∀ 𝑘 ∈ Γ (6.3j)

|𝑖droop
invd,𝑘 | ≤ 𝐼d,𝑚𝑎𝑥 ∀ 𝑘 ∈ Γ (6.3k)

𝑖
droop
invd,𝑘

2 + 𝑖droop
invq,𝑘

2 ≤ 𝐼2
𝑚𝑎𝑥 ∀ 𝑘 ∈ Γ (6.3l)

where matrices 𝑄 = diag(𝑞11, 𝑞22, 𝑞33) and 𝑆 = diag(𝑠11, 𝑠22) represent the respective weights of

each term in the cost function. A higher value of 𝑞11 prioritizes better voltage support, 𝑞22 prioritizes

a better reduction in frequency deviation, and 𝑞33 prioritizes the reduction in ROCOF. Similarly, 𝑠11

and 𝑠22 prioritize minimizing the use of ESS current (𝑑 and 𝑞 components, respectively). Equation

(6.3b) represents the state equations for frequency dynamics, (6.3d) represents steady-state voltage

behavior, (6.3e) and (6.3f) represent limits on inverter currents, (6.3g) and (6.3h) represent the fact

that the total current to the system is the sum of droop and MPC, and (6.3i) and (6.3j) represent
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droop. Note that 𝑤𝑑 and 𝑣gdq have no discrete-time index 𝑘 . This is because these variables act like

disturbances (their dynamics are unknown), and hence, they are assumed to be constant throughout

the prediction horizon. The value of 𝑖mpc
invdq,𝑞 obtained by solving the above optimization problem is

used as the control input.

6.6 Simulation Setup
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Figure 6.3. Simulation setup for integrated voltage and frequency support using droop and MPC
on modified Cordova benchmark.

To assess the performance of the proposed approach, the benchmark described in Chapter 3 is

used. The voltage at PCC is used as a reference to transform the voltage and current in 𝑎𝑏𝑐 frame

to 𝑑𝑞 frame. The noise of the same amount used in Chapter 4 was used to emulate real-world

scenarios. The state estimates provided by V-MHE and F-MHE (discussed in Chapter 4) are passed

to droop and MPC which computes the 𝑑 and 𝑞 component of inverter current. The sample time of

Droop was set to 0.1 ms and that of MPC was set to 20 ms. The sample time of droop was set based

on the time constant of voltage dynamics while that of MPC was set based on the time constant of

frequency dynamics which are discussed in Chapter 3. The horizon length of MPC was set to 12

timesteps. The weights of MPC are tuned based on desired performances. The effect of the weight

of MPC has been analyzed in the following sections.
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6.7 Results and Analysis

In this section, the performance of the proposed approach is discussed. First, the design of droop

based on the root-locus method is presented. Then, the performance of the proposed approach with

different weights of MPC is discussed.

6.7.1 Design of Droop

Design of droop using the root-locus method requires obtaining the transfer function of the

voltage dynamics. This can be obtained by using the state-space model developed in Chapter 3.

The state-space model can be converted to a transfer function as

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. (6.4)

The obtained transfer functions are

𝐺𝑑 (𝑠) =
6188𝑠3 + 2.25 × 107𝑠2 + 1.339 × 1011𝑠 + 2.046 × 1014

𝑠4 + 3636𝑠3 + 3.995 × 107𝑠2 + 6.663 × 1010𝑠 + 3.259 × 1014 (6.5)

𝐺𝑞 (𝑠) =
2.333 × 106𝑠2 + 8.483 × 109𝑠 − 3.437 × 1013

𝑠4 + 3636𝑠3 + 3.995 × 107𝑠2 + 6.663 × 1010𝑠 + 3.259 × 1014 (6.6)

where 𝐺𝑑 (𝑠) and 𝐺𝑞 (𝑠) represents transfer function of voltage with respect to 𝑑 and 𝑞 component

of inverter current respectively. The root locus of each transfer function was obtained. For each

case, the range of gain used was from 0 to 3. The maximum gain of 3 was chosen because it gives

maximum ESS current for a typical voltage deviation of 0.1 pu. The result of the root locus is

shown in Fig. 6.4. For 𝐺𝑑 (𝑠), the damping of around 0.71 was achieved at the gain of 0.946 where

the overshoot was 4.19%. For 𝐺𝑞 (𝑠), the gain of 1.42 was chosen where damping was found to be

0.349. No better point on the root locus was found, so the gain of 1.42 will be chosen.

6.7.2 Performance of Voltage-Frequency Support

To analyze the performance of the proposed integrated voltage-frequency support approach,

the simulation was performed for different values of weight parameters (i.e., 𝑞11, 𝑞22, and

𝑞33). In the first case, frequency support was prioritized over the voltage support by setting

77



𝑄 = diag(0.001, 10.0, 10.0). Note that a very small weight for voltage deviation is considered. This

is because the magnitude of the voltage deviation is large (about 10 times greater than the frequency

deviation). Thus, it is necessary to compensate for that scale as well. In the second case, equal

emphasis was placed on both voltage and frequency support by setting 𝑄 = diag(0.01, 1.0, 1.0).

The final case prioritized voltage support over frequency support by setting𝑄 = diag(0.1, 0.1, 0.1).

For all three cases, the value of 𝑆 was set to diag(0.01, 0.001). This parameter selection assumes

that voltage and frequency support have a higher priority over ESS utilization. Furthermore, a larger

weight for the 𝑑 component of the inverter was chosen because active power is more expensive than

reactive power. A step load change from 0.3 pu to 0.45 pu at 𝑡 = 80 s was considered for all three

cases to analyze the system’s response. Fig. 6.5 shows the simulation results for all cases.

In the first case, significant reductions in the frequency deviation and ROCOF are observed

(Fig.6.5(d) and (g)). It can be observed that there is only slight improvement in steady-state voltage

response (Fig.6.5(a)) because of its lower priority. There is some steady-state voltage deviation,

although it is within ±5%. Fig. 6.5(j) shows the 𝑑 and 𝑞 components of inverter currents (overall

control action of MPC and droop). It can be sees that there is some initial spike. It is because the

droop is providing dynamic voltage support, which occurs at a very fast time-scale. Also, it can

be observed that a large value of 𝑖𝑖𝑛𝑣𝑑 and a small value of 𝑖𝑖𝑛𝑣𝑑 are utilized initially. It is because

frequency can be supported by 𝑖𝑖𝑛𝑣𝑑 only. As the frequency goes to steady state, the magnitude of

𝑖𝑖𝑛𝑣𝑑 decreases, and that of 𝑖𝑖𝑛𝑣𝑞 increases. Voltage support can be provided by both 𝑖𝑖𝑛𝑣𝑑 and 𝑖𝑖𝑛𝑣𝑞,

thus their values at steady state are non-zero, although 𝑖𝑖𝑛𝑣𝑞 has a larger magnitude because of its

smaller weight (𝑠22).

In the second case, priorities for both voltage and frequency support are equal. Here, the

frequency deviation and ROCOF (Figs. 6.5(e) and (h)) are larger, but voltage response (Fig. 6.5(b))

is better than in the first case. Fig. 6.5(k) shows the 𝑑 and 𝑞 components of inverter currents. It

can be observed that the initial spike has the same magnitude as in the first case. It is because the

droop coefficient has not changed, and hence, magnitudes of the spike are expected to be the same.

Also, the initial magnitude of 𝑖𝑖𝑛𝑣𝑑 is smaller than in the first case, but that of 𝑖𝑖𝑛𝑣𝑞 is larger. It is
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because frequency support is less prioritized, and hence, a smaller magnitude of 𝑖𝑖𝑛𝑣𝑑 is sufficient.

The reduction in 𝑖𝑖𝑛𝑣𝑑 must be compensated by 𝑖𝑖𝑛𝑣𝑞 to provide voltage support.

Finally, in the last case, voltage support is largely prioritized over frequency support. In this

case, it can be seen that voltage deviation (Fig. 6.5(c)) has been largely reduced, but there is very

small to no improvement in the frequency response (Figs. 6.5(f) and (i)). Fig.6.5(l) shows the 𝑑 and

𝑞 components of inverter currents. The initial, as well as steady-state value of 𝑖𝑖𝑛𝑣𝑑 , is very small

compared to 𝑖𝑖𝑛𝑣𝑞. It is because frequency support is no longer a priority, and hence, a large value

of 𝑖𝑖𝑛𝑣𝑞 is utilized owing to its smaller weight. Results of all cases are summarized in table 6.1 (all

quantities are in per unit).

Table 6.1. Summary of the results
Performance metrics no control Case I Case II Case III
Maximum |Δ𝑣𝑐𝑑 | 0.071 0.039 0.039 0.039
Steady state |Δ𝑣𝑐𝑑 | (×10−3) 8.37 3.07 2.71 1.67
Maximum |Δ𝜔| (×10−3) 6.2 4.26 5.13 5.68
Maximum |𝑖𝑖𝑛𝑣𝑑 | - 0.07 0.043 0.042
Maximum |𝑖𝑖𝑛𝑣𝑞 | - 0.047 0.049 0.064

6.7.3 Constraints Handling

The proposed approach allows ESS operator to impose constraints on inverter currents (and

hence, power) based on available resources, market incentives, etc. For this case, the first case

from the previous Subsection is considered. The limits of inverter currents are reduced to 0.02

pu. The performance comparison is shown in the Fig. 6.6. The reduction in frequency and voltage

deviation is larger when there is no limits on inverter currents. When limits are imposed, both

frequency and voltage deviation increase. These are the tradeoffs: inverter current can be reduced

by imposing constraint; however, compromise in voltage and frequency deviation reduction should

be expected. These limits can be imposed when limited power for voltage and frequency support

is available (remaining power might be required for other grid services). Further, this also helps

reduce power/energy usage per voltage/frequency events increasing ESS lifetime.
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6.7.4 Computational Performance

The average computation time of the proposed MPC was found to be 0.0237 ms which is

significantly smaller than the sample time (20 ms). This shows that the proposed approach is

computationally feasible.

6.7.5 Effect of Computational Delay

To assess the effect of computational delay on the voltage support performance, the case from

previous subsection is considered. The limits on inverter current are deactivated. The output

of MHEs and MPC are delayed by their corresponding computation time. The performance

comparison is shown in Fig. 5.9. It can be seen that the voltage and frequency deviation has

increased slightly but the difference is very small. This shows that the proposed approach is robust

against delay which usually arises in the real world.

6.8 Chapter Conclusions

In this chapter, a control framework for integrated voltage and frequency support was developed.

The framework utilized two MHEs developed in Chapter 4. The state estimates from the two MHEs

were passed to droop and MPC controller to provide voltage and frequency support. Through

simulations perfromed in the test microgrid system, it was illustrated that the proposed droop-MPC

approach can provide both voltage and frequency support. Furthermore, the operational flexibility

of our approach was also explored by varying weight parameters. These customizable weights

allows ESS operator to tailor the strategy based on diverse considerations, such as available power

resources and market incentives. It was also shown that the proposed approach could incorporate

physical constraints of an ESS (maximum inverter currents). Further, computation time was

assessed and the computational delay was introduced to assess the performance of the proposed

approach. The effect of computation time on performance was found to be very small. This shows

the robustness of the proposed approach under computational delay.
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q11=0.001, q22=1.0, q33=1.0 q11=0.01, q22=0.1, q33=0.1 q11=0.1, q22=0.01, q33=0.01

no control                MPC+droop             voltage limit              iinvd               iinvq

Figure 6.5. Comparison of voltage and frequency support for different cases (different weighting
parameters)
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no control                no current limits              with current limits              voltage limit

Figure 6.6. Comparison of performance with unconstrained and constrained inverter currents.
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no control                no delay              with delay              voltage limit

Figure 6.7. Comparison of performance with computational delay.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTION

7.1 Conclusions

Microgrids, due to their numerous advantages such as the integration of renewable energy,

resilience, autonomous operation, and energy security, have emerged as a promising solution for

ensuring the reliability of future power grids. However, unlike traditional power systems that

have separate voltage and frequency controllers assuming decoupled dynamics, microgrid systems

exhibit a closer coupling between voltage and frequency dynamics.

Microgrids have a high R/X ratio, as they operate at low to medium voltage levels. Due to

the coupling between voltage and frequency with active power, the sensitivity of voltage to active

power depends on the R/X ratio. Further, because of high R/X, voltage is sensitive to both active

and reactive power. In contrast, frequency remains primarily sensitive to variations in active power.

The timescale of voltage dynamics in microgrids is in the range of milliseconds, while that of

frequency dynamics is in the range of seconds, representing a significant difference between the

two. Therefore, the sample time should be based on the time constant of the voltage dynamics,

while the time horizon should be based on the time constant of the frequency dynamics.

Chapter 1 discusses recent voltage and frequency events, as well as trends in microgrids. It

also introduces standards concerning Voltage-Frequency limits specific to microgrids, highlighting

differences between grid-connected and isolated/islanded configurations. Furthermore, the chapter

presents the concept of fast voltage and frequency support using an energy storage system. Given

that voltage dynamics occur in the range of milliseconds, the support mechanism should operate

within this range. Additionally, recognizing the importance of energy storage systems in voltage

support, frequency support, load leveling, etc., the Federal Energy Regulatory Commission (FERC)

has issued orders that permit these roles, which are briefly discussed in Chapter 1.
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Chapter 2 presents the state-of-the-art in voltage and frequency support, offering a detailed

comparison of current approaches in power systems. One of the simplest strategies discussed

is droop-based control, which allows for coordination between multiple resources to provide

voltage/frequency support. However, this method is noted for its lower precision, reduced system

stability, and poor performance when dealing with non-linear and/or asymmetrical loads. Another

approach discussed is the PID-based control approach, which offers greater accuracy compared

to just proportional or droop control. Additionally, PID control requires fewer computational

resources. However, tuning a PID controller for nonlinear systems can be complex and may present

adaptability issues. Another approach discussed is reinforcement learning (RL), where the model

is trained to make a sequence of decisions. The main advantage of RL is that it doesn’t require a

model, which is useful when dealing with complex systems. However, the major drawbacks of RL

are that it requires a large number of samples to learn effectively and is computationally expensive.

LQR (Linear Quadratic Regulator) and MPC (Model Predictive Control) are model-based

control approaches where a cost function is minimized over a finite horizon. LQR is known for

its simplicity and computational efficiency. However, it is limited to linear systems and cannot

impose constraints. On the other hand, MPC is a more versatile approach as it can handle nonlinear

systems and accommodate physical constraints. Also, in Chapter 2, different approaches applied

for combined voltage-frequency support are presented.

Control approaches rely on knowing the values of state variables at each timestep, but since not

all states are directly measurable, a state estimator is necessary to estimate these states using input

and output measurements. State estimators can also be used to estimate parameters. In Chapter 2,

various state estimation approaches are discussed. The first approach introduced is the Luenberger

observer, which requires a linear model of the system. The Kalman filter (KF) is also discussed as a

superior alternative to the Luenberger observer. While the KF is a simple and effective estimator, it

does not estimate parameters. Additionally, the chapter covers the Extended Kalman Filter (EKF)

and Unscented Kalman Filter (UKF). Furthermore, Chapter 2 introduces a machine learning-based

state estimator called the neural state estimator, proposed for estimating the states of power system
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frequency dynamics. The estimator is accurate however, it is computationally expensive. The

other estimator is MHE which is an optimization-based technique. MHE is superior to KFs in

the case of handling nonlinear systems and estimating the states and parameters of the system. A

comparative analysis of various Kalman filters and moving horizon estimators for power system

frequency dynamics showed that the MHE excels in estimation accuracy when compared to Kalman

filters.

Chapter 3 delves into the development of models for voltage and frequency dynamics. The

section on voltage dynamics explores the changes in voltage and other state variables over time,

particularly focusing on the impact of network dynamics. A Thevenin equivalent model representing

the line resistance, inductance, and the Thevenin voltage is described. Additionally, for ESS

assumed to be grid-following, the chapter describes their representation using a controlled current

source and capacitance as an inverter filter. The chapter extensively covers the modeling and

validation processes, including the calculation of time constants for voltage dynamics.

In a parallel manner, the modeling approach for frequency dynamics involves the utilization

of an equivalent single-generator model, which effectively represents the behavior of multiple

generators within the power system. This model encompasses a swing equation, a fundamental

component in power system dynamics that describes the rate of change of rotor angle with respect

to time, and a differential equation that characterizes the dynamics of the turbine-governor system.

Similar to the voltage dynamics, the frequency dynamics are also modeled and validated. Moreover,

the calculation of the time constant associated with frequency dynamics is a critical aspect of this

modeling process. The time constant provides insight into the system’s response to changes in

frequency and helps in understanding the overall stability and performance of the power system

under various operating conditions. The chapter concludes by detailing the simulation benchmark

employed for the study. It provides a concise overview of the generators involved and their respective

parameters.

The rise of converter-based generation in power systems and microgrids is increasing parameter

variability and challenging voltage and frequency control. Monitoring system states and parameters
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are crucial for stable operation. Robust estimators are needed for noisy conditions and unknown

disturbances. Microgrid parameter estimation is vital for optimal voltage and frequency control

with DERs, as parameters can change during re-dispatch or reconfiguration. MHE is used here

for state and parameter estimation, optimizing system stability by minimizing noise in an online,

fixed-past-horizon optimization problem.

Chapter 4 introduces the parameter identifiability analysis developed in Chapter 3 and establishes

the necessary criteria for perturbation signals. Furthermore, it elaborates on the Moving Horizon

Estimation (MHE) framework for conducting state and parameter estimation, elucidating its working

principle and general formulation. The chapter also discusses the incorporation of an arrival

cost in the MHE cost function, which aims to approximate the information inherent in the data.

Additionally, the chapter emphasizes the importance of proper weight selection for MHE to achieve

accurate parameter estimation, providing criteria for this selection process. Lastly, it offers detailed

insights into the implementation of the MHE framework.

The simulation setup for estimating both voltage and frequency dynamics, including state and

parameter estimation, is meticulously described in this chapter. The results of the simulations are

thoroughly analyzed for both cases, showcasing the effectiveness of the proposed approach. Despite

the presence of noise in the measurements, the MHE framework demonstrates robust performance,

achieving smaller error metrics such as RMSE and NRMSE. This indicates that the MHE approach

is capable of providing accurate estimates even in the presence of noisy measurements, highlighting

its potential as a reliable tool for state and parameter estimation in power systems and microgrids.

Chapter 5 discusses MHE-MPC based dynamic voltage support approach for microgrid using

ESS. The MHE developed in Chapter 4 was used to provide state estimates. These state estimates

are passed to MPC which computes the control signal. The ESS injects inverter currents based on

the calculated control signal to provide voltage support. The physical constraints (inverter currents)

were also discussed. This constraint allows an ESS operator to limit the power usage for voltage

support. Further, the effect of the computational delay was also assessed to show the robustness of

the proposed approach.
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Finally, in Chapter 6 a framework that provides integrated voltage and frequency support is

proposed. The framework utilized two MHEs developed in chapter 4 along with droop and MPC.

Droop provides dynamic voltage support whereas MPC provides steady state voltage support as

well as dynamic frequency support. Droop operates at the timescale of voltage dynamics whereas

MPC operates at the timescale of frequency dynamics. The model of the droop is also incorporated

inside MPC so that MPC sees the microgrid and droop as a system. The performance of proposed

approach was illustrated under different scenarios: different weights of MPC, constraints on the

inverter currents, and the presence of computational delay. These scenarios showed that with

different values of weights, ESS operator can strike the right balance between performance of

voltage/frequency support and ESS utilization. Further, limits on inverter currents can be imposed

which is useful when limited power is available for voltage and frequency support. Finally, effect

of computational delay was assessed which showed that the effect is very small.

7.2 Future Research Directions

Potential directions for future research include the application of the developed estimation and

control framework to a real power system benchmark. The framework could be further extended

to accommodate multi-area power systems, which may necessitate modifications to the underlying

prediction model of the system.

Additionally, the design of the perturbation signal warrants further investigation. While the

evaluation of various perturbation signals has been conducted to identify an effective signal in the

literature, it does not guarantee the identification of the optimal perturbation signal. This area could

be further explored.

The proposed control approach, encompassing both voltage support and integrated voltage

and frequency support, models the ESS as a controlled current source. However, the dynamics

of the State of Charge (SoC) and the impedance of the ESS have not been taken into account.

The incorporation of these factors could potentially enhance the performance of the proposed

approaches.
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