
The University of Maine The University of Maine 

DigitalCommons@UMaine DigitalCommons@UMaine 

Electronic Theses and Dissertations Fogler Library 

Spring 5-3-2024 

Full Annual Cycle Analysis of American Woodcock (Scolopax Full Annual Cycle Analysis of American Woodcock (Scolopax 

minor) Distribution, Habitat Use, and Migration Ecology minor) Distribution, Habitat Use, and Migration Ecology 

Liam A. Berigan 
University of Maine, liam.berigan@maine.edu 

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd 

 Part of the Ornithology Commons 

Recommended Citation Recommended Citation 
Berigan, Liam A., "Full Annual Cycle Analysis of American Woodcock (Scolopax minor) Distribution, 
Habitat Use, and Migration Ecology" (2024). Electronic Theses and Dissertations. 3941. 
https://digitalcommons.library.umaine.edu/etd/3941 

This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of 
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu. 

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1190?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3941?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


FULL ANNUAL CYCLE ANALYSIS OF AMERICAN WOODCOCK (SCOLOPAX MINOR) 

DISTRIBUTION, HABITAT USE, AND MIGRATION ECOLOGY 

By 

Liam A. Berigan 

B.S. Cornell University, 2017 

M.S. Kansas State University, 2019 

 

A DISSERTATION 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

(in Wildlife Ecology) 

 

The Graduate School 

The University of Maine 

May 2024 

 

Advisory Committee: 

 Erik Blomberg, Assoc. Professor, Dept. of Wildlife, Fisheries, and Conservation Biology 

 Amber Roth, Assoc. Professor, Dept. of Wildlife, Fisheries, and Conservation Biology and 

  School of Forest Resources 

 Joseph Zydlewski, Professor, Dept. of Wildlife, Fisheries, and Conservation Biology 

 Parinaz Rahimzadeh-Bajgiran, Assoc. Professor, School of Forest Resources 

 Sabrina Morano, Assist. Professor, Dept. of Wildlife, Fisheries, and Conservation Biology 



FULL ANNUAL CYCLE ANALYSIS OF AMERICAN WOODCOCK (SCOLOPAX 

MINOR) DISTRIBUTION, HABITAT USE, AND MIGRATION ECOLOGY 

By Liam Berigan 

 

Dissertation Advisors:  

Dr. Erik Blomberg & Dr. Amber Roth 

 

 

An Abstract of the Dissertation Presented in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy  

(in Wildlife Ecology) 

May 2024 

 

The widespread availability of satellite tracking devices has made it possible to track 

individual migratory birds throughout the full annual cycle, examining how distribution and 

habitat use change between seasons and regions while also describing the characteristics of 

migratory movements. We used these devices to examine the full annual cycle ecology of 

American Woodcock (Scolopax minor; hereinafter woodcock), an early successional habitat 

specialist whose populations are declining throughout their range in eastern North America. 

We used these data to develop a multi-season distribution model for woodcock management 

in Pennsylvania, demonstrating the importance of considering habitat use across multiple 

seasons for migratory bird conservation. We also used woodcock migratory movements to 

demonstrate improved methods for classifying animal locations into migratory states, 

allowing inferences into migratory behavior despite sparse and incomplete data. We 

examined changes in woodcock habitat selection among seasons, finding that woodcock 

likely undergo a functional response in their habitat selection to changes in habitat 

availability throughout the full annual cycle. Finally, we described woodcock flight altitudes 



and their corresponding vulnerability to various airspace obstacles, finding that low altitude 

flights are likely a contributing factor to woodcocks’ disproportionate collisions with 

buildings. Stabilizing woodcock populations will likely require better understanding of 

woodcock ecology throughout the full annual cycle, as well as the threats they face at each 

stage. We hope that our comprehensive analysis of woodcock distribution, habitat use, and 

migration ecology throughout the full annual cycle will improve conservation of this iconic 

upland bird species. 
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1 CHAPTER 1: MULTI-SEASONAL SPECIES DISTRIBUTION MODELS BETTER 

FACILITATE HABITAT CONSERVATION FOR A MIGRATORY BIRD 

Species distribution models have issues with cross-seasonal transferability when data collected during 

a single season do not reflect habitat relationships across other seasons. This issue can be addressed 

using spatial decision support systems, which allow users to incorporate multiple season-specific 

distribution models into a single tool to facilitate conservation decisions. We applied this framework 

to an analysis of multi-season habitat use for a migratory bird, the American woodcock (Scolopax 

minor). We modeled woodcock breeding and migratory habitat distributions in Pennsylvania, USA, 

using random forest classifiers, and integrated the predictions of both models into a single decision 

support system using a Shiny application. The Shiny application accepts user input through breeding 

and migratory season weights, allowing users to customize the tool based on area-specific 

management priorities. We found low cross-seasonal transferability between seasonal models, with 

Pearson correlations of 0.15 at a pixel-scale and 0.39 at a local management area scale, indicating that 

conservation of breeding habitat alone is unlikely to result in efficient conservation of woodcock 

migratory habitat. Woodcock breeding and migratory habitat is also unevenly distributed at a regional 

scale, with three Pennsylvania ecoregions having low breeding suitability but high migratory 

suitability. Creating a multi-season distribution model for woodcock management highlighted 

important migratory areas that may otherwise be overlooked due to a lack of breeding season 

occupancy, such as urban greenspaces. Flexibility in data sources and ability to compensate for low 

cross-seasonal transferability in distribution models make multi-season distribution modeling ideal 

for the study of birds and other migratory taxa. 
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1.1 Introduction 

Species distribution models are frequently used to assist conservation decision-making (Miller 2010), 

however, they are known to have issues with transferability. For example, models developed in one 

area may not be reflective of animal distributions in other parts of their range (spatial transferability; 

sensu Randin et al. 2006), or may fail to project species distributions into the future due to changing 

conditions (temporal transferability; sensu Dobrowski et al. 2011). We posit that an additional 

subcategory of spatiotemporal transferability exists, which we call cross-seasonal transferability, for 

situations where species habitat associations differ among seasons or life stages, resulting in animals 

using fundamentally different space throughout the year. For example, wildlife science has a long 

history of bias towards studying animals during the breeding season, which may neglect the value of 

non-breeding habitat for survival and ignore carry-over effects into the breeding season (Norris and 

Marra 2007). By building species distribution models which focus solely on occurrence data collected 

during breeding, we may disregard portions of a species’ distribution that are essential to persistence. 

 Spatial decision support systems (SDSS; Hopkins and Armstrong 1985) may provide a useful 

mechanism to circumvent issues of cross-seasonal transferability by combining distribution models 

from multiple seasons of the full annual cycle during the decision-making process. SDSS utilize user-

friendly, interactive toolsets to guide users through making a set of spatial prioritization decisions 

(Sugumaran and Degroote 2010). SDSS frequently come as extensions of existing geographic 

information systems (McConnell and Burger 2011), but the learning curve and costs associated with 

professional geographic information systems can often be an impediment to reaching the intended 

user base (Harper 2006). The widespread adoption of interactive online mapping tools, such as leaflet 

(Agafonkin 2022) and ArcGIS Online (ESRI 2023a), has greatly expanded the capacity to custom 

build SDSS that are accessible via a web browser and can be easily used by decision makers with 

little additional training (Sugumaran and Sugumaran 2007). SDSS provide an interface which allows 
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users to interact with multiple spatial data layers, such as species distribution models. In 

circumstances where species distribution models have low cross-seasonal transferability, SDSS can 

compensate by incorporating multiple season-specific species distribution models into the decision-

making process. 

 Migratory birds are clearly sensitive to issues of cross-seasonal transferability through use of 

different geographic areas throughout their annual cycle, coarsely divided into breeding, wintering, 

and migratory seasons (Marra et al. 2015). Resource requirements frequently differ among these three 

seasons, often resulting in bird use of fundamentally different habitat types (Rice et al. 1980, Allen et 

al. 2020, Stanley et al. 2021). However, there are circumstances in which breeding, wintering, and 

migratory habitat may occur within the same region, especially for short-distance migrants, which are 

generally defined as those migrating less than 2,000 km (Rappole 2013). Examples of short-distance 

migrants include wintering waterfowl, such as common eider (Somateria mollissima), where more 

northern breeding populations overwinter in the same regions that more southern populations breed 

(Goudie et al. 2020), and nomadic finch species such as pine siskin (Spinus pinus), which migrate, 

breed, and overwinter in the same regions despite differential resource requirements among seasons 

(Dawson 2020). An SDSS approach that combines season-specific species distribution models into a 

single predictive layer could be particularly useful to avoid issues of cross-seasonal transferability 

when managing such species.  

 We developed a SDSS framework to spatially-prioritize habitat management while integrating 

data from multiple seasons of a migratory bird’s full annual cycle. Our case study is focused on 

American woodcock (Scolopax minor; hereinafter “woodcock”) in Pennsylvania, USA. Woodcock 

are short distance migrants with considerable overlap among migratory, breeding, and wintering 

ranges (Myatt and Krementz 2007, Fig. 1.1), but fundamentally different habitat requirements among 

seasons (Allen et al. 2020). We aimed to develop a SSDS tool to aid conservation practitioners 
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considering trade-offs between managing for breeding and migratory season habitat in Pennsylvania. 

Our specific objectives for the SDSS were to 1) maximize predictive accuracy of breeding and 

migratory season distribution models, 2) combine seasonal distribution models into a single 

prioritization layer using user-specified weights, and 3) evaluate relative suitability of local 

management areas using a multi-season framework. 
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Figure 1.1. Seasonal ranges and hypothetical migration routes of American woodcock in eastern 

North America. Seasonal ranges were delineated by eBird’s Status and Trends project (Fink et al. 

2022) using citizen science data. Migration routes illustrate potential connections among eastern 

(dashed line), central (solid line), and western (dotted line) population segments. Migration routes 

were originally proposed by Glasgow (1958) and later reproduced by Moore et al. (2019). Inset 

illustrates multiple migration routes intersecting with the breeding range in the state of Pennsylvania. 
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1.2 Methods 

1.2.1  Study Area 

We modeled woodcock habitat distribution throughout the state of Pennsylvania, which provides 

breeding habitat for an estimated 2.3% of the global woodcock population (52,400 birds). The state 

also provides stopover habitat during spring and fall migration for woodcock breeding throughout the 

northeastern United States and eastern Canada, which accounts for nearly 1/3rd of the global 

woodcock population (30.5% of global woodcock, 684,500 birds; Kelley et al. 2008). Pennsylvania 

also contains some wintering habitat for woodcock, which is negligible compared to breeding and 

stopover habitat (Fig. 1.1). Pennsylvania is composed of 11 U.S. Environmental Protection Agency 

(EPA) level 3 Ecoregions (Omernik and Griffith 2014), which reflect the topological gradient from 

Pennsylvania’s ridge-and-valleys in the central portion of the state to the coastal lowlands along the 

edge of Lake Erie. Less mountainous areas in Pennsylvania tend to be heavily agricultural (e.g., 

Northern Piedmont Ecoregion, 38% agricultural; Jin et al. 2019), with development primarily 

concentrated around the two largest cities, Philadelphia (pop. 1,600,000) and Pittsburgh (pop. 

300,000; U.S. Census Bureau 2021). Mountainous areas, such as the North Central Appalachians 

ecoregion, remain in mostly contiguous forest cover (84% forest; Jin et al. 2019). 

 Woodcock in Pennsylvania are managed by the Pennsylvania Game Commission, a state 

wildlife management agency, which regulates hunting and manages habitat for wildlife. The 

Pennsylvania Game Commission owns more than 600,000 hectares of land, referred to hereinafter as 

state gamelands, which are managed primarily for wildlife and to provide hunting and trapping 

opportunities for the public (Pennsylvania Game Commission 2023). Managing woodcock habitat for 

both breeding and migratory seasons are priorities for the Pennsylvania Game Commission, which 

requires tools to prioritize management projects on state gamelands. 
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1.2.2 Breeding and migratory season data 

To model woodcock habitat distribution during the breeding and migratory seasons, we used separate 

data sources that described woodcock occupancy during each of those time periods. For the breeding 

season (March–May), we used survey data collected as part of the federally-coordinated American 

Woodcock Singing Ground Survey (Seamans and Rau 2020) and additional state-level monitoring 

conducted by the Pennsylvania Game Commission. Both state and federal surveys consisted of 5.76 

km routes with 10 evenly spaced points, where observers listened for woodcock songs during their 

crepuscular breeding display. Observers recorded counts of all males singing during 2-minute 

intervals shortly after dusk. We used survey data collected from 2016–2020, and distilled records to 

presence or likely absence at each point based on detection of at least one male during the 5-year 

period. Male woodcock are often assumed to display near female nesting habitat, and so male 

displays are likely an indicator of male and female presence at the scale of application (McAuley et 

al. 2020). 

 We delineated woodcock occurrence during the migratory season using GPS-tracking data 

from the Eastern Woodcock Migration Research Cooperative, a collaboration of 42 federal, state, 

provincial, non-profit, and university partners throughout the United States and Canada 

(www.woodcockmigration.org). We captured woodcock at 34 sites in Quebec, Ontario, Nova Scotia, 

Maine, Vermont, New York, Rhode Island, Pennsylvania, Maryland, West Virginia, Virginia, North 

Carolina, South Carolina, Georgia, Alabama, and Florida using mist nets during mornings and 

evening flights (Sheldon 1960), or using spotlights and dip nets at night (Rieffenberger and Kletzly 

1966, McAuley et al. 1993). We attached 4g, 5g, or 6.3g PinPoint GPS Argos transmitters (Lotek 

Wireless Inc., Newmarket, Ontario, CA) to captured woodcock. Transmitters recorded GPS locations 

at 12–60m accuracy and were programmed to record diurnal locations every 1–3 days. Transmitters, 

bands, and attachment materials never exceeded 4% of a bird’s body weight, and all capture and 
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handling were conducted with methods approved by the University of Maine Institutional Animal 

Care and Use Committee (Protocol # A2020-07-01). 

 We used woodcock location data to identify stopover locations, defined as any place where a 

migrant bird can land and survive until the next migratory flight (Mehlman et al. 2005). We consider 

woodcock to be migrating after they have made their first >16.1 km movement in fall or spring, and 

to complete their migration after they have made their last >16.1 km movement in the respective 

season. The >16.1 km threshold was chosen as it roughly divides the bimodal distribution of log-

standardized step lengths, presumably distinguishing between local- and long-distance movements 

(Blomberg et al. 2023). Because woodcock migrate at night, we considered all diurnal locations 

between migratory initiation and termination to be stopovers. We grouped successive locations within 

3 km into a single stopover site, based on our observations that movements <3 km tended to be 

recursive rather than directional, and removed all but one location from each stopover from the 

analysis to reduce pseudoreplication and spatial autocorrelation of closely clustered locations. We 

also generated 10,000 locations randomly distributed throughout Pennsylvania, which we considered 

pseudoabsence locations. 

1.2.3 Species distribution modeling 

We constructed separate species distribution models for migratory and breeding seasons to 

accommodate differences in habitat associations and data sources. Each model used explanatory 

variables with demonstrated relevance to woodcock habitat associations (McAuley et al. 2020), with 

suites of variables including land use/land cover, forest successional class, topography, region, and 

soil moisture (Table 1.1). We additionally calculated landscape metrics from the landscapemetrics 

package (Hesselbarth et al. 2019) in program R (R Core Team 2024), which represented landscape 

composition and configuration. To generate composition metrics, we resampled the National Land 
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Cover Dataset to a 90m pixel resolution, and then calculated the percent of each cover type within 

500m, 1km, 5km, and 10km radii for each pixel. For configuration metrics, we used the National 

Land Cover Dataset to create a binary forest/non-forest layer, which we resampled to 90m resolution, 

and then calculated each configuration metric within 500m, 1km, 5km, and 10km radii of each pixel. 

 

Table 1.1. Explanatory variables used to model woodcock distributions in Pennsylvania, USA. Suites 

indicate conceptual grouping of variables into classes relevant to woodcock occurrence. 

Suite Covariate Source 

Land use/land cover Land use/land cover National Land Cover Dataset 

(Jin et al. 2019) 

Forest successional class Forest successional class LANDFIRE (USGS and 

USDA 2020) 

Topography Elevation (USGS 2000) 

Slope Derived from elevation 

Region EPA level 3 ecoregions Omernik and Griffith (2014) 

Soil moisture Soil drainage Web soil survey (NRCS 

2021) 

Topographic wetness index Derived from elevation (Fink 

2013) 

Landscape composition 

(0.5, 1, 5, and 10km scales) 

% Forest Derived from National Land 

Cover Dataset using 

landscapemetrics 

(Hesselbarth et al. 2019) 

% Agricultural 

% Developed 

Landscape configuration 

(0.5, 1, 5, and 10km scales) 

Aggregation index Derived from National Land 

Cover Dataset using 

landscapemetrics 

(Hesselbarth et al. 2019) 

Cohesion 

Edge density 

 

 We conducted a pilot evaluation of several potential modeling techniques fit to a subset of 

woodcock occurrence data, including using MaxEnt (Phillips et al. 2006), random forest 

classification (Breiman 2001), and boosted regression trees (Elith et al. 2008). All models were fit 

using the R package SDMtune (Vignali et al. 2020). We compared model outputs using area-under-

the-curve (AUC), a common metric of predictive accuracy for classification models (Fielding and 
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Bell 1997). The random forest classifier had the highest AUC among modeling approaches, and we 

therefore used random forest techniques for all subsequent models (Table A.1).  

 For the breeding season model, we used a random forest classifier designed for clustered data 

(Wang and Chen 2016), and applied survey route as a clustering variable to compensate for spatial 

autocorrelation among points on the same survey route. As federal survey routes were randomly 

distributed (Clark 1970) and state surveys were distributed opportunistically, we included survey type 

(state vs federal) as an explanatory variable to accommodate differences in route distribution. For the 

migratory season, we used a traditional random forest classification model, written using the 

randomForest package in R (Liaw and Wiener 2002). We assessed the accuracy of all models using a 

k-fold cross validation approach, where separate training and testing datasets were randomly sampled 

for each fold. We sampled folds at a survey route level for the breeding season model to 

accommodate autocorrelation within survey routes and prevent data leakage between the training and 

testing datasets. We used 10 folds for the breeding season model (90% training, 10% testing), but 

only 5 folds for the migratory season model (80% training, 20% testing) to accommodate the smaller 

sample size of the stopover dataset. We averaged AUCs for each of the folds to produce a mean AUC 

for each model and created predictive layers at 90m resolution that averaged predictions across folds. 

 To avoid overwhelming final predictive models with highly correlated or uninformative 

variables, we used the R package VSURF (Genuer et al. 2022) to implement a three-step backwards 

variable-selection approach, where each step produced a more parsimonious model. The first step 

eliminated irrelevant variables with lower variable importance than a defined threshold value 

(determined based on guidelines in Genuer et al. 2015). The second step retained only variables with 

the smallest out-of-bag error rates when training the model, effectively eliminating variables with 

some relevance but not critical for prediction. The third step used a stepwise process to test whether 

each included variable led to an out-of-bag error decrease that was larger than a defined threshold 
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value, effectively removing redundant variables from consideration (Genuer et al. 2015). We 

compared predictive accuracy of models created from each step using AUC, and retained the model 

from the step that produced the highest AUC to create a final predictive layer for each season. 

 We normalized the predictive layer for each season on a percentile scale, indicating whether a 

given pixel had a greater likelihood of woodcock occupancy than the corresponding percentage of 

other pixels in the state; for example, a value of 0.65 indicates that the pixel contains habitat that is 

more suitable than 65% of other pixels statewide. We termed these habitat suitability layers, with 

habitat suitability defined as a bounded, continuous index representing the degree to which a given 

site possesses the habitat components required for species occupancy (U.S. Fish and Wildlife Service 

1996). We occasionally refer to these habitat suitability layers as representing habitat distribution, 

which we define as the geographic distribution of habitat on the landscape, or as a representation of 

where areas of greater suitability occur or are absent. 

1.2.4 Analysis of covariate relationships and comparative distribution of seasonal habitat 

Random forest techniques do not provide easily interpretable covariate relationships, leaving the user 

to determine how covariates might influence the outcomes of the model (Breiman 2001). While we 

were not interested in exploring woodcock-habitat relationships per se, we nevertheless wanted to 

understand how environmental variables contributed to model predictions. We also sought to 

highlight regional differences in the distribution of breeding and migratory habitat among ecoregions. 

To depict these differences, we sampled covariate values, ecoregion type, and model-predicted 

suitability at 10,000 randomly distributed points throughout Pennsylvania. We used hex plots to 

visualize trends between covariates and predictions for each season, and visualized variation among 

each EPA level 3 ecoregion in Pennsylvania using box-and-whisker plots.  
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 We used two metrics to evaluate cross-seasonal transferability between breeding and 

migratory season species distribution models, to better understand the utility of a multi-season 

modeling approach. The first was a Pearson correlation coefficient between the breeding and 

migratory season layers, calculated using the R package terra (Cohen et al. 2009, Hijmans 2023), 

which measured the correlation between breeding and migratory suitability on the scale of individual 

pixels (90 m). The second metric measured the Pearson correlation between the total breeding habitat 

and the total migratory habitat provided by each gameland (described below in section 1.2.5), 

illustrating the co-occurrence of breeding and migratory habitat at the scale of the average state 

gameland (1992 ha). 

1.2.5 Spatial decision support system 

We created a SDSS in the Shiny ecosystem (Chang et al. 2022), named the Woodcock Priority Area 

Siting Tool (W-PAST), to facilitate local woodcock management planning. The SDSS allowed users 

to assign weights to each seasonal habitat suitability layer in 10% increments (ex. 20% migratory and 

80% breeding season), and then combined seasonal predictions into a single multi-season layer (Fig. 

1.2). The weighting was conducted on a pixel-by-pixel basis as a simple weighted average where pw 

indicates the value of the weighted pixel value, wm the weight of importance for migratory habitat, wb 

the breeding season weight, pm the migratory pixel value, and pb the breeding season pixel value. 

Equation 1.1 

𝑝𝑤 = (𝑤𝑚 × 𝑝𝑚) + (𝑤𝑏 × 𝑝𝑏) 

𝑤𝑚 = 1 −  𝑤𝑏 

 Practitioners often benefit from SSDS features customized to their management applications. 

In the case of the Pennsylvania Game Commission, a primary goal was to increase availability of 

woodcock habitat on state-managed gamelands, requiring functionality within the tool to compare 
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habitat suitability among gamelands. We built four comparison metrics into the SDSS that were 

calculated using the weighted averages of the breeding and migratory season predictive layers: 

average pixel value, total habitat, % high quality, and % medium quality. Average pixel value was the 

arithmetic mean of all pixels within a state gameland, which tended to favor small gamelands 

predominantly composed of woodcock habitat and was intended to demonstrate where a small 

amount of habitat management could increase local woodcock populations. Total habitat was average 

pixel value multiplied by the acreage of the gameland, which favored larger gamelands that contained 

relatively large amounts of woodcock habitat in aggregate by virtue of their size. Total habitat could 

be used to determine which gamelands would provide the most habitat in aggregate if they were 

managed for woodcock. Percent high quality habitat was the percentage of cells within a gameland 

that had values greater than the 33rd percentile of all pixel values in the state, and percent medium 

quality was the percentage of cells falling between the 66th and 33rd percentile. These percentile-

based metrics allowed users to quantify the proportion of a gameland which might be suitable for 

woodcock management. By multiplying the percent high or medium quality by the gameland acreage 

(also provided in the tool), the user could also derive the acreage in each gameland that could be 

managed for woodcock effectively. Further instructions for using these metrics in management are 

included in a user manual, publicly available with the SDSS at www.woodcock.shinyapps.io/W-

PAST. 
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Figure 1.2. Conceptual diagram of user decision options in the Woodcock Priority Area Siting Tool 

(W-PAST). Users can choose the weighting of migratory and breeding season habitat at 10% 

increments based on management priorities. The resulting weights are used to generate a statewide 

predictive layer and gameland prioritization metrics, which allow the user to compare the suitability 

of gamelands for woodcock management. 

1.3 Results 

We collected data from 328 migrant woodcock marked with GPS transmitters throughout the eastern 

portion of the woodcock’s range between fall 2017 and spring 2021. Eighty-two individuals (25%) 

recorded GPS locations at 113 stopovers in Pennsylvania. Breeding season survey data were available 

for 770 locations along 77 federal American Woodcock Singing-Ground Survey routes and 800 

locations along 80 Pennsylvania Game Commission state survey routes. The most predictive breeding 

season model (AUC = 0.83) was the result of the second variable selection step, in which all variables 

with low predictive capacity were removed. This model was heavily informed by landscape variables 

at 5 and 10 km scales (Table 1.2), and no variables at the finest spatial scale (0.5 km) or in the suite 
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of soil moisture characteristics were included in the most informative model. Graphs of habitat 

suitability for each covariate showed strong, non-linear relationships (Fig. 1.3). Suitability was 

highest for landscapes with 0–25% developed land area, 0–50% agricultural land area, and 

aggregation index values of 80–100, all at the 10km scale. At the 5km scale, the breeding season 

model also showed high suitability in landscapes with 30–100% forest cover (Fig. 1.3). 
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Table 1.2. Variables selected via backwards variable selection using the R package VSURF (Genuer 

et al. 2022) for the migratory and breeding season models. The migratory model employs the full set 

of variables, while the breeding season model uses a subset of variables inclined towards coarse 

resolution landscape variables. 

Suite Migratory Breeding 

Landscape (500m) Aggregation Index, 

Cohesion, Edge 

Density, % Forest, % 

Agricultural, % 

Developed 

 

Landscape (1km) Aggregation Index, 

Cohesion, Edge 

Density, % Forest, % 

Agricultural, % 

Developed 

% Agricultural 

Landscape (5km) Aggregation Index, 

Cohesion, Edge 

Density, % Forest, % 

Agricultural, % 

Developed 

Cohesion, % Forest, % 

Agricultural, % 

Developed 

Landscape (10km) Aggregation Index, 

Cohesion, Edge 

Density, % Forest, % 

Agricultural, % 

Developed 

Aggregation Index, 

Cohesion, % Agricultural, 

% Developed 

Land Cover Forest, Successional 

Class 

 

Geography Elevation, Slope, 

Ecoregions 

Elevation, Ecoregions 

Soil Moisture Drainage, 

Topographic Wetness 

Index 
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Figure 1.3. Comparison of relationships between landscape variables and habitat suitability for breeding and migratory season models of 

American woodcock in Pennsylvania, USA. Habitat suitability is displayed on a percentile scale, indicating whether a certain pixel was 

more suitable for woodcock occupancy than the corresponding percentage of other pixels in the state. 
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 The most predictive migratory model (AUC=0.78) was the full model, including all 

landscape, land cover, geographic, and soil moisture covariates (Table 1.2). Likely due to the wide 

array of covariates influencing the model, individual covariate graphs do not show clear visual 

patterns between migratory habitat suitability and any one covariate. However, the migratory model 

illustrated greater tolerance of migrant woodcock for developed and dis-aggregated landscapes at a 

10 km scale than the breeding season model (Fig. 1.3). The two models were also distinguished by 

the scale at which covariates influenced habitat suitability; the most informative breeding season 

model was not influenced by any landscape covariates at the 500 m scale, and only 1 landscape 

covariate at the 1 km scale, whereas the most informative migratory model included all available 

small-scale landscape covariates. Because of the influence of covariates at 500 m and 1 km scales, the 

migratory model predicted much more spatial variation in habitat distribution than the breeding 

season model, despite identical pixel resolutions (Fig. 1.4). 
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Figure 1.4. Breeding and migratory predictive habitat suitability layers suggest that woodcock select 

habitat at finer scales during the migratory season. Certain areas which are not appropriate for 

breeding season habitat management, such as southeastern Pennsylvania, may be appropriate for 

migratory habitat management. Percentile indicates whether a certain pixel was more suitable for 

woodcock occupancy than the corresponding percentage of other pixels in the state; for example, a 

value of 0.65 indicates that the pixel contains habitat that is more suitable than 65% of other pixels 

statewide.  
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 Breeding season habitat was not evenly distributed among ecoregions (Fig. 1.5A), with mean 

habitat suitability values ranging from 22.9–86.0%. Migratory habitat was more evenly distributed 

among ecoregions, with mean habitat suitability values ranging from 46.5–87.5%. Most of the 

difference between the distribution of migratory and breeding season habitat was in the Northern 

Piedmont, Middle Atlantic Coastal Plain, and Central Appalachians ecoregions, which had mean 

breeding season habitat suitability values of <30% and mean migratory season habitat suitability 

values of >60% (Fig. 1.5B). Breeding and migratory habitat rarely co-occurred at a pixel level, with a 

Pearson correlation coefficient of 0.15 between the breeding and migratory season predictive layers. 

Breeding and migratory habitat were slightly more likely to co-occur on gamelands, with a Pearson 

correlation coefficient of 0.39 between the total breeding habitat and total migratory habitat provided 

by gamelands. 
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Figure 1.5. Breeding and migratory season habitat suitability for woodcock (5A) by EPA level 3 

ecoregion (5B) in Pennsylvania (Omernik and Griffith 2014). Three ecoregions, Northern Piedmont, 

Middle Atlantic Coastal Plain, and Eastern Great Lakes Lowlands, had mean breeding season habitat 

suitability values of <30% and mean migratory season habitat suitability values of >60%. Habitat 

suitability is calculated based on randomly sampled locations within each ecoregion and uses a 

percentile scale, indicating whether a certain pixel was more suitable for woodcock occupancy than 

the corresponding percentage of other pixels in the state. Box plots, arranged in the same order as the 

figure legend, indicate the median and interquartile range while whiskers extend to the 

largest/smallest value within 1.5 times the interquartile range.  
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1.4 Discussion 

We found that models of woodcock habitat distribution exhibited poor cross-seasonal transferability 

between distribution models, with low correlation between breeding and migratory habitat models at 

multiple spatial scales (Pearson correlation at pixel-level: 0.15, gameland-level: 0.39). As such, 

management focused on breeding habitat alone is unlikely to maximize conservation of migratory 

habitat for this species. We demonstrated a potential solution to increase cross-seasonal 

transferability through the integration of multi-season species distribution models into a single SDSS 

tool. The SDSS emphasizes the importance of user input by allowing choice in the weighting of 

breeding and migratory habitat to meet local management objectives and encourages users to make 

informed decisions regarding the importance of habitat during these stages. 

 Regional differences between the breeding and migratory models underscore the importance 

of multi-season distribution models in delineating regional priorities for migratory bird management. 

For the woodcock model, we found relatively low breeding season suitability within the Northern 

Piedmont, Middle Atlantic Coastal Plain, and the Eastern Great Lakes Lowlands ecoregions, despite 

high migratory suitability. User-weighted prioritization of seasonal habitat might allow managers in 

regions in which woodcock breeding habitat is scarce to instead prioritize migratory habitat 

management. On the other hand, a manager of an area that provides breeding habitat in a region 

where breeding habitat is scarce might decide that their most effective decision would be to prioritize 

breeding habitat as much as possible. We posit that there might be several effective management 

strategies based on the information provided in multi-season distribution models, and the 

incorporation of user-specified weights empowers users to customize the tool to suit their own 

management objectives. 

 We showed that American Woodcock occurred in distinctly different habitat during the 

breeding and migratory seasons in Pennsylvania and were associated with different spatial scales 
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between seasons. During the breeding season, woodcock habitat suitability was dependent primarily 

on covariates at 5- and 10-km scales, while during the migratory season habitat suitability was 

additionally dependent on covariates at 500-m and 1-km scales. This pattern supports past 

observations that migratory birds select habitat at a finer scale during migration (Stanley et al. 2021). 

Due to these differences in the scale, managers may need to adjust management to match the scale of 

the season of interest (Fattorini et al. 2020). For example, woodcock management for breeding season 

habitat in Pennsylvania might focus on conserving broad swaths of habitat on large public lands, such 

as Pennsylvania state gamelands. As the predictive layer is fairly uniform across even large state 

gamelands, performing habitat management at that scale would likely be effective. However, the 

migratory model had a much finer spatial resolution, and was much more likely to predict smaller 

pockets of habitat in areas not traditionally targeted by wildlife management agencies, such as urban 

areas or landscapes more heavily dominated by agriculture and privately-owned lands (McCance et 

al. 2017). Differences in the spatial scale of habitat associations among seasons demonstrate the 

necessity of modeling occupancy for each season separately and to ensure that management supports 

the habitat requirements at appropriate scales for animals throughout the full annual cycle. 

 Multi-season distribution modeling may also highlight areas of potential for conservation that 

are not traditionally managed for wildlife habitat due to a lack of breeding season occupancy. 

Woodcock were more tolerant of developed land cover during the migratory season than the breeding 

season, and the migratory season model predicted use of highly developed areas such as suburban 

Philadelphia and Pittsburg. This corresponds with findings of Buler and Dawson (2014), who found 

that migratory birds heavily used urban greenspaces during stopover, perhaps due to attraction to high 

levels of artificial light at night (McLaren et al. 2018) and lack of other stopover options. One 

implication is that, in addition to management for woodcock at smaller spatial scales, practitioners 

may need to consider management of urban greenspaces for migratory birds. Opportunities for urban 
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habitat conservation might come through partnerships with public and private landowners, such as 

park authorities and utility companies, to conserve migratory habitat in urban greenspaces (Cerra 

2017). Another opportunity for urban habitat conservation might be the Urban National Wildlife 

Refuge program (USFWS 2023), which has dual roles in preserving wildlife habitat and expanding 

access to natural areas for historically excluded communities. Pennsylvania is host to one Urban 

National Wildlife Refuge, John Heinz National Wildlife Refuge at Tinicum, located in the 

Philadelphia suburbs. Our model predicted high migratory habitat suitability for woodcock within 

this refuge, demonstrating how urban wildlife refuges may provide crucial stopover habitat in heavily 

urbanized areas. 

 A multi-season distribution model framework is particularly well suited to migratory bird 

management due to its flexibility in application of multiple data sources, which is particularly useful 

for species that are studied using separate techniques and surveys during each season. While there are 

several surveys for examining bird distribution during the breeding and wintering seasons (e.g. 

Robbins et al. 1986, Bonter and Greig 2021), examining bird habitat use during the migratory period 

continues to be a challenge. Individually-marked birds with GPS transmitters are the gold standard 

for this type of analysis, as stopover locations can be separated from breeding and wintering locations 

for each tagged bird. However, GPS transmitters are still too large to attach to many small migratory 

birds, and the low number of stopovers attained per individual (mean = 1.4, sd = 0.6 in this study) 

combined with the considerable price of these transmitters may make attaining a large sample size a 

financial difficulty for most study species. The use of citizen science data collected during migration, 

such as the eBird data collection platform (Sullivan et al. 2009), may provide a more generalizable 

way to collect stopover location data, but certain assumptions must be made to distinguish true 

migratory locations from early breeding/wintering season arrivals. Decisions on seasonal 

management priorities can also be informed by other data sources and models, such as multi-season 
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survival models to determine whether breeding or migratory habitat has a greater role in limiting 

survival or migratory corridor models to identify high densities of migrants (Cohen et al. 2022). 

SDSS provide a framework for blending these multi-season datasets and models to improve 

management and conservation decision making for migratory birds. 

 Non-avian taxa are also likely to find benefits from the application of multi-season 

distribution models. Seasonally differing habitat use within a region is common among altitudinal 

migrants, including ungulates (Boyce 1991, Mauer 1998), and partial migrants ranging from large 

mammals to insects (Chapman et al. 2011). Cross-seasonal transferability issues which arise from 

these habitat differences can be addressed through a multi-season distribution modeling framework, 

allowing flexibility in data sources and facilitating user choice in seasonal prioritization. 
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2 CHAPTER 2: ADAPTING HIDDEN MARKOV MODELS FOR TRACKING MIGRATORY 

BIRDS USING DATA FROM SMALL GPS TRANSMITTERS 

Recent technological advances resulting in the widespread collection of tracking data from migratory 

birds necessitates tools for the effective processing and classification of that data. Tools such as 

hidden Markov models provide opportunities to classify movement states from high-resolution 

Global Positioning System (GPS) data collected at frequent, regular intervals. However, small-bodied 

migratory birds cannot carry large enough tags to collect GPS data frequently. Use of additional data 

streams may assist with assigning cryptic movement states to sparse and irregular GPS data. Here we 

apply a correlated random walk model and additional data streams to fit hidden Markov models to 

GPS data from American Woodcock (Scolopax minor; hereinafter “woodcock”). Our objectives were 

to determine if the use of additional data streams resulted in an improved capacity to predict 

migratory states and characterize woodcock migratory distance, duration, phenology, and the 

presence of long-distance movements outside of fall and spring migration. We found that individual 

data streams only marginally improved model performance, but collectively data streams decreased 

model error rates by a median value of 5.93%. Migratory characteristics measured using the full 

model (all additional data streams) were similar to the base model (only step length and turn angle) 

for all birds during fall and for males during spring, although the full model was 2.12 times more 

likely to identify a migratory endpoint than the base model for females during spring. The mean 

duration and distance of migration was also underestimated by 7 days and 278 kilometers for the base 

model as opposed to the full model for females during spring. Long-distance movements outside of 

fall and spring migration, such as dispersals and foray loops, were less frequently identified with the 

base model (3 dispersals, 15 foray loops) as opposed to the full model (4 dispersals, 18 foray loops). 

Using additional data streams may be beneficial for birds with overlapping seasonal distributions and 
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prolonged stopovers, demonstrating the benefits that new or repurposed movement models may have 

for understanding avian migratory ecology. 

2.1 Introduction 

The amount of tracking data collected from small birds has exploded in the 21st century (Iverson et al. 

2023b), providing opportunities to address facets of bird migration that have long eluded 

ornithologists, such as migration phenology (Wright et al. 2021), habitat use (Moskát et al. 2019, 

Iverson et al. 2023a), survival (Klaassen et al. 2014), and connectivity (Combreau et al. 2011). In 

particular, tracking devices that record GPS locations can provide data at a high temporal resolution 

with near global coverage. GPS transmitters have traditionally required large batteries or solar panels 

which limit their use to larger birds. However, recent innovations in these technologies have allowed 

GPS technology to become available for a much larger group of bird species than has historically 

been the case (Bridge et al. 2011, Flack et al. 2022). 

 In order to answer questions about bird migration, GPS data are often classified into 

movement states that delineate periods of pre-migration, migration, and post-migration, under one of 

several simple frameworks. The range delineation method (Fig. 2.1A; Linscott et al. 2022) is based 

on the known breeding and wintering ranges, where a bird is considered to have begun migration 

when it leaves the breeding range, and completed migration when it enters the wintering range, and 

vice versa. The range delineation method has the advantage of being robust to incomplete tracks; if a 

bird dies or transmitter failure occurs during the bird’s migration, the bird’s final state is still 

apparent. However, the range delineation method requires constrained breeding and wintering ranges 

that have little overlap with the migratory range (e.g., Bar-tailed Godwit, Limosa lapponica; Battley 

et al. 2012). The step-length or distance threshold (Burnside et al. 2017) method defines the start of 

migration by the first step longer than a defined distance threshold, and migration ends with the last 
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step longer than the distance threshold (Fig. 2.1B). The step-threshold method relaxes the assumption 

that breeding and wintering ranges do not overlap with the migratory range, making this method 

applicable to birds with widespread breeding and wintering ranges (ex. Pine Siskin, Spinus pinus; 

Dawson 2020). However, the step-threshold method does not handle incomplete tracks well; if a bird 

dies or its transmitter fails during migration, it is impossible to determine whether the bird has made 

its final migratory step (Fig. 2.2). Quantifying the terminal migration state is particularly important 

for survival and connectivity analyses, but also has relevance for phenology and habitat analyses for 

which accurate migratory delineation is important. 
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Figure 2.1. Range delineation (Linscott et al. 2022) and step-threshold (Burnside et al. 2017) methods 

of delineating migratory tracks. Using the range delineation method (Panel A), migratory locations 

can be defined as all locations outside both the breeding and the wintering range. Using the step-

threshold method (Panel B), migratory locations can be categorized as all locations occurring after 

the first migratory step (determined using a threshold step length) and prior to the final migratory 

step. 
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Figure 2.2. Complete and incomplete tracks of a theoretical migratory bird. For birds with complete 

tracks (Panel A; encompassing the entire temporal period of migration), the pre-migratory, migratory, 

and post-migratory stages of the track are apparent, and can be identified using the range delineation 

or step-length threshold methods. For birds with incomplete tracks (Panels B and C) the final state of 

the bird cannot be determined using a step-length threshold. If points cannot otherwise be delineated 

using breeding and wintering ranges, incomplete tracks end in an uncertain state that could be either 

migratory or post-migratory.  
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 Hidden Markov models (HMMs) use observed distributions of outcome variables to assign 

movement states to animal tracking data and could potentially overcome limitations of rule-based 

assignments, particularly for the final movement state of incomplete movement tracks (Langrock et 

al. 2012, Zucchini et al. 2017). Step length and turn angle are the two most common data streams 

used by hidden Markov models in movement analyses, although additional data streams (such as 

acceleration, depth/altitude, and immersion in water) can be used to improve the model’s predictive 

capabilities (Dean et al. 2013). Hidden Markov models have delineated foraging, dispersal, and 

migratory behaviors for a variety of bird taxa including shorebirds, sage-grouse, prairie grouse, and 

seabirds (Blomberg et al. 2023, Berigan et al. 2024, Dean et al. 2013, Picardi et al. 2022, Mander et 

al. 2022, Zhang et al. 2019). These taxa can carry large transmitters (often with solar panels) that 

provide high frequency, regular location data over long periods of time, which assists with fitting 

hidden Markov models. However, the small size and forest dwelling habits (i.e., no direct sunlight for 

solar panels) of smaller birds may preclude high frequency data collection for GPS transmitters 

attached to them and complicate fitting those data using traditional hidden Markov model approaches. 

 We illustrate the fitting of HMMs to low-frequency GPS data using American woodcock 

(Scolopax minor; hereinafter woodcock). Woodcock are widely distributed throughout eastern North 

America, typically breeding in the northern United States and southern Canada and wintering in the 

southern United States. They are frequently among the latest migrants to leave the breeding range as 

frost encroaches in the fall and the earliest to arrive as snow melts in the spring (Moore et al. 2021). 

Woodcock are particularly flexible in their migratory and reproductive timing; females regularly nest 

in the migratory and wintering ranges and have been observed migrating among nesting attempts 

(Slezak et al. 2024a). Woodcock are of appropriate size to carry small GPS transmitters, which are 

often constrained by limited battery life (woodcock mass: 116–279 g, transmitter mass: 4–6 g; 

McAuley et al. 2020). 
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 Here we present a modified approach combining step-threshold and hidden Markov models to 

classify large-scale movement behaviors, such as migration, using sparse and irregular GPS data. We 

suggest a three-stage process: 1) interpolation of data at a regular interval using a correlated random 

walk model (Kareiva and Shigesada 1983), 2) delineating known movement states using the step-

threshold method, and 3) estimating unknown movement states using a hidden Markov model with 

additional data streams that describe the time, location, and movement characteristics of each GPS 

point. We demonstrate this approach on data collected from American Woodcock during a range-

wide study of migratory phenology, habitat use, and survival. Our objectives were to determine 

whether use of additional data streams facilitated estimation of terminal movement states from 

incomplete GPS tracks and improved our ability to quantify of woodcock migratory distance, 

duration, phenology, and long-distance movements outside of fall and spring migration. 

2.2 Methods 

2.2.1 Collecting data via GPS transmitters 

We used GPS-tracking data from 2017–2022 collected by the Eastern Woodcock Migration Research 

Cooperative, a collaboration of 43 agency, non-profit, and academic organizations in eastern North 

America (Blomberg et al. 2023, Clements et al. 2024, Fish et al. 2024). We captured woodcock at 78 

sites throughout Quebec, Ontario, Nova Scotia, Maine, Vermont, New Jersey, New York, Rhode 

Island, Pennsylvania, Maryland, West Virginia, Virginia, North Carolina, South Carolina, Georgia, 

Alabama, Louisiana, and Florida. We used mist nets to capture woodcock during morning and 

evening flights (Sheldon 1960) and using spotlights and dip nets on night roosts (Rieffenberger and 

Kletzly 1966, McAuley et al. 1993). We attached 4g, 5g, or 6.3g PinPoint GPS Argos transmitters 

(Lotek Wireless Inc., Newmarket, Ontario, CA) to captured woodcock. Transmitters, bands, and 

harness materials never exceeded 4% of a bird’s body mass, and all capture and handling were 
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conducted with methods approved by the University of Maine Institutional Animal Care and Use 

Committee (Protocol # A2017-05-02 and A2020-07-01). 

 GPS transmitters were programmed with one of several schedules, each of which collected 

data at a slightly different pace to optimize battery life according to specific project objectives. The 

most frequent schedules recorded locations daily, while infrequent schedules recorded locations every 

2–3 days during migratory time periods and every 3–7 days outside of migration. Certain schedules 

were programmed to switch between frequent and infrequent modes, and transmitters were 

occasionally set to go dormant for periods of 1–3 months during summer and fall to preserve battery 

life for separate study objectives. Transmitters were predicted to collect a maximum of 75–150 GPS 

locations, depending on transmitter size and schedule, at 12–60m accuracy. Transmitters relayed GPS 

locations to the ARGOS satellite network after every 3rd location; however, transmitters occasionally 

failed to relay data, sometimes resulting in missing programmed locations. 

2.2.2 Delineating spring and fall migration 

2.2.2.1 Track interpolation and application of the step-threshold method 

We delineated woodcock movements during periods of fall (Aug. 1st–Feb. 25th) and spring (Jan. 5th–

Jun. 30th) migration. However, for a small subset of birds (n = 14; 3%) we extended these date ranges 

due to migratory movements that occurred outside these periods (Appendix B.1). To ensure that fall 

and spring migratory movements were delineated separately, we modeled spring migrations first for 

each woodcock, and shortened the end of the default fall migration timeframe (Aug. 1–Feb. 25) to 1 

day before the subsequent spring migration began for that individual. 

 We interpolated daily locations within each track prior to fitting HMMs, as infrequent and 

missing locations can impede the ability of the HMMs to detect recursive movements (defined as 

repeated visitations to the same locations in a systematic manner, sensu Berger-Tal and Bar-David 
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2015) which could be indicative of stopovers and post-migratory settlement. We used a correlated 

random walk model implemented in the R package crawl (Johnson and London 2018, R Core Team 

2024), which interpolated locations based on prior and subsequent location, speed, and direction. We 

predicted that interpolated locations would improve the capacity of the HMM to detect recursive 

movements more accurately during stationary periods, however, during initial model fitting, we 

observed that they did not accurately reflect the distribution of known migratory movements. To 

address this tendency, we only used the correlated random walk model to interpolate locations 

between points that were <16.1 km apart (i.e., when the bird was either at a stopover or not 

migrating). Due to the directional consistency inherent in correlated random walks, models 

occasionally produced erroneous loops of interpolated points when birds made recursive movements 

during non-migratory periods. These interpolated loops were often lengthy and could artificially 

create step lengths ≥16.1 km. To ensure that HMMs did not incorrectly assign these loops as 

migratory movements, we removed all loops of interpolated points for which the total length of the 

loop exceeded 10 times the distance between observed points and replaced the loops with predicted 

locations spaced evenly between the observed points. 

 Following point interpolation, we applied the threshold method (Burnside et al. 2017) to 

define migration for each season on an individual basis, beginning after the first movement ≥16.1 km 

and ending after the final ≥16.1 km movement. We chose a 16.1 km threshold as it roughly bisects 

the bimodal distribution of log-transformed step lengths in the dataset (Blomberg et al. 2023). We 

then used HMMs to refine movement state classifications and assign ending states to incomplete 

migration tracks. 
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2.2.2.2 Use of additional data streams to inform HMMs 

We measured a subset of variables as additional data streams, which we believed would allow models 

to better differentiate between stopovers and post-migratory locations (Table 2.1). Log mean distance 

to the nearest 7 points measured whether the nearest 7 bird locations (meant to approximate space use 

over the period of 1 week) reflected intensive use of the same area, and presumably resource 

utilization, or spread-out movement throughout the area, possibly reflecting exploration. Residence 

time measured the time difference between the first and last day that the bird was located within a 10 

km radius of a focal location. This reflected the difference between the amount of time that woodcock 

spent occupying stopover sites as opposed to their post-migratory sites. Ordinal day captured 

woodcocks’ annual phenology of migration. Latitude reflected latitudinal differences in the breeding, 

migratory, and wintering ranges of woodcock. Distance from start measured whether a bird had 

moved ≥16.1 km from its position at the beginning of the season, indicating it had departed its initial 

site to begin migration. Breeding range reflected whether the bird was currently within the woodcock 

breeding range, as delineated using the eBird 2021 Status and Trends abundance maps (Fink et al. 

2022). 

 We created two versions of each seasonal HMM, described as base and full models, with 

different suites of data streams used to inform each. The base model included only step length, turn 

angle, and step length threshold data streams, while the full model included all 6 additional data 

streams (Table 2.1). We estimated error rates, migratory characteristics, and long-distance 

movements separately for each base and full model (described further below) to allow us to infer how 

additional data streams changed the model’s predictive capacity and ability to make inferences into 

migratory ecology. 
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Table 2.1. Covariates used to delineate movement states in hidden Markov Models (HMMs), and the 

type of distribution fit to each covariate in the HMMs. Data streams are categorized by their 

appearance in the base and full models, with the base model using only the 3 core data streams and 

the full model using all 9 data streams. Point-specific attributes (latitude, ordinal day, distance from 

start, breeding range, log(distance to nearest points), residence time) are based on the woodcock’s 

location at the beginning of the step. 

Covariate Distribution Description 

Base & Full Model   

    Step length Gamma Length of the current step 

    Turn angle Wrapped Cauchy 

(Kent and Tyler 

1988) 

Angle between the current and previous 

step 

    Step length threshold Bernoulli Binomial indicating if the current step 

length is ≥16.1 km. Implemented with a 

fixed distribution so that all steps ≥16.1 

km are migratory. 

Full model    

    Log(distance to nearest 

points) 

Normal Natural logarithm of the mean distance 

to the nearest 7 points. 

    Residence time Normal Number of days that the bird has 

spent/will spend within a 10km radius. 

    Ordinal day Normal Days since the beginning of the 

migratory season 

    Latitude Normal Latitude at the beginning of the step 

    Distance from start 

threshold 

Bernoulli Binomial indicating if the bird moved 

>16.1 km from its location at the 

beginning of the migratory season 

    Breeding range Bernoulli Binomial indicating if the step begins in 

the American Woodcock breeding range 

(Fink et al. 2022). 
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2.2.2.3 Seasonal HMM design 

We implemented HMMs in the R package momentuHMM (McClintock and Michelot 2018). We 

conducted separate HMMs for fall and spring migration, and further subset spring migration by sex 

due to different breeding motivations during spring migration (Blomberg et al. 2023, Slezak et al. 

2024a) which we assumed a priori would result in fundamentally different movement characteristics. 

We constructed a multi-state model for each HMM to identify transitions occurring between 

movement states (Fig. 2.3). Models for spring migration by females, and all woodcock during fall, 

featured 4 states: pre-migration, migration, stopover, and post-migration. Birds began the season in a 

pre-migration state and transitioned to migration following the first movement ≥16.1 km, which was 

the only state in which movements ≥16.1 km were permitted. From the migration state, birds could 

remain in migration or enter either a stopover state or a post-migration state. Once entering the 

stopover state, birds could remain in stopover or transition back to the migration state. The post-

migration state could only be reached from the migration state and did not allow for any further state 

transitions. These state assignments were generally enforced using the fixed transition framework in 

the momentuHMM package, but occasional errors occurred when improbable state assignments 

caused the framework to fail to enforce state transition rules. These errors and their fixes are detailed 

in Appendix B.2. 

 While most models had a single post-migration state, the spring male model included two 

post-migration states, post-migration (frequent) and post-migration (infrequent), which males could 

enter in spring at the conclusion of migration. The inclusion of these two states fixed an artifact in the 

dataset caused by male-specific transmission schedules switching to less-frequent transmission late in 

the spring migratory season. Infrequent locations caused the correlated random walk model to infer a 

greater proportion of steps during the late migratory period, producing a much narrower turn angle 

distribution than observed earlier in the season. The inclusion of two post-migratory states with 
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separate turn angle distributions, which birds could transition between freely, allowed the model to 

better account for this source of variation in turn angles when delineating post-migratory movements.  

 We excluded any birds that did not have at least 1 step ≥16.1 km, or which collected fewer 

than 3 points, from migratory delineation in the respective season. We assigned a fixed pre-migration 

state for the initial step of most birds captured during breeding or wintering, and a fixed migration 

state if the first step was ≥16.1 km. Because birds captured in Virginia, New Jersey, and Maryland 

were sometimes captured during migration, we allowed the HMM to estimate the initial state of the 

model for birds captured in these locations. We fixed final steps to the post-migratory state for any 

fall woodcock that were also known to initiate a subsequent spring migration. 

 We visually inspected all HMM state assignments, which sometimes identified circumstances 

where birds did not fit model predictions due to extra-seasonal movements (6% of tracks), early 

initiation or late termination of migration (3%) or transmitter error (1%). There were also additional 

issues with initial state designations that were encountered only by the base model (3% of tracks). In 

these cases, we manually reclassified state assignments (Appendix B.1). Woodcock that died during 

migration occasionally continued to transmit and caused the HMM to falsely classify dead birds as 

post-migratory. We have included methods used in delineating GPS mortalities and removing them 

from the dataset in Appendix B.3. 
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Figure 2.3. Movement state transition diagram for each hidden Markov Model (HMM). Blue boxes 

represent pre- and post-migratory states, while yellow and red circles represent states during fall and 

spring migrations, respectively. The spring male model includes two post-migration states to 

compensate for less frequent GPS locations collected from males in late spring. 

2.2.3 Delineating spring and fall migration 

2.2.3.1 HMM error rates and variable importance 

We assessed the accuracy of HMM state assignments using a leave-one-out validation based on 

individuals with known terminal states. For individuals with transmitters that functioned past the end 

of each migration period, we truncated the movement track by removing one week of points, 

simulating a scenario where data transmission was lost prior to the end of migration. We then refitted 
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the HMM to the truncated data, and evaluated whether the model correctly assigned the known final 

movement state. We repeated this process by truncating an additional week of data from each track to 

evaluate the capacity of models to correctly assign latent states throughout the period of migration 

(fall: Oct. 1st–Jan 15th, spring: Mar. 15th–Jun. 15th). We repeated the validation process for 50 

individuals, with replacement, for each model set. We measured the accuracy of final state 

assignment based on Type I and Type II errors, where a Type I error occurred when a known post-

migratory state was falsely classified as migratory, and a Type II error occurred when a known 

migratory state was falsely classified as post-migratory.  

 To determine which additional data streams had the greatest impact on model error rates, we 

repeated the leave-one-out validation but omitted one of the additional data streams from the full 

model (Table 2.1) and measured how Type I and Type II error changed compared to the full and base 

models. We inferred variable importance based on the relative change in Type I and II errors 

following removal. 

2.2.3.2 Migratory characteristics 

We calculated several migration metrics that described the duration, distance, and timing of each 

movement state. Duration was the sum of the number of days between the first movement in each 

state and the initial location of the subsequent movement state (e.g., the start and end of migration). 

Distance was the sum of the total step distance in each movement state. For birds undergoing fall or 

spring migration, total distance excluded movements designated as stopovers, i.e. steps <16.1 km, 

and only reflected the summed distance of migratory steps. Timing was the ordinal date of the 

transition point between movement states. We used medians and ranges to report the population-level 

timing of migratory initiation and termination, as medians are well suited to accommodating outliers 

that were common in the initiation and termination dates. We compared all migration metrics 
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between full and base models to evaluate improvements in inference resulting from the more complex 

full model. 

2.2.3.3 Long-distance movements and non-migratory individuals 

Woodcock occasionally underwent long-distance movements outside of the spring and fall migratory 

periods. To determine if the full and base models affected our ability to detect these long-distance 

movements, we manually classified 3 potential movement states: foray loops, dispersals, and summer 

migrations (Table 2.2). Foray loops and dispersals were both presumably exploratory movements, 

where dispersals resulted in displacement from the original site while foray loops did not. We 

counted the frequency of dispersals and foray loops based for all birds with locations spanning at 

least 1 month, which was long enough to correctly classify movement classes. Summer migrations 

were movements of similar distance and direction to fall migration, but occurred prior to August 1, 

well before the normal onset of fall migration. We counted the frequency of summer migrations 

based on all birds tracked between May 1st–Sep. 1st. 

 To determine if the use of the full and base models impacted our detection of non-migratory 

individuals, we calculated the percentage of individuals that did not migrate using the pool of all 

individuals tracked between the nominal start of the migratory season (Fall: Oct. 15, Spring: Feb. 15) 

and the date by which most birds had initiated migration (95th quantile of the departure dates for that 

season). Any individuals that had at least one location before, during, and after this period, but did 

not enter a corresponding migratory state, were designated as non-migratory for that season. We used 

the same time periods to determine whether a bird migrated during the season before or after its non-

migratory season. 
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Table 2.2. Definitions of long-distance movement states manually delineated for American 

Woodcock. 

Class Definition 

Summer Migratory  Post-breeding, southerly movements initiated before Aug 1 that 

preclude fall migratory movements. 

Foray loops Circular or out-and-back movements with steps ≥16.1 km that result in 

<16.1 km of net displacement between the first and last point. Foray 

loops can occur during any season, provided they are temporally distinct 

from a bird’s migratory movements. 

Dispersals  Movements that include step lengths ≥16.1 km and result in ≥16.1 km of 

net displacement between the first and last point. Dispersal movements 

follow directions which are not typical of co-occurring seasonal 

migrations. Note that this differs from dispersal defined in an 

evolutionary context, sensu Ronce (2007). 

 

2.2.4 Data and code availability 

To make data available for use in future research, we uploaded all woodcock GPS locations and their 

movement state assignments to a Movebank repository (reference ID 351564596). The process of 

refining these designations for use in Movebank is detailed in Appendix B.4. All code used in this 

study is publicly available at https://github.com/EWMRC/fac-classification. 
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2.3 Results 

2.3.1 HMM error rates 

We analyzed 522 seasonal movement tracks from 401 tagged woodcock, of which 45 tracks (9%) in 

the full model and 56 tracks (11%) in the base model required modifications to the methods described 

above to correctly fit the seasonal HMMs (detailed in Appendix B.1). The full model improved 

classification accuracy for all three seasonal HMMs compared to the base model (Fig. 2.4). Type I 

error rates were similar for full (median 6.0%, range 0–24.2%) and base models (median 6.0%, range 

0–24.2%) during fall migration, but Type II error rates were lower for the full model (median 0%, 

range 0–4.3%) compared to the base model (median 10.6%, range 0–28.3%). The spring male full 

model exhibited lower rates of Type I (median 8.3%, range 0–15.6%) error than the base model 

(median 15.6%, range 0–61.1%), and comparable rates of Type II error (full: median 4.3%, range 0–

11.4%; base: median 4.3%, range 0–13.6%). The spring female full model exhibited greater Type I 

errors (median 6.8%, range 0–18.8%) during some time periods than the base model (median 2.1%, 

range 0–4.2%), but also exhibited reduced Type II error rates (median 6.3%, range 2.0%–11.4%) 

compared with the base model (median 52.1%, range 10.0–77.6%). 
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Figure 2.4. Error rates for movement state assignments by hidden Markov models (HMMs) for fall, 

spring (male), and spring (female) migrations, as measured through the model validation process. The 

horizontal axis reflects the cutoff date for each model that was used to simulate an incomplete track 

ending on that date. HMMs were grouped into full and base models, where full models included all 

possible data streams and base models including only step length and turn angle. Type 1 errors 

reflected false classification as post-migratory while the true state was migratory, whereas Type 2 

errors reflected false classification as migratory while the true state was post-migratory. Bars show 

the 95% confidence interval of the mean. 
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2.3.2 Variable importance 

Individual removal of variables from the full model had low overall impact (median -0.31%, range -

17.17–2.70%) on Type I and Type II error rates of the seasonal models (Fig. 2.5). The importance of 

a withheld variable often differed by season, with the removal of some variables (e.g., ordinal day) 

leading to reduced error in one season and increased error in another. Residence time produced the 

greatest reduction in error rates, with a 2.81–17.17% drop in Type II error rates for all 3 seasonal 

models. The full model caused a 0.71–42.55% reduction in Type II error rates for those 3 models, 

suggesting that these variables have a more appreciable impact on error rates when used in aggregate. 
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Figure 2.5. Reduction in accuracy from the full model due to removal of individual data streams, as 

well as the base model which included none of these 6 data streams. Type I errors occurred when the 

ending state was falsely classified as migratory, and Type II errors occurred when the ending state 

was falsely classified as post-migratory. Negative values indicate reductions in accuracy, while 

positive values indicate that accuracy improved when the variable was excluded from the model. 
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2.3.3 Migratory characteristics 

Among all seasons, the measured characteristics of woodcock migratory movements, such as 

distance, duration, phenology, and the percentage of individuals completing migration, changed least 

between the fall full and base models (Table 2.3). The full spring male model was 1.15 times more 

likely to identify a migratory endpoint than the base model. There was no difference in mean 

migratory duration between the two models, although the base model underestimated mean migratory 

distance by 45 km compared to the full. The spring male base model estimated that the median 

migratory initiation and termination dates were two days earlier than the full model. The spring 

female model exhibited more drastic differences between the base and full models, with the full 

model 2.12 times more likely to identify a migratory endpoint than the base model. The mean 

duration and distance of spring female migration was underestimated by 7 days and 278 km for the 

base model as compared to the full model, while the median initiation date of the base model was 4 

days earlier and the median termination date was 12 days earlier than that of the full model. 
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Table 2.3. Migratory characteristics of full and base models for each seasonal hidden Markov model, 

in addition to detection rates for long-distance movements outside of spring and fall migration. 

Season Metric Full model Base model 

Fall 

migration 

Percent completed 

migration1 

56% 55% 

 Duration2 32 days (± 26, 1–134 days) 32 days (± 26, 1–134 days) 

 Distance3 1353 km (± 647, 20–3210 km) 1344 km (± 645, 20–3210 km) 

 Initiation date4 Nov. 7th (Aug. 29th–Jan. 11th) Nov. 7th (Aug. 29th–Jan. 11th) 

 Termination date5 Dec. 6th (Oct. 28th–Feb. 4th) Dec. 5th (Oct. 28th–Feb. 4th) 

Spring 

migration 

(male) 

Percent completed 

migration1 

75% 86% 

 Duration2 39 days (± 24, 4–95 days) 39 days (± 25, 4–95 days) 

 Distance3 1554 km (± 644, 296–3337 

km) 

1509 km (± 649, 262–3337 

km) 

 Initiation date4 Feb. 29th (Jan. 6th–Apr. 14th) Feb. 27th (Jan. 6th–Apr. 17th) 

 Termination date5 Apr. 6th (Jan. 20th–Jun. 7th) Apr. 4th (Jan. 20th–Jun. 7th) 

Spring 

migration 

(female) 

Percent completed 

migration1 

55% 26% 

 Duration2 49 days (± 29, 2–128 days) 42 days (± 28, 2–101 days) 

 Distance3 1671 km (± 626, 455–3424 

km) 

1393 km (± 698, 248–3424 

km) 

 Initiation date4 Mar. 5th (Jan 14th–Apr. 26th) Mar. 1st (Jan 14th–Apr. 23rd) 

 Termination date5 Apr. 25th (Mar. 10th–Jun. 28th) Apr. 13th (Mar. 2nd–May. 25th) 

Long-

distance 

movements 

Dispersals6 3 detected (0.7%; 2 M, 1 F) 2 detected (0.4%; 2 M, 1 F) 

 Foray loops7 18 detected (4%; 8 M, 10 F) 15 detected (3%; 7 M, 8 F) 

 Summer mig.8 3 detected (5%; 2 M, 1 F) 3 detected (5%; 2 M, 1 F) 
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Table 2.3 Continued. 

1 Percent of birds which completed their migration prior to the end of their track. 

2 Mean duration of migration, with standard deviation and range. 

3 Mean distance of migration, with standard deviation and range. 

4 Median and range of migratory initiation dates. 

5 Median and range of migratory termination dates. 

6 Number of individuals which underwent a dispersal among all birds tracked for at least one month 

(n = 456), including the percentage of birds which underwent a dispersal and the number of dispersals 

associated with males and females. Note that one bird underwent two dispersals, bringing the total 

number of dispersal movements detected to 4 for the full model and 3 for the base model. 

7 Number of individuals which underwent a foray loop among all birds tracked for at least one month 

(n = 456), including the percentage of birds which underwent a foray loop and the number of foray 

loops associated with males and females. 

8 Number of individuals which underwent a summer migration among all birds tracked throughout 

May 1st–Sep. 1st (n = 65), including the percentage of birds which underwent a summer migration 

and the number of summer migrations associated with males and females. 
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2.3.4 Long-distance movements and non-migratory individuals 

Long distance movements outside of spring and fall migration were less frequently detected using the 

base model than the full model, with the full model detecting 3 more foray loops and 1 more dispersal 

than the base model (Table 2.3). Using the long-distance movements detected by the full model, we 

found that dispersal movements had a mean duration of 6 days (1–10 days) and the mean distance 

traveled was 129 km (30–263 km). Foray loops had a mean duration of 20 days (2–95 days) and a 

mean total distance traveled of 221 km (34–951 km). The number of summer migrations detected was 

not impacted by use of the full or base model, with 3 of 65 birds (5%; 2 males, 1 female) tracked 

throughout May 1st–Sep. 1st migrating south during the summer. These summer migratory 

movements initiated around May 27th, Jun. 20th, and Jul. 13th and terminated around Jul. 8th, Jul. 25th, 

and Aug. 22nd (Fig. 2.6). Summer migrations had a mean duration of 39 days (35–42 days) and a 

mean distance traveled of 756 km (523–1106 km). 

 Non-migrants were detected by both the full and base models, with some differences in 

detection rates. The full model detected 6 non-migrants in the fall (3% of individuals tracked between 

Oct. 15th–Dec. 5th; 3 males, 3 females) and spring (3% of individuals tracked between Feb. 15th–

Mar. 29th; 1 male, 5 females). The base model detected one fewer non-migrant in fall (3% of 

individuals tracked between Oct. 15th–Dec. 8th; 2 males, 3 females) and the same number of non-

migrants in spring (3% of individuals tracked between Feb. 15th–Mar. 28th; 1 male, 5 females). The 

fall non-migrants detected using the full model overwintered in Rhode Island (3), Pennsylvania (1), 

Connecticut (1), and Virginia (1), while the spring non-migrants summered in Virginia (2), Maryland 

(1), Florida (1), Georgia (1), and Alabama (1). Individuals that abstained from migration during one 

season were observed migrating in prior or subsequent seasons when data were available (5 of 5 birds 

detected in the full model).  
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Figure 2.6. Spatial and temporal distribution of summer migrations, dispersals, and foray loops of 

American Woodcock marked with GPS transmitters in eastern North America. Maps are 

superimposed over the breeding, wintering, and year-round range of the American Woodcock as 

delineated by the eBird Status and Trends dataset (Fink et al. 2022). Timelines depict the duration of 

each movement by month, and each movement is matched from the map to the timeline by color. 

These long-distance movements are derived from the full model, which includes all possible data 

streams for informing delineations of woodcock migratory movements. 
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2.4 Discussion 

Combining the step-threshold method with a set of hidden Markov models resulted in a technique 

that could be used to estimate the migratory state of American Woodcock with a quantifiable level of 

accuracy. We found that the use of additional data streams allowed HMMs to fit the migratory 

movements of woodcock with lower error rates for several seasonal models. The most substantial 

improvement was among Type II errors for spring females (full: median 6.3%, range 2.0%–11.4%; 

base: median 52.1%, range 10.0–77.6%), although spring males also had some improvements in Type 

I error rates early in the season (full: median 8.3%, range 0–15.6%; base: median 15.6%, range 0–

61.1%). These differences were mirrored by our migratory characteristics results, which found that 

spring females had the most substantial differences between the full and base models, with less 

pronounced differences for spring males and few differences for fall birds (Table 3). Individual 

variable results suggest that the improved error rates and classification of migratory characteristics 

seems to be due to several added data streams working in aggregate, with each individual variable 

having a reduced influence when used in isolation (Fig. 5). The three most important of these 

variables, ordinal day, latitude, and residence time, demonstrate how spatial and temporal variables 

can assist in delineating migratory and post-migratory states even for a species that has considerable 

overlap in seasonal ranges and migratory/non-migratory periods (Chp. 1, Fish et al. 2024). 

 Our results demonstrate that certain seasons, in particular spring female migration, are more 

difficult to accurately characterize using only step length and turn angle. The difficulties encountered 

with spring females are likely due to female woodcocks’ tendency to nest during spring migration, 

with continued migration following nest failure (Slezak et al. 2024a). Under this reproductive system, 

movement patterns of female woodcock during stopover may be very similar to those post-migration, 

which may lead to difficulties in discriminating among movement states based only on step length 

and turn angle. The addition of data streams, especially residence time, ordinal day, and latitude, 
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increased the accuracy of the spring female model (Fig. 5), likely distinguishing among early, 

southerly nesting attempts that are prone to failure and resumption of migration and later nesting 

attempts which are less likely to have a subsequent migratory movement. While woodcock have an 

uncommon breeding system (Slezak et al. 2024a), this technique for refining HMMs may be useful 

for any migratory bird with lengthy stopovers and spatial overlap in their seasonal ranges. For 

example, Sora (Porzana carolina) use the Chesapeake Bay in Virginia, Maryland, and Delaware, 

USA, as both a breeding and a staging area during spring migration, and an HMM technique like ours 

could be used to differentiate between breeding and staging states based on movement characteristics 

(Duerr and Watts 2012). This technique may be widely applicable to shorebirds and waterbirds, for 

which extended stopover and staging behaviors are common (Colwell 2010, Stafford et al. 2014), as 

well as facultative migrants (e.g. American Robin, Turdus migratorius) which encounter substantial 

overlap in their migratory, breeding, and wintering ranges (Vanderhoff et al. 2020). 

We found that the increased classification accuracy of the full model allowed us to identify more 

long-distance movements outside of fall and spring migration. These movements were relatively 

uncommon (dispersals: 0.7% of individuals in the full model; foray loops: 4%; summer migrations: 

5%), and motivations may range from avoiding negative environmental conditions in the winter (e.g., 

movements from Rhode Island to Maryland and back) to foraging and exploratory behaviors. 

Dispersal movements and foray loops have been observed among a variety of songbird, grouse, and 

shorebirds, most frequently occurring after the breeding season (Earl et al. 2016, Cooper and Marra 

2020, Hoepfner 2023). During our study we observed dispersal movements and foray loops 

throughout the year, including dispersal movements during summer and winter and foray loops 

during every season except for the peak of spring migration. Cooper and Marra (2020) suggest that 

the prevalence of dispersals and foray loops is underestimated due to the difficulty of tracking small 

birds at fine spatial scales, and this may be exacerbated due to the prevalence of single-season 
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movement studies (Marra et al. 2015). Dispersals can in some cases allow population exchange and 

gene flow among subpopulations, and identifying these movements is important for understanding 

avian life history and population dynamics (Bohonak 1999, Morales et al. 2010). Robust frameworks 

for differentiating these movements from fall and spring migrations, such as we present here, could 

improve our ability to document these movements in future studies. 

Onboard data collected by the transmitter, such as acceleration, altitude, or depth, have traditionally 

been used as data streams to inform animal movement HMMs (Dean et al. 2013), but these data are 

frequently unavailable for small transmitters. Our results demonstrate that external data streams, such 

as spatial and temporal variables derived from the movement track, can have a similar benefit for 

predicting migratory states. Extensions of HMMs which incorporate feedback when calculating 

transition probabilities, such as an increased likelihood of switching from a foraging state to a transit 

state after spending time feeding, may also be well suited to explaining the temporal patterns that 

distinguish migratory stopover behavior from post-migratory resource utilization (Zucchini et al. 

2008). 

 Modeling migratory bird movements presents several challenges that differ from other classes 

of animal movement. As we demonstrate, small transmitters carried by migratory birds collect sparse 

and irregular data that can cause difficulty in fitting movement models. Migratory birds also undergo 

rapid shifts between slow, recursive movements at stopover sites and fast, direct movements during 

migratory flights, which may impede models that assume consistency in movement modes (e.g., 

correlated random walk models, Kareiva and Shigesada 1983; see section 2.2.1 of this manuscript for 

issues encountered). Other studies have demonstrated these issues can be overcome by incorporating 

new or repurposed statistical models or supplementing GPS data with seasonal abundance data 

(Nichols et al. 2018, Nicol et al. 2023, Fuentes et al. 2023). Further research on these techniques may 
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allow us to extend movement modeling techniques to a much greater array of avian species and give 

us greater insight into the ecology and habits of migratory birds. 

  



56  

3 CHAPTER 3: FUNCTIONAL RESPONSES IN AMERICAN WOODCOCK HABITAT 

SELECTION THROUGHOUT THE FULL ANNUAL CYCLE 

Migratory birds shift their habitat selection throughout the year, due in part to functional responses to 

shifts in habitat availability among their breeding, migratory, and wintering ranges. However, these 

changes in habitat selection among seasons and regions are infrequently quantified due to the 

difficulty associated with following individual migratory birds throughout their full annual cycle. We 

examine how American Woodcock (Scolopax minor) habitat selection, including the scale of 

selection and individual variability, shifts in response to seasonal, demographic, and regional factors 

which might cause a functional response to habitat availability. In 2017–2023, we deployed satellite 

GPS transmitters on 572 woodcock throughout the eastern portion of their range. We used 1,015,886 

GPS locations from 530 of these woodcock fit to step selection functions to examine selection of 10 

landcover covariates derived from the North American Land Change Monitoring System at multiple 

spatial scales. We found that woodcock select habitat at smaller scales (50–100m) during migration 

than they do throughout the rest of the year (200–1000m), potentially due to differing mechanisms 

used to select stopover, breeding, and wintering habitat. We found that selection for several 

covariates (needleleaf forest, wetland, urban) became less pronounced outside of the post-migratory 

breeding season, presumably due to decreased energetic demands allowing more generalist habitat 

selection. Habitat selection coefficients varied extensively among seasons and regions, but less so 

among age-sex classes. Seasonal and regional variation in habitat selection could be due in part to 

niche partitioning, ecological differences in cover types between regions, differing resource 

requirements by season, or functional responses to habitat availability. Further research may allow us 

to determine the importance of these factors in explaining shifts in the habitat selection of migratory 

birds throughout the full annual cycle. 

  



57  

3.1 Introduction 

Migratory birds frequently undergo changes in their habitat selection throughout the full annual cycle. 

Passerine species, such as the Kirtland’s Warbler (Setophaga kirtlandii), which are closely associated 

with specific cover types during the breeding season often shift to an unrelated cover type while 

wintering (Botecetti et al. 2020). Shorebird species, such as the Short-Billed Dowitcher 

(Limnodromus griseus), which use exclusively freshwater muskegs and bogs for breeding may 

instead associate with saltwater habitats during the migratory and wintering seasons (Jehl Jr. et al. 

2020). While several potential factors, such as niche partitioning and breeding season-specific 

resource requirements, could be potential causes for these shifts in habitat selection, one prominent 

factor is functional responses to changing availability of resources (Mysterud and Ims 1998). 

Functional responses can result in animals selecting less strongly for a resource as its availability 

increases on the landscape (specialist response), selecting for a resource more strongly as availability 

increases on the landscape (increasing use), or moderating their selection against a resource as it 

becomes more available (relaxed avoidance, Holbrook et al. 2019). This theory has been widely 

applied to non-migratory organisms and given that migration entails movement between two areas 

with different resource availability (Dingle 2014) functional responses are likely a leading cause of 

shifts in habitat selection throughout the full annual cycle. 

 In addition to differing habitat selection among seasons and regions throughout the full annual 

cycle, birds may also adjust the scale of their habitat selection. Multi-scalar relationships are common 

in avian habitat selection, with selection often differing, and sometimes being undetectable, outside of 

certain spatial scales (Pribil and Picman 1997, Buler et al. 2007). Shifts in the scale of selection 

between seasons may indicate changes in the mechanism of habitat selection between seasons, with 

implications for the strength of seasonal habitat relationships (Chernetsov 2006). Individual 

variability may also change in respect to season and region. Individual variation in habitat selection 
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has been well documented, and quantifying individual variation in selection preferences is a common 

element of modern habitat selection analyses (Leclerc et al. 2016, Muff et al. 2020). Differing 

individual variability between seasons and regions might indicate a shift in available niche space, 

presenting a possible opportunity for a functional response (Newsome et al. 2015). 

 These factors, including habitat selection, scale of selection, and individual variability may 

also shift in response to age and sex class. Variation in habitat use among age-sex classes for birds 

may arise from several different causes. Competitive exclusion may result in the exclusion of 

subordinate age-sex classes from high quality habitat, frequently resulting in negative consequences 

for body condition (Marra et al. 1993, Mettke-Hofmann et al. 2015). Differing reproductive roles, 

resulting in differing resource needs between sexes, may result in differential habitat selection during 

the breeding season but not the rest of the year (Phillips et al. 2004). Niche divergence, resulting from 

circumstances where sexes are physiologically distinct enough that they occupy differing ecological 

niches, may result in differential habitat selection throughout the full year (Orgeret et al. 2021). Age-

sex classes may modify the impacts of a functional response in circumstances when these classes 

select habitat differently, making their measurement important to determining the extent of a 

functional response (Mysterud and Ims 1998). 

 Changes in habitat selection throughout the full annual cycle are infrequently studied due to 

the difficulty associated with tracking individual birds during or after migratory movements. 

Technological advances have made this possible due to the advent of small GPS transmitters, which 

can be attached to an increasing proportion of migratory birds with near global satellite coverage 

(Bridge et al. 2011). One species that has been a recent focus of GPS transmitter studies (Moore et al. 

2019, 2021) is the American Woodcock (Scolopax minor; hereinafter woodcock). Woodcock are an 

early successional forest habitat specialist which primarily eats earthworms and are associated more 

closely with upland habitats than most other North American shorebirds (McAuley et al. 2020). 



59  

Woodcock have been noted to associate with wetlands and deciduous or mixed forests (Masse et al. 

2014), although they frequently utilize night roost habitat in fields, presumably to avoid predation 

(Krementz et al. 1995). In spring, male woodcock display in forest openings (often created through 

logging activity), usually near second-growth hardwood stands that serve as nesting and brooding 

habitat (Kelley et al. 2008). Woodcock have a unique itinerant breeding system in which females may 

make several nesting attempts during their migration, and continue migrating after nest or brood 

failure (Slezak et al. 2024a). This breeding system has led to reports of nesting throughout much of 

the woodcock’s wintering and migratory range (McAuley et al. 2020). Woodcock habitat selection 

differs based on sex and season, with woodcock often displaying more tolerance for urban and 

heavily agricultural areas during migration (Allen et al. 2020, Slezak et al. 2024b, Chp. 1). 

 Here we examine how woodcock habitat selection, including the scale of selection and 

individual variability, shifts in response to seasonal, demographic, and regional factors which might 

cause a functional response to habitat availability. Our hypotheses (Table 3.1) are derived from our 

main objectives, 1) to determine how multi-scalar habitat selection differs among seasons, age-sex 

classes, and regions, and 2) to measure the extent to which habitat selection remains consistent 

between seasons at a population and individual level. 
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Table 3.1. Hypotheses regarding factors that may affect the scale of habitat selection and habitat 

selection coefficients for American Woodcock (Scolopax minor). 

Hypotheses Predictions References 

The scale of habitat selection 

will differ by… 

  

… season Woodcock will select habitat at 

smaller scales outside of the post-

migratory breeding season. 

Stanley et al. 2021 

… age-sex class The scale of woodcock habitat 

selection will differ by sex during 

the post-migratory breeding season 

Slezak et al. 2024 

Habitat selection coefficients 

will differ by… 

  

… season Woodcock will become more 

generalist with their habitat 

selection during migration. 

Stanley et al. 2021 

… age-sex class Competitive exclusion will shift 

subordinate age-sex classes into 

lower quality habitat, and 

reproductive roles will cause habitat 

selection in the post-migratory 

breeding season to differ by sex. 

Marra et al. 1993, 

Phillips et al. 2004 

… region Woodcock will shift their habitat 

selection across their range due to 

functional responses. 

Gillies and St. Clair 

2010 

Individual variation in 

selection coefficients will 

differ by… 

  

… season & age-sex class Reproductive roles will cause 

reduced individual variability 

among females during the post-

migratory breeding season. 

Baert et al. 2021 

… region Individual variation in woodcock 

habitat selection will change across 

the range due to functional 

responses. 

Newsome et al. 2015 
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3.2 Methods 

3.2.1 Data collection and preprocessing 

In coordination with the Eastern Woodcock Migration Research Cooperative (Clements et al. 2024), 

we captured woodcock throughout eastern North America in 2017–2023 using spotlighting and mist 

nets (McAuley et al. 1993) and used a rump-mounted leg loop harness (Fish et al. 2024) to attach 4–7 

g PinPoint transmitters (Lotek Wireless Inc., Newmarket, Ontario, CA) to captured birds. All capture 

and handling was conducted in accordance with protocols approved by the University of Maine 

Institutional Animal Care and Use Committee (Protocols A2017-05-02 and A2020-07-01) as well as 

permits from the USGS Bird Banding Laboratory and Canadian Bird Banding Office. Transmitters 

collected GPS location data, which were preprocessed using hidden Markov models to delineate 

migration from periods of residency (full methods available in Chapter 2). We removed long-distance 

movements that occurred outside of spring and fall migration from further consideration, and 

classified the remaining locations as summering, wintering, spring migration, or fall migration based 

on the initiation and termination dates of each individual’s spring and fall migratory movements. We 

further categorized summering points as post-migratory breeding (before July 25th) or post-breeding 

(on or after July 25th), based on prior research using this dataset which indicates that 95% of nesting 

attempts have concluded by this date (Slezak et al. 2024a). The term “post-migratory breeding” was 

chosen due to woodcocks’ itinerant breeding strategy, in which nesting attempts frequently cooccur 

with migratory movements, which might make the use of the traditional term “breeding season” to 

describe the post-migratory period misleading. We removed repeated locations from known nesting 

attempts (Slezak et al. 2024a), as well as mortality locations (Chapter 2), migratory flight locations 

(nocturnal locations with a recorded altitude >107 m; Chapter 4), and individuals with fewer than 5 

locations before further analysis. 
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 To examine how woodcock habitat relationships varied among regions within the species’ 

range, we classified all points according to the Bird Conservation Region (hereinafter BCR; Sauer et 

al. 2003) in which they were located. Bird Conservation Regions are a set of ecological units 

delineated by the North American Bird Conservation Initiative based on the similarity of bird 

communities, ecosystems, and conservation issues within each region (Fig. 3.1). These designations 

were used for the BCR suite of habitat selection models (see section 3.2.6 below). 

 
Figure 3.1. Map of Bird Conservation Regions (BCRs; Sauer et al. 2003) in eastern North America. 

Only BCRs that had a large enough sample size of woodcock locations to be included in the BCR 

suite of habitat selection models are illustrated here. 
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3.2.2 Delineating levels of habitat selection 

Habitat selection is a multi-level process, involving hierarchical decisions to choose a suitable 

geographic range, home range, and areas within the home range (Johnson 1980). Examining the 

habitat selection of migratory birds has some parallels to Johnson (1980)’s orders of selection, as 

birds migrate between sites (among-site selection; analogous to 2nd order selection of home ranges) 

and then select habitat resources within sites (within-site selection; analogous to 3rd order selection of 

areas within the home range). Among-site selection encompasses both a) the selection of new 

stopover sites following migratory flights and b) the selection of a summering or wintering site at the 

conclusion of migration. Within-site selection encompasses selection occurring within a given 

stopover site, summering home range, or wintering home range. As migratory flights consist of 

movements ≥16.1 km (Blomberg et al. 2023), among-site selection occurs whenever a bird makes a 

≥16.1 km movement to a migratory stopover site or a post-migratory breeding/wintering home range. 

Within-site selection occurs when woodcock make movements <16.1 km, either within unique 

stopover sites, or within their summer or winter home ranges. For the purposes of this dissertation 

chapter, we will focus solely on the habitat relationships observed in within-site selection. 

3.2.3 Delineating availability 

We calculated available habitat for each <16.1 km step under a step selection framework, which 

compares collected GPS locations (simplified into steps between successive locations) with 

hypothetical paired steps generated based on the distribution of all step lengths and turn angles in the 

dataset (Fortin et al. 2005). Step selection functions typically assume a regular interval of sampling to 

ensure that step lengths and turn angles are comparable throughout the dataset (Thurfjell et al. 2014). 

Our transmitters were constrained by battery life and were programmed to collect data at irregular 

time intervals to meet varied study objectives, which violates assumptions of regular sampling. We 
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compensated for irregular time intervals between points by creating step length and turn angle 

distributions that were dependent on the duration of the step. We rounded these durations into 8-hour 

blocks, up to 72 hours. For example, a step of 36 hours would have available steps generated from the 

distribution of all step lengths and turn angles from steps with durations of 32–40 hours. We used 

these time difference-specific distributions to generate available steps for each used step that were 

realistically accessible given observed step lengths and turn angles from steps with similar time 

differences. We simulated 50 available steps for each used step using the amt package in R (Signer et 

al. 2019, R Core Team 2024). We chose 50 available steps to ensure that infrequent, long steps were 

reflected in our delineation of availability, while keeping the number of steps low enough to be 

computationally tractable (Thurfjell et al. 2014). We removed any available steps which intersected 

open water, as these could not plausibly be used by a non-flying woodcock. 

3.2.4 Extracting habitat covariates 

We classified habitat characteristics using broad-scale covariates reflecting land cover composition 

and configuration. We used a 2020 landcover layer at continental-scale and 30m resolution produced 

by the North American Land Change Monitoring System (NALCMS; Brown et al. 2020), which 

provides 19 land cover classes specific to tropical, temperate, sub-polar, or polar biomes. To ensure 

land cover classes were comparable among seasons, relevant to woodcock biology, and represented 

within our dataset, we aggregated classes into 8 categories: needleleaf forest, broadleaf forest, mixed 

forest, shrubland, grassland, wetland, cropland, and urban. We used this reclassified layer to calculate 

percent composition within buffers around the endpoint of each step, which were defined by radii of 

varying distances (50m, 100 m, 200 m, 500 m, and 1 km) chosen for their relevance to woodcock 

habitat selection during the post-migratory breeding and migratory seasons (Chapter 1). We 

calculated all landscape metrics in R using general functionality provided by the sf and terra 
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packages, as well as the landscape composition functions provided by the landscapemetrics package 

(Pebesma 2018, Hesselbarth et al. 2019, Hijmans 2023). 

 We calculated landscape configuration metrics to determine how woodcock would select for 

differing levels of forest edge habitat and connectivity. For use in this analysis, we reclassified the 

NALCMS layer into two categories: forest and non-forest. We cropped this raster to only include 

those cells which fell within a buffer around the endpoint of each step, using the same radii as we did 

for the landcover composition analysis. We then calculated edge density (representing the total length 

of forest/non-forest edges) and cohesion (representing the connectivity between forest patches) 

around each buffered point using the landscapemetrics package in R (Hesselbarth et al. 2019). 

3.2.5 Scale of habitat selection 

3.2.5.1 Model design and implementation 

To examine questions of variation in scale among seasons and age-sex classes and ensure that the 

most relevant scale was included in subsequent habitat analyses, we used a Bayesian latent indicator 

scale selection (BLISS; Stuber et al. 2017) analysis to examine comparative support for several scales 

of habitat selection. BLISS offers a computationally efficient method of scale optimization while 

reflecting uncertainty in estimation and can be implemented using a conditional logistic regression 

framework similar to a resource selection function (Manly et al. 2007), with a latent indicator 

selecting the scale at which a covariate is most appropriately measured. The model is structured as  

Equation 3.1 

Pr(𝑆𝑧 = 𝑦) =  𝑝𝑦,𝑧 ∑ 𝑝𝑦,𝑧

51

𝑦=1

⁄  

Equation 3.2 

𝑝𝑦,𝑧 = 𝑒𝑥𝑝(𝛼 + 𝛽 ∗ 𝑋𝑦,𝑧,𝑣) 
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where Equation 3.1 illustrates the matched case-control portion of the conditional logistic model and 

Equation 3.2 describes the regression equation. S is the binomial case status (0 or 1) of the used or 

available step and p is the likelihood of using step index y within strata z, with strata representing one 

used step and 50 available steps generated from the same starting location. α is the intercept value, β 

is the covariate slope, and X is the covariate value at used or available step y within strata z, 

assuming scale of selection v. When estimated in a Bayesian framework using Markov Chain Monte 

Carlo (MCMC), BLISS will estimate not just the α and β values, but also the latent indicator v, which 

is expressed as a categorical variable with a uniform prior. The scale of selection which received the 

most support in the posterior of v was designated the best supported scale and used to measure each 

covariate for subsequent habitat analyses. The full posterior of v, including scales besides the best 

supported scale, was used to analyze how habitat selection varied by season and age-sex class. 

 We implemented our BLISS models in the Bayesian MCMC program JAGS (Plummer 2003), 

testing scales of selection for each covariate and season individually. We used uninformative normal 

priors (mean = 0, variance = 1000) for α and β values, and a uniform categorical prior for v, with 

possible values representing 50m, 100 m, 200 m, 500 m, and 1 km scales of selection.  We conducted 

scale optimization for the full dataset and for each age-sex class individually. We used age-sex 

specific scale optimization in any models exploring differences in selection among age or sex classes, 

and otherwise used optimization based on the full dataset. One covariate in the age-sex models 

(grassland for juvenile males in the post-migratory breeding season) did not converge and was thus 

removed from further analyses. 

3.2.5.2 Synthesizing scale optimization results 

We summarized the posterior of v by season (using the full models) and age-sex class (using the age-

sex models) to evaluate our hypotheses that the scale of habitat selection would vary by season, age, 
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and sex. This produced estimates of the proportional importance of selection at each scale in that 

season and age-sex class, respectively. We also examined the unmodified posteriors of the full BLISS 

models to evaluate how selection for specific covariates changed between seasons. 

3.2.6 Habitat selection 

3.2.6.1 Model design and implementation 

Our step selection models used the most likely scales of selection for each covariate, determined 

using BLISS, to estimate habitat selection coefficients and individual variation in habitat selection. 

We used a conditional logistic regression (Equation 3.1), and modified Equation 3.2 as follows 

Equation 3.3 

𝑝𝑦,𝑧 = 𝑒𝑥𝑝(𝛼 + ∑ 𝛾𝑖

𝑛

𝑖=1

+ ∑ ∑(𝛽𝑇 + 𝛿𝑇,𝑖) ∗ 𝑋𝑇,𝑦,𝑧,𝑣

𝑛

𝑖=1

𝑚

𝑇=1

) 

which allows inclusion of multiple covariates and incorporates individually-varying intercepts (𝜸) 

and slopes (𝜹). In addition to the variable definitions in Equations 3.1 and 3.2, i represents the index 

of an individual woodcock with levels n, and T represents the index of a covariate with levels m. 

Unlike Equation 3.2, v is treated here as a known variable based on the most likely scale for each 

covariate. We set 𝛾 and each value of 𝛿𝑇 to a mean of zero while sharing variance among individuals, 

which is equivalent to setting these variables as random intercepts and slopes in a frequentist 

framework. We used uninformative normal priors (mean = 0, variance = 1000) for all α and β 

variables, and uninformative half-normal priors (mean = 0, variance = 1000) for the variance of 𝛾 and 

𝛿 variables. 

 We ran separate models for each age-sex class to explored differences in selection between 

males and females as well as adult and juvenile woodcock. We further explored spatial variation in 

selection by running different models for each BCR, but in this case we aggregated age-sex classes 
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because we lacked sufficient replication within each BCR. We removed a covariate from two age-sex 

models due to convergence issues (grassland for adult males in fall migration, and shrubland for 

juvenile males in the post-migratory breeding season). For the BCR models, we only included 

season/BCR combinations which had >20 steps and >5 individuals (37 of 60 season/BCR 

combinations), due to issues in model convergence below that sample size. We removed all 

covariates from BCR models in which the covariate was observed less than 5 times due to issues in 

estimation below this sample size (19 covariates removed), and an additional 26 covariates due to 

convergence issues. This resulted in removal of 45 of 370 covariate-season-BCR combinations from 

consideration in the BCR model suite. 

3.2.6.2 Evaluating habitat selection and individual variability 

We evaluated general trends in habitat selection using β coefficients, for which we calculated 95% 

credible intervals using the built-in functionality in the R package jagsUI (Kellner 2015). We 

evaluated individual variability in habitat selection by summarizing the variance of 𝛿 across several 

levels. We summed the posteriors of the variance of 𝛿 by covariate, season, and age-sex class using 

the age-sex suite of habitat selection models and summed the posteriors of the variance of 𝛿 by BCR 

using the BCR suite of habitat selection models. The resulting summed 𝛿 metric represents the degree 

of individual variation in selection, indicative of the importance of individual heterogeneity for 

driving habitat relationships during that season. We used these summaries to test hypotheses 

regarding how individual variation in habitat selection might differ by season, age-sex class, or BCR. 
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3.3 Results 

3.3.1 Scale of habitat selection 

We deployed GPS transmitters on 572 woodcock, with 530 of these woodcock providing enough data 

to delineate seasonal movements (Chapter 2). This yielded 1,015,886 GPS locations for analysis of 

woodcock habitat relationships. Woodcock selected habitat at smaller scales (50 and 100m; 69% of 

samples) during migration than during non-migratory seasons (Fig. 3.2; 30% of samples). This effect 

seemed to be driven primarily by three covariates, cropland, edge density, and cohesion, all of which 

were selected for at a smaller scale during migration than during other parts of the year (Fig. 3.3). 

However, there was little variation among age-sex classes in the scale of habitat selection (Fig. 3.4), 

and no consistent pattern in scale of selection among individual covariates, such as wetland and forest 

with best supported scales varying among seasons. Selection for wetland occurs at larger scales in 

post-breeding and wintering and smaller scales in other seasons (Fig. 3.3). Selection for forest 

covariates occurred primarily at smaller scales for needleleaf and broadleaf forests, and at larger 

scales for mixed forest. Selection for urban areas occurred at small scales in all seasons but post-

migratory breeding and post-breeding, in which there was support for moderate scales. 
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Figure 3.2. Scales at which American Woodcock (Scolopax minor) selected habitat covariates 

throughout their full annual cycle, derived from GPS locations collected throughout eastern North 

America. Scales of selection are summed across covariates to display seasonal relationships. Percent 

of samples represents the probability of support for a given scale of selection in comparison to tested 

alternatives. Estimates are derived from the base suite of BLISS models (Stuber et al. 2017). 
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Figure 3.3. Scales of American Woodcock (Scolopax minor) habitat selection among seasons and habitat covariates, derived from GPS 

locations collected throughout eastern North America. Percent of samples represents the probability of support for a given scale of 

selection in comparison to tested alternatives. Estimates are derived from the base suite of BLISS models (Stuber et al. 2017). 
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Figure 3.4. Scales at which American Woodcock (Scolopax minor) select habitat covariates among 

age-sex classes, derived from GPS locations collected throughout eastern North America. Chosen 

scales of selection are summed across covariates and seasons to display relationships among age-sex 

classes. Percent of samples represents the probability of support for each scale of selection. Estimates 

are derived from the age-sex suite of BLISS models (Stuber et al. 2017). 
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3.3.2 Habitat selection coefficients 

Across all model suites, woodcock generally selected for wetland and edge density and against 

needleleaf forest, cohesion, and urban (Fig. 3.5). Selection for habitat covariates generally did not 

vary extensively by age-sex class, with a few exceptions. Juvenile males selected for needleleaf forest 

during the wintering season, in contrast with other age-sex classes and their habitat use during other 

seasons. Females and males differed in their selection for broadleaf forest during the post-migratory 

breeding season, with females selecting for the covariate and males selecting against it. There was 

substantially more intra-season variation in habitat selection among BCRs than among age-sex 

classes (Figs. 3.5 & 3.6). This frequently resulted in contrasting coefficient relationships among 

BCRs. During the post-breeding season, for example, woodcock selected for wetlands in BCRs 13, 

14, 28, and 30 and against wetland in BCRs 8 and 12. During the wintering season, woodcock 

selected for edge density in BCRs 25 and 27–31 and against edge density in BCR 26. 

 Three covariates (needleleaf forest, wetland, and urban) displayed differences in the intensity 

of their habitat selection during the post-migratory breeding and post-breeding seasons compared to 

other seasons (Fig. 3.7). This relationship was clearest for needleleaf forest, with woodcock selecting 

against needleleaf forest more strongly during post-migratory breeding and post-breeding than during 

other seasons. Woodcock selected for wetland more strongly during post-breeding than during post-

migratory breeding or other seasons. While there was less of a difference in selection for urban areas, 

woodcock generally selected against urban areas more strongly during post-migratory breeding and 

post-breeding than during other seasons. 
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Figure 3.5. Mean habitat selection coefficients for covariates from the age-sex suite of habitat 

selection models. Numbers in bold indicate coefficients for which the 95% credible interval did not 

overlap with zero. Empty boxes indicate that the covariate was not included in the model due to 

convergence issues. 
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Figure 3.6. Mean habitat selection coefficients for covariates from the Bird Conservation Region 

(BCR) suite of habitat selection models. Numbers in bold indicate coefficients for which the 95% 

credible interval did not overlap with zero. Empty boxes indicate that the covariate was not included 

in the model due to low sample size or convergence issues.  
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Figure 3.7. Selection preferences of American Woodcock (Scolopax minor) for needleleaf forests, 

wetland, and urban areas among seasons, derived from GPS locations collected throughout eastern 

North America. Beta coefficients are drawn from the age-sex suite of habitat selection models. Points 

represent median coefficient values, thick lines represent 50% credible intervals, and thin lines 

represent 95% credible intervals. Curves illustrate the distributions of the posterior samples. 
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3.3.3 Individual variation in habitat selection 

We found that individual random effects generally did not vary by covariate, season, and age-sex 

class (Fig. 3.8). One BCR (31, Peninsular Florida), which contained elements of both coastal plain 

and sub-tropical biomes (NABCI 2021), displayed more individual variation than other BCRs. 

Otherwise, individual variation was relatively uniform among BCRs. 
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Figure 3.8. Individual variation in habitat selection (standard deviation of 𝛿 in Equation 3.2), summed 

by covariate, season, Bird Conservation Region (BCR), and age-sex class. Points represent median 

coefficient values, thick lines represent 50% credible intervals, and thin lines represent 95% credible 

intervals. Curves illustrate the distributions of the posterior samples. 
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3.4 Discussion 

We found that variation in woodcock habitat use among seasons reflected less pronounced habitat 

selection outside of the post-migratory breeding and post-breeding seasons, while the strength of 

habitat selection often varied or even contrasted among BCRs. Differing habitat selection among 

seasons or regions could be due to several ecological factors. Niche partitioning may lead to differing 

habitat use in regions where interspecific competitors are present (Jablonski et al. 2020), although 

woodcocks’ fairly stable and unique niche as an earthworm forager in early successional habitat 

(McAuley et al. 2020) makes this hypothesis less likely in this circumstance. Another potential factor 

could be ecological differences in cover types among regions and seasons, either due to resources, 

predators, or the configuration of habitat. For example, needleleaf forests are hypothesized to be more 

amenable to woodcock occupancy in the wintering range than the breeding range due to increased 

earthworm densities, which would explain their decreased avoidance of this cover type outside of the 

breeding range (Kelley et al. 2008). Another factor might be differences in biological requirements 

between seasons, with birds maintaining more strict resource requirements during the breeding 

season than they do during other portions of the year. Many birds require high protein diets to raise 

their young (Johnston 1993), and additional breeding season requirements might include avoidance of 

nest or brood predation (Fontaine and Martin 2006) and presence of conspecifics to facilitate mate 

choice (Ward 1987). The final potential factor that might explain differing habitat selection among 

seasons and regions is a functional response to habitat availability. Woodcock experience gradients in 

habitat availability throughout their range, with cover types such as needleleaf forest being more 

abundant in the breeding range than the wintering range (Brown et al. 2020). Shifts in the strength of 

selection for these cover types may be due in part to their prevalence on the landscape. In 

circumstances where a preferred cover type is less available (e.g. lower wetland availability in the 

wintering range), woodcock may shift their habitat selection to a more abundant cover type which 
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provides adequate resources and is easier to find on the landscape. Similarly, avoidance of cover 

types such as needleleaf forest may be less influential in the wintering range simply because it is less 

prominent on the landscape. 

 Typically, three hypotheses (reproductive roles, competitive exclusion, and niche divergence; 

Phillips et al. 2004, Orgeret et al. 2021) are used to explain potential differences in habitat selection 

by age-sex class. We found some support for the reproductive roles hypothesis, as woodcock females, 

but not males, selected for broadleaf forest during the post-migratory breeding season. Broadleaf 

forest is noted to be important for woodcock reproduction, particularly nesting and brooding, while 

needleleaf forest is avoided due to a lack of earthworm abundance (Kelley et al. 2008). The 

competitive exclusion hypothesis found less support in our data, with only one age-sex class that 

might presumably be forced into substandard habitat (juvenile males in needleleaf forest). However, 

this pattern only held during winter, when woodcock are generally more flexible with their habitat 

selection, and did not carry through the rest of the year. The niche divergence hypothesis also found 

little support in our data, with no clear differences in male and female habitat use throughout the year 

at the scales we examined. This may be due in part to the similar morphology of males and females; 

males are slightly smaller (92% of female mass) and have shorter bills than females (89% of female 

bill length; Keppie and Redmond 1988), but otherwise there are few morphological differences that 

might cause niches to differ by sex. 

 Although woodcock maintain similar habitat relationships throughout the year, these 

relationships are often scale-specific. The scale at which woodcock select habitat varies seasonally, 

with woodcock primarily selecting habitat at smaller scales (50–100m) during migration and larger 

scales (200–1000m) throughout the rest of the year. This has similarities to the selection behavior of 

Wood Thrush (Hylocichla mustelina), which select habitat at larger scales only during the breeding 

season (Stanley et al. 2021). The reasons for this difference in scale of selection among seasons may 
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come down largely to the mechanisms used to select stopover, breeding, and wintering habitat. 

Selection of stopover habitat is a function of a bird’s ability to detect habitat after a migratory flight, 

which, in the case of a nocturnal migrant such as a woodcock, may also occur during a portion of the 

day in which light is restricted (Chernetsov 2006). Selection of a breeding or wintering site, however, 

occurs over a much longer period, during which a bird might examine several potential sites before 

settling into a home range. Having more time to explore an area may result in birds considering 

habitat characteristics at larger spatial scales during their selection of breeding or wintering home 

ranges. In comparison to season, there was little variation in the scale of habitat selection by age-sex 

class, matching observations of minimal sex-based scale variation in other taxa during reproductive 

periods (Oehlers et al. 2011). While females have different reproductive needs than males during 

breeding, scale of selection seems to be unimportant for selecting habitat that meets those needs. 

 Unlike habitat selection coefficients, we found that the extent of individual variation in habitat 

selection generally did not vary by covariate, season, age-sex class, and region. This lack of 

structured individual variation in habitat selection matches the lack of structure in woodcock 

migratory strategies, for which individual variation was not well explained by age-sex class or region 

(Clements et al. 2024). Other taxa have demonstrated more of a tendency for individual variation to 

shift based on differing foraging strategies in different sexes or seasons (Baert et al. 2021). One 

reason for the lack of patterns in individual variation for this species might be its specialist ecological 

role, particularly regarding diet. Individual variation in other species have been driven largely by 

foraging preferences (Newsome et al. 2015, Baert et al. 2021), while woodcock are restricted to a diet 

of primarily earthworms in a limited number of habitat types (Miller and Causey 1985). This might 

cause most variation in habitat selection for this species to emerge at a population rather than an 

individual level, due to differing resource requirements or habitat availability between seasons or 

regions. 



82  

 Despite woodcocks’ atypical role as an early successional habitat and earthworm specialist 

with an itinerant breeding system (McAuley et al. 2020, Slezak et al. 2024a), we found that several 

patterns observed in other forest-dwelling birds also hold true for this species. Like the Wood Thrush, 

woodcock seem to select at smaller scales during the migratory season than the breeding season and 

hold stronger relationships with habitat covariates during the breeding season (Stanley et al. 2021). 

Woodcock also exhibit changes in their habitat selection throughout the year, in response to differing 

seasons and regions. We believe that this shift is due in part to a functional response to habitat 

availability, a pattern which likely holds true for other migratory birds. Further research, focusing on 

the role of ecological differences between these cover types versus changes in availability between 

regions, may allow us to better understand the extent to which functional responses drive shifts in 

habitat selection throughout the full annual cycle. 
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4 CHAPTER 4: LOW MIGRATORY FLIGHT ALTITUDES EXPLAIN INCREASED 

COLLISION RISK FOR AMERICAN WOODCOCK 

Understanding bird migration at low altitudes is critical to evaluating risk of collision with obstacles; 

however, quantifying flight at low altitudes is often complicated by difficulty measuring low altitude 

flight using weather radar, and the tendency of some species to fly at lower altitudes than others. 

Studies using transmitters and dataloggers can quantify use of low altitudes by nocturnal migrants, 

allowing species-level inference into potential collision risk based on use of risky altitudes. The 

American Woodcock (Scolopax minor) has long been considered a low altitude migrant due to its 

frequent collisions with buildings, and mortality during migration may be contributing to population 

declines. We investigated migratory flight altitudes using satellite transmitters deployed on woodcock 

in 2020–2024 and examined how flight altitudes compare to the heights of common airspace 

obstacles. Transmitters recorded nocturnal GPS locations with altitude readings at 1200–0100 hours 

Eastern Time during fall and spring migrations. We implemented a model using Bayesian Markov 

Chain Monte Carlo to identify whether locations were recorded on the ground or during flight and 

describe the distribution of flight altitudes. We found that woodcock fly at mean altitudes of 364m 

(95% credible interval: 300–432m), flying higher during spring (428m, 95% CRI: 326–539m) than 

fall (312m, 95% CRI: 239–398m). Mean flight altitudes were slightly higher for adults (400m, 95% 

CRI: 301–516m) than juveniles (344m, 95% CRI: 270–430m). Woodcock flight altitudes were 

frequently lower than could be observed using weather radar (33% of observations), and 47% of 

observations fell within the altitude range of at least one airspace obstacle. Our results suggest that 

woodcock fly at altitudes lower than reported for most nocturnal avian migrants, which likely 

contributes to their vulnerability to obstacle collisions. Further study on low altitude flights, 

especially among species known for disproportionate collisions with obstacles, may allow us to better 
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understand the circumstances that result in obstacle collisions and can inform mitigation strategies to 

reduce bird mortality. 

4.1 Introduction 

Avian migratory flights can be studied using a wide range of techniques, including GPS and satellite 

telemetry, altimeters, imaging, and radar (Thaxter et al. 2016). These tools can be used to describe the 

altitudinal distributions of nocturnal avian migrants and examine how those altitudes shift in response 

to wind, weather, and artificial light during migration (Bauer et al. 2019). Research has focused on 

how these factors influence the risk of bird collision with obstacles (Lao et al. 2020), although there 

are still knowledge gaps regarding low altitude flights which put birds within range of airspace 

obstacles (<200m above ground level, hereinafter AGL). Obstacles present at these altitudes include 

buildings (365–988 million bird collisions per year, Loss et al. 2014), wind turbines (234 thousand 

bird collisions per year, Loss et al. 2013), and communication towers (4–5 million bird collisions per 

year, Gehring et al. 2011). Flights at obstacle height can be difficult to study due to blind spots in 

weather radar at low altitudes (Rogers et al. 2020), although some radar studies have had success in 

quantifying their prevalence. Cohen et al. (2022) estimated that 35% of birds migrating along the 

Great Lakes shorelines passed through the rotor sweep of a wind turbine at some point during their 

migratory flight, and White et al. (2020) found that migrating bird densities remained highest below 

400m, even during peak migratory periods. Despite the utility of these studies, radar is generally 

limited to making inferences about overall patterns in bird migration and cannot provide insights into 

susceptibility to obstacle collisions at a species level. Species level insight is particularly important as 

not all birds are equally susceptible to obstacle collisions; Nichols et al. (2018) has identified 13 

species and 7 genera as “supercolliders”, or birds which are found more often after obstacle collisions 

than expected given their population size. Gathering species-level data regarding use of low altitudes, 
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at which building collisions occur, is therefore important for understanding and mitigating these 

collisions. 

 Gaining species-level insight into bird flight altitudes requires the use of bird-borne telemetry 

equipment, usually either altimeters or satellite GPS transmitters (Thaxter et al. 2016). Transmitters 

come with their own set of drawbacks; they are frequently expensive to deploy, collect far less data 

than other techniques, and are usually limited to birds above a specific size. However, telemetry 

equipment can be used to make inferences about species-specific flight altitudes, including both high 

and low altitudes, and in the case of GPS transmitters, can often do so with a very high level of 

precision. Several studies have described low altitude flights using GPS transmitters, including 

Bowlin et al. (2015), which found that of 13 tracked Swainson’s Thrush (Catharus ustulatus) 

migratory flights, one bird spent over an hour flying at altitudes <100m before rising to altitudes of 

300–500m. A second thrush spent the entirety of its ~2 hour migratory flight at an altitude of ~40 m. 

Galtbalt et al. (2021) found that Whimbrel (Numenius phaeopus) and Far Eastern Curlew (Numenius 

madagascariensis) have overwater median flight altitudes of 132m and 156m above sea level, 

respectively, although those altitudes increase by 382m and 586m when flying over land. Further 

transmitter studies focusing specifically on birds with high susceptibility of collision to airspace 

obstacles may allow us to better understand the prevalence of low altitude flights among these 

species, and how those flights influence collision risk. 

 The American Woodcock (Scolopax minor, hereinafter woodcock) has long been thought to 

migrate at low altitudes. Even before tracking data were available, Mendall and Aldous (1943) 

estimated that woodcock migrate at altitudes 12–15m based on the high rate of woodcock collisions 

with power, telephone, and telegraph lines. Woodcock are among the most frequently found species 

due to building collisions in major US cities such as Minneapolis (Loss et al. 2019) and Chicago (Van 

Doren et al. 2021), and mass building collision events occurred when woodcock were caught in 
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snowstorms during their early spring migration (Loss et al. 2020). Woodcock morphology is believed 

to play a role in their susceptibility to building collisions; the species is comparatively rotund with 

shorter wings than many other nocturnal migrants, which may make woodcock less maneuverable 

during migratory flight (Loss et al. 2020). The comparative positioning of woodcock eyes further 

back on the head than most other birds provides greater peripheral vision but also substantially 

reduces their binocular vision, which may impede their ability to avoid airspace obstacles (Cobb 

1959, Martin 1994). Woodcock have declined at a rate of 0.8% per year since surveys began in the 

1960s, and migratory mortality has been identified as a potential causal factor (Cooper and Rau 2012, 

Loss et al. 2020). No studies to date have quantified woodcock flight altitudes, or examined how 

those altitudes might impact their vulnerability to collision with airspace obstacles. 

 Here we investigate the propensity for the American Woodcock to fly at low altitudes during 

migratory flights and examine how flight altitudes compare to the altitudinal distributions of common 

airspace obstacles. We also quantify the proportion of woodcock flight locations which fall below a 

threshold detectable by weather radar to provide some context for comparing our estimates to other 

studies. We hypothesized that woodcock flight altitudes would fall below mean estimates for 

nocturnal migrants (418–459m AGL; Horton et al. 2016) and would frequently fall within altitudinal 

ranges corresponding with obstacles such as buildings, air turbines, and communication towers, based 

on high rates of collisions for this species (Mendall and Aldous 1943, Loss et al. 2020). We also 

hypothesized that woodcock flight altitudes will be lower in fall than spring, in accordance with 

general trends in nocturnal migrants (Horton et al. 2016), and that flight altitudes will be similar 

among age and sex classes due to minimal differences in morphological characteristics among these 

classes (McAuley et al. 2020, Agostini et al. 2023). Our analysis sheds light on the vulnerability of 

woodcock and other nocturnal migrants to airspace collisions during their migratory flights, and the 

necessity for further study of low altitude movements of birds in general. 
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4.2 Methods 

4.2.1 Data collection and preprocessing 

We collected woodcock locations with altitude readings from 2020–2024 using GPS transmitters as a 

part of a larger collaborative effort by the Eastern Woodcock Migration Research Cooperative 

(Blomberg et al. 2023, Clements et al. 2024, Fish et al. 2024). We captured woodcock across the 

eastern portion of their range using spotlighting and mist nets (McAuley et al. 1993) and attached 4–7 

g PinPoint transmitters with altimeters (Lotek Wireless Inc., Newmarket, Ontario, CA) using a rump-

mounted leg loop harness (Fish et al. 2024). We aged and sexed birds upon capture, where juveniles 

were birds undertaking their first fall and spring migrations, after which they were considered adults. 

All capture and handling was conducted in accordance with protocols approved by the University of 

Maine Institutional Animal Care and Use Committee (Protocols A2017-05-02 and A2020-07-01) as 

well as permits from the USGS Bird Banding Laboratory and Canadian Bird Banding Office. 

 We programmed transmitters to collect locations every 1-3 days during migration, with 

locations alternating between diurnal (1300–1500 hours Eastern Time) and nocturnal (0000–0100 

hours) locations. We subset these readings to include only locations in which birds had a known 

migratory or non-migratory state (Chp. 2). We used ArcGIS Pro 3.2.1 (ESRI 2024) to calculate the 

difference between the recorded altitude and orthometric elevation for each location (ESRI 2023b), 

providing a measurement of height above ground level for each point. To ensure computational 

tractability, we divided all observed altitudes by the maximum altitude in the dataset (2183m), 

allowing estimated flight altitudes to scale between 0 and 1. As woodcock are nocturnal migrants, we 

assumed all diurnal and non-migratory points were known ground locations, while the flight status of 

nocturnal migratory points was unknown. 
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4.2.2 Modeling altitude distributions 

Our model of woodcock flight altitudes included both potential flight locations and known ground 

locations, with each class of data informing a different aspect of the model. Known ground locations 

were assumed to always have a true altitude of 0m, making their recorded altitudes 𝐴𝑟 solely 

attributable to measurement error 𝐸 (𝐴𝑟 = 𝐸; importance of accommodating for measurement error is 

reviewed in Poessel et al. 2018, Péron et al. 2020). As such, we used known ground locations to 

estimate the error terms of the model. Potential flight locations had either a true altitude of 0m, in 

which case 𝐴𝑟 = 𝐸, or a flight altitude 𝐴𝑓, in which case 𝐴𝑟 = 𝐴𝑓 + 𝐸. Thus, potential flight locations 

could be used to estimate a latent flight state which we represented as binomial variable 𝐼, with 𝐼=0 

indicating a ground location and 𝐼=1 indicating a flight location. We derived 𝐴𝑓 from locations where 

𝐼=1, 

Equation 4.1 

𝐴𝑟 =  𝐼 ∗ 𝐴𝑓 +  𝐸 

𝐸 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑖𝑎𝑠, 𝜎𝑒𝑟𝑟𝑜𝑟) 

𝐴𝑓 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

with 𝐼 fixed to 0 for all known ground locations and as an estimable parameter for all potential flight 

locations. When 𝐼 was not known, we provided an informed prior of p = 0.33, which we based on 

pre-existing knowledge of the ratio of stopovers to migratory flights during a typical woodcock 

migration (Fish et al. 2024). Measurement bias in the data, 𝜇𝑏𝑖𝑎𝑠, was given an uninformative normal 

prior with mean 0 and standard deviation 1, while the standard deviation of the measurement error, 

𝜎𝑒𝑟𝑟𝑜𝑟, was given a half-normal prior with standard deviation 1. We modelled the distribution of 𝐴𝑓 

using a gamma distribution with shape parameter 𝛼 and rate parameter 𝛽. We gave 𝛼 and 𝛽 semi-

informative priors to restrict their possible values to those that might sensibly describe a distribution 
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scaled between 0 and 1 (McElreath 2018). After simulating possible distributions, we chose to give 𝛼 

a half-normal prior with standard derivation 5 and 𝛽 a half-normal prior with standard derivation 10. 

 Season and age models both received a similar formulation to the base model, with the only 

difference being the use of group-specific (g) 𝛼 and 𝛽 parameters 

Equation 4.2 

𝐴𝑓,𝑔 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑔, 𝛽𝑔) 

where the 𝛼𝑔 and 𝛽𝑔 parameters were dependent on the season or age class associated with any given 

altitude observation. This model structure allowed the distribution of flight altitudes to be estimated 

for each season and age class separately, but with shared inference of error terms 𝜇𝑏𝑖𝑎𝑠 and 𝜎𝑒𝑟𝑟𝑜𝑟. 

 We implemented these models using Bayesian Markov Chain Monte Carlo in program JAGS 

(Plummer 2003) running 4 chains at 200,000 iterations with 10,000 iterations burn-in and no sample 

thinning. We checked all models for convergence using trace plots and ensured that R-hat values 

were <1.1. A model with sex as the grouping variable did not converge, so we did not consider its 

results further. We ran models using the transformed height above ground level estimates for 𝐴𝑟, and 

back-transformed all parameter estimates into meters AGL for evaluation. We derived the posteriors 

of parameters describing flight altitude distributions by simulating a gamma distribution for each 

posterior value of 𝛼 and 𝛽, and sampling the mean, median, and standard deviation of each simulated 

distribution. We estimated the number of flight locations from the base, season, and age models by 

summing estimated 𝐼 values. We summarized posteriors for all parameters using median values and 

highest density credible intervals following the guidelines outlined in Makowski et al. (2019). We 

also calculate the probability of superiority, or the likelihood of one group having a higher parameter 

value than another group, for age and sex models following Ruscio (2008). 
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4.2.3 Comparison of flight altitudes to other metrics 

We evaluated how often woodcock flight altitudes occurred in the altitude range typically detected by 

ground-based radar and how they coincided with height intervals associated with common airspace 

obstacles that pose collision risk. We compared woodcock flight altitudes to the minimum altitude 

(120m) detected by Horton et al. (2016) using the Next Generation Weather Radar (NEXRAD) 

system, a weather radar system in the United States frequently used to study bird migration (DeMott 

et al. 2022, Horton et al. 2023). We quantified the proportion of woodcock flight locations 

(represented by the posterior of 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)) which fell below a 120m threshold, which we used to 

represent the proportion of locations would not be detectable by weather radar. As low-rise buildings 

(defined as residential buildings 4–11 stories and non-residential buildings ≤11 stories) result in the 

majority of window collision mortalities in the United States (Loss et al. 2014), we also quantified the 

proportion of locations at an altitude below that of an 11-story low-rise building (47m). We also 

estimated the proportion of woodcock flight locations which fell within the rotor sweep of the 

average land-based wind turbine installed in 2022 (32–164m; Wiser et al. 2023). Finally, we 

measured the proportion of woodcock flight locations which fell below the height of a 305m 

communication tower, as these towers are responsible for 5–70x as many collisions as shorter towers 

(Gehring et al. 2011). 

4.3 Results 

We collected 12,558 GPS locations with altitude recordings, of which 428 could potentially be flight 

locations based on time of day and migratory classification. The base model predicted that 144 of 

these locations were most likely recorded when the bird was in flight (95% CRI: 131–161). The 

season model identified 78 flight locations in the fall (95% CRI: 67–90) and 65 in the spring (95% 

CRI: 58–74), while the age model identified 58 flight locations among adults (95% CRI: 51–67) and 
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80 locations among juveniles (95% CRI: 71–93). Woodcock estimated median flight altitude was 

262m, and mean flight altitude was 363m (Table 4.1). Woodcock flew at mean altitudes of 310m in 

fall and 427m in spring, with 96% probability that mean flight altitudes are higher in fall than spring 

(Fig. 4.1). Adult woodcock flew at mean altitudes of 397m while juveniles flew at altitudes of 343m, 

with 79% probability that mean flight altitudes are higher for adults than juveniles (Fig. 4.2).  

 Over half of woodcock flight locations were at altitudes <305m, posing potential risks for 

collisions with low-rise buildings, wind turbines, and communications towers (Table 4.2, Fig. 4.3). 

Woodcock were more likely to fly within range of obstacles in fall, with 5% more locations occurring 

at low-rise building altitude, 8% more at wind turbine altitude, and 14% more at communication 

tower altitude. 33% of woodcock locations were below the minimum flight altitude reported in 

Horton et al. (2016) and likely would not have been detectable using NEXRAD weather radar. 
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Table 4.1. Characteristics of American Woodcock (Scolopax minor) altitudes above ground level 

during migratory flights, measured using a base model (bold) as well as season and age models. 

Estimates indicate the median value of the posterior distribution, while credible intervals reflect 

highest density intervals. 

Metric Estimate 50% Credible 

Interval 

95% Credible 

Interval 

Median Flight 

Altitude 

262m 240–286m 194–331m 

    Fall 224m 193–249m 145–308m 

    Spring 320m 283–356m 215–426m 

    Adult 294m 256–334m 181–403m 

    Juvenile 260m 229–287m 179–342m 

Mean Flight Altitude 363m 339–385m 299–430m 

    Fall 310m 279–334m 235–393m 

    Spring 427m 392–463m 324–536m 

    Adult 397m 355–431m 295–509m 

    Juvenile 343m 313–367m 266–425m 
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Table 4.2. Proportion of American Woodcock (Scolopax minor) migratory flight altitudes within 

height intervals related to weather radar and airspace obstacles. Metrics are measured using a base 

model (bold) as well as season and age models. Estimates indicate the median value of the posterior 

distribution, while credible intervals reflect highest density intervals. 

Metric Estimate 50% Credible 

Interval 

95% Credible 

Interval 

Below NEXRAD 

detection altitude 

(120m)1 

32% 29–36% 22–43% 

    Fall 37% 32–42% 23–51% 

    Spring 26% 21–30% 13–40% 

    Adult 28% 22–33% 14–45% 

    Juvenile 31% 26–36% 18–45% 

Below height of low-

rise buildings (47m)2 

10% 7–12% 4–18% 

    Fall 12% 7–15% 3–23% 

    Spring 7% 3–8% 1–16% 

    Adult 8% 4–10% 1–20% 

    Juvenile 8% 4–10% 2–18% 

Within sweep of land-

based wind turbines 

(32–164m)3 

27% 26–29% 22–32% 

    Fall 31% 29–33% 23–37% 

    Spring 23% 20–26% 15–30% 

    Adult 25% 23–28% 16–32% 

    Juvenile 28% 26–31% 19–35% 

Below height of large 

communication 

towers (305m)4 

56% 53–59% 47–65% 

    Fall 62% 58–66% 50–73% 

    Spring 48% 44–53% 35–62% 

    Adult 51% 46–56% 38–66% 

    Juvenile 57% 53–61% 45–68% 
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Table 4.2 Continued. 

1 Minimum NEXRAD detection height is based on the lowest altitude detected by Horton et al. 

(2016). 

2 Height of low-rise buildings is determined based on that of an 11-story building, based on Loss et 

al. (2014). 

3 Sweep of wind turbines is based on the average land-based turbine constructed in 2022 (Wiser et al. 

2023). 

4 Height of large communication towers based on Gehring et al. (2011). 
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Figure 4.1. Means and standard deviations of American Woodcock (Scolopax minor) flight altitudes 

above ground level during fall and spring migration. Density plots represent posterior distributions of 

parameters, while point intervals represent the medians (points), 50% highest density credible 

intervals (thick lines), and 95% highest density credible intervals (thin lines) of the posteriors. 
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Figure 4.2. Means and standard deviations of American Woodcock (Scolopax minor) flight altitudes 

above ground level for adult and juvenile individuals. Density plots represent posterior distributions 

of parameters, while point intervals represent the medians (points), 50% highest density credible 

intervals (thick lines), and 95% highest density credible intervals (thin lines) of the posteriors. 
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Figure 4.3. Distribution of woodcock flight altitudes above ground level compared to the heights of 

low-rise buildings (red; 47m), land-based wind turbines (orange; 32–164m), and large 

communications towers (yellow; 244m). The dark line represents the median flight altitude 

distribution calculated using the base model, while ribbons represent 50%, 80%, and 95% highest 

density credible intervals for the distribution. 
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4.4 Discussion 

We found that mean woodcock flight altitudes fell below those typical of most migrating birds during 

fall (woodcock: 310m; all birds: 418–491m) and spring (woodcock: 427m; all birds: 438–559m; 

Horton et al. 2016). This result may be due, in part, to the greater representation of lower altitude 

flight locations in our data, as 33% of woodcock flight locations fell below the minimum altitude 

normally observed via weather radar (120m; Horton et al. 2016). However, given preexisting 

information about woodcock’s high susceptibility to collisions with anthropogenic structures 

(Mendall and Aldous 1943, Loss et al. 2020) we believe that some portion of this effect is due to a 

biological difference between the flight altitudes of woodcock and other nocturnal migrants. 

Woodcock use of lower altitudes than other birds may be related to morphology, as they have a 

greater wing loading than 79% of species sampled by Poole (1938), and their wing loading appears to 

be considerably higher than other birds of comparable size. Birds with a higher wing loading than 

woodcock were generally non-migratory gamebirds or ducks, and the most similar species in terms of 

wing loading and mass is the non-migratory Rock Pigeon (Columba livia). As high wing loading is 

speculated to be associated with migratory inefficiency (Bowlin et al. 2015), woodcock may be 

inefficient fliers and choose lower altitudes as a result (Galtbalt et al. 2021). 

 As anticipated, we found little support for an age difference in woodcock flight altitudes but 

considerable support for a seasonal difference, with woodcock flight altitudes being higher during 

spring (mean: 427m, 95% CRI: 324–536m) than fall (mean: 310m, 95% CRI: 235–393m). This 

matches seasonal variation in flight altitudes observed via radar (Horton et al. 2016), presumably due 

to migrants utilizing southerly jet streams present at higher altitudes in the spring (La Sorte et al. 

2014). As a result of these seasonal differences, woodcock are more likely to fly at altitudes like to 

intersect airspace obstacles during fall, with 5% more locations occurring at low-rise building 

altitude, 8% more at wind turbine altitude, and 14% more at communication tower altitude. 
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Woodcock collisions with buildings are generally observed during the spring rather than fall (Loss et 

al. 2019), which is interesting given that flight altitudes are generally higher during spring. This may 

be due to the short migratory durations of woodcock in the fall (Fish et al. 2024) or a mismatch 

between the data collection windows for bird collision studies and the fall migratory periods of 

woodcock (Loss et al. 2020). 

 Despite a mean flight altitude of 364m, we found that more than half of woodcock flight 

altitudes occurred below 305m. The occurrence of so many flight locations within the range of 

anthropogenic obstacles during peak times for migratory flight (12–1am Eastern Time) suggests that 

woodcock are not solely vulnerable to collision with these obstacles during takeoff and landing, but 

throughout their migratory flights. While all three types of structures examined here are responsible 

for substantial migratory bird mortality, collisions with these structures are likely caused by different 

mechanisms. Low-rise buildings, for example, are responsible for more collisions than any other 

structure examined in this study (est. 339 million per annum, Loss et al. 2014) despite having the 

lowest height (47m). The exceptional rate of mortality associated with low rise buildings is likely the 

joint function of their prevalence (est. 15.1 million low rise buildings in the United States, Loss et al. 

2014) and a higher rate of mortality associated with birds undergoing stopovers, which can be lengthy 

and expose birds to mortality risk through the diurnal hours in addition to nocturnal migratory flights 

(Cusa et al. 2015). In comparison, communication towers kill fewer birds (4–5 million per annum) 

and are less prevalent on the landscape (>26 thousand in the United States) but are more likely to 

result in collisions during migratory flights, especially if guy lines are present (Gehring et al. 2011). 

Understanding these differing risk profiles is an important facet of interpreting the relative risk of low 

altitude flights and drawing connections between low altitude flights and increased rates of bird 

collisions. 
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 It is unclear whether woodcock are the only species with such substantial use of low flight 

altitudes. Woodcock appear to fly at altitudes lower than most other nocturnal migrants, but many 

other bird species have disproportionate representation among bird collision victims, including 

White-throated Sparrows (Zonotrichia albicollis), Tennessee Warblers (Leiothlypis peregrina) and 

Mourning Doves (Zenaida macroura, Nichols et al. 2018). These species may benefit from further 

study on whether their increased vulnerability is also due to low migratory flight altitudes or other 

factors. Future work might also focus on individual variability in flight altitudes, which suggests that 

individual migratory strategies (e.g., short migratory flights) might increase the prevalence of low 

altitude flights (Bowlin et al. 2015). Further research on species- and individual-specific variation in 

flight altitudes may allow us to better understand how use of low altitudes impacts bird collision risk 

and devise strategies for its mitigation. 
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6 APPENDICES 

A. APPENDIX A 

Table A.1. Area-under-the-curve (AUC; Fielding and Bell 1997) scores for three different modeling 

techniques evaluated for use in creating species distribution models. Models were evaluated using the 

migratory dataset, with 113 American woodcock (Scolopax minor) GPS locations to delineate use 

and 10,000 locations randomly distributed throughout Pennsylvania, USA to delineate 

pseudoabsence. Predictive variables included all metrics listed for the migratory model in Table 1.2. 

The modeling technique with the greatest AUC during this testing process (random forest) was used 

for all further modeling of the migratory and breeding datasets. 

Modeling Technique AUC 

MaxEnt (Phillips et al. 2006) 0.68 

Random forest (Breiman 2001) 0.70 

Boosted regression trees (Elith et al. 

2008) 

0.63 
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B. APPENDIX B 

B.1 Individual exceptions 

Throughout the study, we encountered 45 of 522 (9%) classified migratory tracks that failed to fit the 

parameters of the full model due to erratic behavior. These exceptions were broadly categorized as 

misclassification errors due to the presence of foray loops (n = 19 misclassification errors), dispersals 

(3), and summer migrations (2), as well as errors caused by continued migration after the end of the 

HMM’s consideration period (14) and transmissions beginning after the start of migration (3). We 

additionally edited the known state classification for 4 birds, two of which were captured on their 

nests late in spring migration, one which was recaptured at a suspected post-migratory site several 

months after its transmitter had prematurely died, and one which continued regular ≥16.1 km 

movements between sections of its wintering home range. We modified the HMM classification 

process for these individuals by removing locations or setting known movement states to ensure that 

these tracks were classified correctly by our HMMs (Table B1). 

The base model required all the same individual exceptions as the full model, in addition to 

several additional fixes to pre-migratory state delineation (n = 11). All eleven exceptions were made 

to individuals captured in New Jersey or Virginia for whom the initial state was erroneously 

estimated to be migratory, despite pre-existing knowledge that the bird was in a pre-migratory state 

(either due to capture at that site prior to the migratory season or migratory data from previous 

seasons). For all 11 exceptions we addressed the issue by setting a known pre-migration state for the 

first location in that individual’s seasonal HMM. 
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Table B.1. Individual exceptions to the full model ruleset made in hidden Markov Model delineation 

to improve seasonal model fits for individual birds. 1 Year in which the issue occurred. 2 Seasonal 

HMM that encountered the issue. 3 Short description of why the edit was necessary. 4 Steps that were 

taken to alleviate the corresponding issue. 

Bird ID Year Season2 Issue3 Edit4 

RI-2020-31 2020 Fall Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Aug. 29th and 

Nov. 21st from 

the HMM 

NY-2018-04 2018 Fall Foray loop 

caused late 

termination of 

migration 

Removed points 

on Nov. 21st–

23rd from the 

HMM 

NJ-2018-03 2018 Fall Foray loop 

caused an 

apparent 

migration 

Removed points 

on Jan. 10th and 

18th from the 

HMM 

PA-2018-01 2018 Fall Foray loop 

caused late 

termination of 

migration 

Removed points 

on Dec. 18th–

20th from the 

HMM 

ME-2018-08 2018 Fall Foray loop 

caused late 

termination of 

migration 

Removed points 

on Dec. 23rd–

25th from the 

HMM 

PA-2019-15 2019 Fall Foray loop 

caused late 

termination of 

migration 

Removed points 

on Dec. 10th–

13th from the 

HMM 

VA-2021-92 2021 Fall Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Sep. 20th–

October 6th from 

the HMM 

RI-2021-46 2021 Fall Foray loop 

caused late 

termination of 

migration 

Removed points 

on Feb. 10th–14th 

from the HMM 
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Table B.1 Continued. 

RI-2021-59 2021 Fall No locations 

prior to the start 

of migration due 

to transmitter 

glitch 

Set a known 

stopover state 

for the first 

location in the 

HMM 

VA-2019-48 2019 Fall Bird settles after 

Feb. 25th 

Set a known 

post-migration 

state for the final 

location in the 

HMM 

RI-2021-58 2021 Fall Bird settles after 

Feb. 25th 

Set a known 

post-migration 

state for the final 

location in the 

HMM 

RI-2019-29 2019 Fall Series of 

dispersal 

movements 

caused an 

apparent 

migration 

Removed bird 

from HMM 

classification 

SC-2020-13 2020 Fall Summer 

migration 

erroneously 

classified as a 

fall migration 

Removed from 

HMM 

classification 

GA-2021-18 2021 Fall Foray loop 

caused an 

apparent 

migration 

Removed from 

HMM 

classification 

NY-2018-06 2018 Fall Foray loops 

caused late 

termination of 

migration 

Removed points 

on Nov. 17th–

18th and Dec. 

25th–27th from 

the HMM 

PA-2021-37 2021 Fall Foray loops 

caused late 

termination of 

migration 

Removed points 

on Dec. 8th from 

the HMM 

NY-2018-03 2018 Fall Foray loops 

caused early 

initiation of 

migration 

Removed points 

on Oct. 6th–15th 

from the model 
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Table B.1 Continued. 

PA-2021-34 2021 Fall Regular 

movements 

≥16.1 km 

between two 

sections of the 

wintering home 

range caused late 

termination of 

migration. 

Set a known 

post-migratory 

state on Nov. 7th. 

VA-2020-52 2020 Spring (male) Dispersal 

movement 

caused late 

termination of 

migration 

Removed points 

on Jun. 18th–28th 

from the HMM 

NJ-2018-03 2019 Spring (male) Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Jan. 10th–17th 

from the HMM 

RI-2019-21 2020 Spring (male) Late termination 

of fall migration, 

never initiated 

spring migration 

Removed from 

HMM 

classification 

RI-2019-29 2020 Spring (male) Dispersal 

movement 

caused an 

apparent 

migration 

Removed from 

HMM 

classification 

VA-2018-03 2018 Spring (male) Foray loop 

caused an 

apparent 

migration 

Removed from 

HMM 

classification 

FL-2021-01 2021 Spring (male) Foray loop 

caused an 

apparent 

migration 

Removed from 

HMM 

classification 

NJ-2018-08 2019 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Jan. 12th 

from the HMM 

NJ-2018-15 2019 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Jan. 14th 

from the HMM 
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Table B.1 Continued. 

NJ-2018-13 2019 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Feb. 5th 

from the HMM 

RI-2020-31 2021 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Mar. 2nd 

from the HMM 

ME-2018-13 2019 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Jan. 8th 

from the HMM 

RI-2021-46 2022 Spring (female) Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Feb. 10th–14th 

from the HMM 

NY-2018-07 2019 Spring (female) Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Dec. 2nd–

Dec. 9th from the 

HMM 

RI-2020-44 2021 Spring (female) Foray loop 

caused early 

initiation of 

migration 

Removed points 

on Dec. 4th–Dec. 

18th from the 

HMM 

NJ-2018-13 2019 Spring (female) Locations began 

later in the 

season than other 

New Jersey 

transmitters, 

creating issues 

with initial state 

estimation 

Excluded from 

initial state 

estimation 

NJ-2018-15 2019 Spring (female) Locations began 

later in the 

season than other 

New Jersey 

transmitters, 

creating issues 

with initial state 

estimation 

Excluded from 

initial state 

estimation 

NY-2022-40 2022 Spring (female) Bird captured on 

the nest in late 

spring that 

continued 

migration after 

nest failure 

Set a known 

stopover state 

for the first 

location in the 

HMM 
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Table B.1 Continued. 

RI-2018-11 2019 Spring (female) Bird recaptured 

at the terminal 

site the next fall, 

so it is known to 

have settled 

Set a known 

post-migration 

state for the final 

location in the 

HMM 

NS-2019-02 2020 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Jan. 28th 

from the HMM 

RI-2020-42 2021 Spring (female) Late termination 

of fall migration 

Removed points 

prior to Jan. 23rd 

from the HMM 

RI-2021-47 2022 Spring (female) Fall migration 

does not 

terminate 

Removed from 

spring HMM 

classification 

RI-2021-52 2022 Spring (female) Fall migration 

does not 

terminate 

Removed from 

spring HMM 

classification 

SC-2019-03 2019 Spring (female) Late termination 

of spring 

migration 

Used Jul. 30th, 

instead of Jun. 

30th, as the last 

date of 

consideration for 

the HMM 

VA-2019-36 2020 Spring (female) Late termination 

of spring 

migration 

Used Jul. 30th, 

instead of Jun. 

30th, as the last 

date of 

consideration for 

the HMM 

VA-2020-66 2021 Spring (female) Foray loop 

caused early 

initiation of 

migration 

Removed points 

on January 24th 

- 29th from the 

HMM 

NY-2022-42 2022 Spring (female) Bird captured on 

the nest in late 

spring that 

continued 

migration after 

nest failure 

Set a known 

stopover state 

for the first 

location in the 

HMM 
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B.2 HMM ruleset bug fixes 

Each seasonal HMM was set to follow certain rules regarding possible state designations based on 

step length. For example, the only state in any HMM that was allowed to have step lengths ≥16.1 km 

was migration. The pre-migration state could only occur before the first ≥16.1 km step was observed, 

and the post-migration state could only occur after the last ≥16.1 km step was observed. These rules 

were enforced within the HMMs using 2 mechanisms. The first was a fixed, large negative value for 

certain state transition coefficients, which effectively acted to prohibit movements between states that 

would not correspond to the diagram shown in Fig. 1 in the main text (e.g. a bird could move from 

pre-migration into migration, but not from migration into pre-migration). The second was a fixed 

probability of ~0 that birds in any state other than migration would have a step length ≥16.1 km, and 

a fixed probability of ~1 that birds in the migration state would have a step length ≥16.1 km. These 

fixed parameters effectively prohibited most state assignments that fell outside of our ruleset, but in 2 

circumstances the HMM failed to enforce these rules. The first occurred when birds that stayed in the 

pre-migration state later into the year than expected by the HMM, which would sometimes result in 

the HMM classifying later pre-migratory movements as stopover locations, despite the lack of a 

≥16.1 km step between the interpolated pre-migration and stopover states. The second occurred when 

birds entered the post-migration state earlier in the year than expected by the HMM, which 

occasionally resulted in the HMM classifying earlier post-migration locations as stopover locations 

despite the lack of an intervening ≥16.1 km movement. These two issues were both fixed after HMM 

classification using code to identify transitions between pre-migration and stopover, as well as 

stopover and post-migration, without an intervening ≥16.1 km step, and manually assigning pre-

migration or post-migration states to the erroneously classified locations. This resulted in 

reclassifications for 35 seasonal migratory tracks, including 8 changes to pre-migratory classifications 

and 27 changes to post-migratory classifications. 
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B.3 Modeling bird mortality 

The Pinpoint GPS transmitters used during this study usually stopped transmitting upon bird 

mortality due to attenuation of the signal when the antenna touched the ground. However, there were 

some circumstances in which transmitters continued to transmit when antennae remained upright 

after the bird’s death. To recognize and filter out these occurrences, we designed a two-stage process 

for recognizing and removing the locations of deceased birds from our dataset. The first step was an 

automated process, which used a hidden Markov Model (HMM) to recognize locations from birds 

that had ceased making normal movements. We trained this HMM using a subset of 413 training 

locations gathered during transmitter testing, when 10 transmitters were left on the ground to gather 1 

location per minute for ~40 minutes. During this test, we placed 2 transmitters under negligible 

vegetation cover (short grass, height: ~10 cm), 3 transmitters under low cover (tall grass, height: 

~100 cm), 2 transmitters under medium cover (early successional aspen stand, canopy height: ~8 m), 

and 3 transmitters under high cover (mature deciduous forest, canopy height: ~15 m). We collected 

these data to provide a balanced sample size from each cover type and demonstrate the likely patterns 

of locations produced by stationary transmitters on deceased birds under a variety of vegetative cover 

circumstances. 
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Figure B.1. Movement state transition diagram for the hidden Markov Model used to identify 

potential mortalities among tagged American Woodcock (Scolopax minor). Woodcock were allowed 

to begin their track in any state, and transition freely between either of the two living states 

(migratory and stationary). Birds that entered the deceased state, however, were forced to remain in 

this state for the remainder of their track. 

 

 The HMM trained on these data used step length, turn angle, and mean distance to the nearest 

15 points in a 3-state model to determine whether a bird was likely deceased when locations were 

recorded. The mean distance to the nearest 15 points metric was decided based on an exploratory 

analysis of the training dataset, where we determined that the mean distance to the nearest 15 points 

metric was more consistent between individuals than alternative metrics (mean distance to the nearest 

5 and 10 points). The HMM was trained to identify 3 states in the data: migratory, stationary, and 

deceased. The migratory and stationary states were both living states, and birds were allowed to 

transition between them freely. Deceased was a terminal state, which birds could enter from either of 

the two living states (Fig. A1). Among 512 birds in our dataset, the HMM identified 137 individuals 

that had potentially experienced mortality and continued transmitting. We confirmed these mortalities 

during a second step, in which we manually checked and adjusted the dates for all potential 
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mortalities identified by the HMM. We only confirmed a mortality during the second step if the 

following 2 criteria were met: 

The bird had ≥15 mortality locations 

At least half of mortality points fell within a threshold distance of the centroid, with the threshold 

distance varying based on the dominant land cover type as shown in Table B.2. 

 

Table B.2. 50% threshold values for 4 land cover types, demonstrating the distance (m) from the 

centroid within which at least half of GPS points fall when a GPS transmitter is taking locations 

while stationary. The 50% threshold values are represented by the variable X in the criterion “At least 

half of mortality points fell within X m of the centroid, with X varying based on the dominant land 

cover type”. 

Dominant land cover 50% threshold distance (m) 

Young forest 4.93 

Mature forest 10.85 

Short grass 5.33 

Tall grass 3.93 

 

 The threshold distance ensured that we had enough locations to determine that the bird was 

indeed stationary, and the distance to centroid threshold allowed us to ensure that the bird's 

movements occurred within a distance consistent with the GPS error associated with the locations’ 

land cover type. We required that 50% of all mortality points fell within the distance to centroid 

threshold, with the 50% value chosen based on consistency between individuals in the training 

dataset. Distance to centroid thresholds were set based on the mean values observed among all 



126  

individuals in that cover type in the training dataset. Dominant land cover type was assessed via 

publicly available satellite imagery (OpenStreetMap contributors 2023) for both the test and training 

datasets. 

 We manually classified a mortality event when both criteria were met. In certain 

circumstances where mortalities met one threshold but came just shy on the other, we made the final 

determination regarding whether a mortality had indeed occurred. Of 137 potential mortalities, we 

determined 20 to be true mortality events. The code used in this delineation is publicly available at 

github.com/EWMRC/mortality-detection. 

B.4 Simplified movement state designations for Movebank 

Prior to use in other studies, we simplified our hidden Markov model (HMM) classification states to 

3 classes: stationary, migration (fall), and migration (spring). The stationary class included all pre-

migration and post-migration locations, while the fall and spring migration classes included migration 

and stopover locations. We added 3 additional classification states to represent long-distance 

movements outside of spring and fall migration: migration (summer), foray loop, and dispersal 

(described in section 2.2.4 of this dissertation). This class structure provided a simplified framework 

for delineating woodcock migratory phenology and long-distance movements throughout the full 

annual cycle, which could be applied to habitat use or survival analyses (Fig. B.2). These classes 

were uploaded to Movebank (repository 351564596) to facilitate collaborator access to data. 
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Figure B.2. Movement state transition diagram for each hidden Markov Model (HMM), and 

corresponding classes uploaded to the Movebank repository. 
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