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A local converse theorem is a theorem which states that if two representations χ1, χ2

have equal γ-factors for all twists by representations σ coming from a certain class, then χ1

and χ2 are equivalent in some way. We provide a direct proof of a local converse theorem

in two distinct settings. Previous proofs published in the literature for these settings were

indirect proofs making use of various correspondences between representations of other

groups.

We first prove a Gauss sum local converse theorem for representations of F×p2 twisted by

representations of F×p where equality means that χ1 and χ2 are in the same Frobenius

orbit. Specifically, we prove that if χ1, χ2 are regular representations of F×p2 such that

S(χ1 ⊗ σ ◦NFp2/Fp) = S(χ2 ⊗ σ ◦NFp2/Fp) for all representations σ of F×p , then χ1 = χ2 or

χ1 = χp2. We then apply this theorem to tamely ramified, 2-dimensional representations of

the Weil group WF for a local field F where we show that if ρ1, ρ2 are 2-dimensional,

tamely ramified representations of WF such that for all 1-dimensional representations χ of

WF it is true that γ(ρ1 ⊗ χ, s, ψ) = γ(ρ2 ⊗ χ, s, ψ), then ρ1 ∼= ρ2.
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CHAPTER 1

MAIN STATEMENTS

1.1 Introduction

A local converse theorem is, broadly speaking, a theorem which says that although we

cannot uniquely identify an n-dimensional representation by its γ-factor; we can uniquely

identify an n-dimensional representation, up to an appropriate notion of equivalence, using

the γ-factors of all its twists by representations of dimension at most k for some k < n.

The exact details of a local converse theorem depend on the setting in which the theorem is

stated, but the case when k = bn
2
c came to be known as Jacquet’s conjecture after

[JPSS83]. Here we shall establish an n = 2, k = 1 = bn
2
c local converse theorem for

characters of Fpn ; then we will use that theorem to prove an n = 2, k = 1 local converse

theorem for tamely ramified representation of WF , the Weil group of a local field F .

Both theorems have been proven previously: the Gauss sum version of Jacquet’s

conjecture as a corollary of [Nie14] pushed through the Green correspondence between

representations of GLn(Fq) and characters of F×qn ; the local field version of Jacquet’s

conjecture independently as a corollary of [JL18] and [Cha19], both pushed through the

local Langlands correspondence. Our contribution here is a direct proof of the n = 2 Gauss

sum local converse theorem in the vein of the proof of the n = 4, 5 cases in [NZ21] avoiding

the Green correspondence. The other contribution is a more elementary proof of the n = 2

local fields converse theorem for tamely ramified representations of the Weil group which

appeals directly to the Gauss sum local converse theorem instead of requiring the local

Langlands correspondence. Neither of these proofs appear in the present literature as

stated, though as mentioned, the n = 4, 5 Gauss sum local converse for Fp (not for Fq) was

proven directly in [NZ21] by Nien. We leave open the possibility of generalizing these

proofs for n > 2.
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1.2 Finite Fields

On the finite field Gauss sum side of things, we use Stickelberger’s theorem to prove

that if χ1 and χ2 are characters of F×p2 and the Gauss sums satisfy

S(χ1 ⊗ σ ◦NFp2/Fp) = S(χ2 ⊗ σ ◦NFp2/Fp)

for all σ, a character of F×p , then χ1 = χ2 or χ1 = χp2.

We define the objects of interest in this case in Section 2.1. In Section 2.2 we state and

prove Stickelberger’s theorem, a main tool in our theorem which allows us to reduce from a

statement about characters to a statement about integers. Finally, in Section 2.3, we prove

the n = 2 local converse theorem for Gauss sums.

At this time, we have only proven the n = 2 local converse theorem for the extension

Fpn/Fp. A useful extension would be to use the same or similar methods to prove the n = 2

local converse theorem for the extension Fqn/Fq; this would allow a proof of the n = 2 local

converse theorem for tamely ramified representations of WF that takes advantage of

neither the Green Correspondence nor the local Langlands correspondence. As is, we only

have a fully direct proof of the WF theorem when the residue field of F is Fp. More

generally, extending the k = 1 Gauss sum local converse theorem to n = 3, 4, 5 should be

possible, but may require using the Gross-Koblitz theorem, a far reaching generalization of

Stickelberger’s theorem, as in Nien’s paper [NZ21]. These extensions may allow proving the

k = 1 Weil group local converse theorem for n = 3 and either k = 1 or k = 2 for n = 4, 5.

1.3 Weil Groups

On the Weil Group side of things, our main tools are the stability theorem for

characters of F× and the previously proven local converse theorem for Gauss sums. What

we end up proving is that if ρ1 and ρ2 are 2-dimensional, tamely ramified, semisimple

representations of the Weil group WF of a local field F and the γ-factors satisfy

γ(ρ1 ⊗ χ, s, ψ) = γ(ρ2 ⊗ χ, s, ψ)

2



for all characters χ of WF , then ρ1 ∼= ρ2.

We first have to define what the objects of interest look like for F× which we do in

Section 3.1 and Section 3.2. We then define the Weil group in Section 3.3. Local class field

theory is stated in brief in Section 3.4 which we can use define to the objects of interest for

WF in Section 3.5. Finally, in Section 3.6, we state and prove the n = 2 local converse

theorem for tamely ramified, semisimple representations of the Weil group.

Like for the finite field case, at this time we have only proven the n = 2 local converse

theorem for WF , and only for tamely ramified, semisimple representations of WF . Given a

Gauss sum n = 3 local converse theorem, it should be fairly simple to prove an n = 3 local

converse theorem for WF using the same methods. For n = 2 highly ramified

representations, the methods displayed here fail for irreducible representations of dimension

≥ 2, due to only specifying a representation up to its behaviour on $l for some l > 1, but

not defining it on $ like for tamely ramified representations. It is possible that further

elementary methods could allow a full proof of an n = 2 local converse theorem for highly

ramified representations of WF . Additionally, since γ-factors are equal for representations

with isomorphic semisimplifications, we do not need to consider a local converse theorem

for non-semisimple representations. We have also decided to omit the topic of Weil-Deligne

representations from this thesis for simplicity of exposition as there is not much

significantly different when dealing with them.

3



CHAPTER 2

LOCAL CONVERSE THEOREM FOR GAUSS SUMS

We will use the following notation in this chapter; mostly following the notation choices in

[Lan90].

Fp will be the finite field with p elements.

Fq will be the finite field with q = pn elements for some n ≥ 1.

For any finite field Fq, F×q will be the multiplicative unit group of the field.

ε will be a primitive pth root of unity. For ε ∈ C, we use ε = e2πi/p.

µN will be the group of N th roots of unity.

Tr will be the trace of Fq/Fp.

ξ and λ will be additive characters of Fq, typically ξ = εTr, and F̂q will be the group of

additive characters of Fq.

χ will be a multiplicative character of Fq and F̂×q will be the group of multiplicative

character of F×q .

ω will be the Teichmüller character, a generator of F̂×q .

S(χ, ξ) will be the Gauss sum of χ with respect to ξ with S(χ) used when ξ is

understood.

p will be a prime ideal of the ring of integers of Q(µq−1) lying over 〈p〉.

P will be a prime ideal of the ring of integers of Q(µq−1, µp) lying over p.

2.1 Gauss Sums for Finite Fields

We will be dealing only with complex representations of finite fields. Since Fq is a field,

all representations are 1 dimensional characters. An additive character of Fq is a function

ξ : Fq → C× with ξ(a+ b) = ξ(a)ξ(b). A multiplicative character of F is a function

χ : F×q → C× with χ(ab) = χ(a)χ(b). If we ever need to evaluate a multiplicative character

χ at 0 6∈ F×q then we use χ(0) = 0.
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The two most important characters in this setting are the additive character defined by

the trace and the multiplicative character called the Teichmüller character. The primary

trace we are interested in is the trace for the extension Fq/Fp which is defined in the

following way.

Definition 2.1.1 The trace from Fq/Fp for q = pn is defined by Tr : Fq → Fp

Tr : x 7→
n−1∑
i=0

xp
i

= x+ xp + xp
2

+ · · ·+ xp
n−1

.

We can also define a trace for any extension; specifically, for the extension Fqn/Fq we

have a trace defined by

TrFqn/Fq : x 7→
n−1∑
i=0

xq
i

.

We can unify these definitions of trace in the following way.

Definition 2.1.2 Let E/F be a Galois field extension and let G = Gal(E/F ) be the Galois

group of automorphisms of E fixing F . Then the trace Tr : E → F is defined by

Tr : x 7→
∑
σ∈G

σx.

Then we can define an additive character λ : Fq → µp by λ(x) = εTr(x). It takes a bit more

to define the Teichmüller character.

Consider the field Q(µq−1) and let p be a choice of prime ideal lying over p. Then the

residue field of Q(µq−1) mod p is isomorphic to µq−1 which in turn is isomorphic to F×q .

Because F×q ∼= F̂×q is a cyclic group, there is some generator for it.

Proposition 2.1.3 By the above isomorphisms, there is a generator ω : F×q → µq−1

satisfying

ω(u) ≡ u mod p.

We call such a character of F×q the Teichmüller character.

5



This character generates the character group of F×q ; so for all multiplicative characters χ of

F×q there is some integer k such that χ = ωk. We also further have that ωc generates F̂×q for

all c coprime to q − 1.

When we have two multiplicative character χ1 and χ2, we say that the twist of χ1 by χ2

is χ1⊗χ2. When written in terms of the Teichmüller character, we have ωk1 ⊗ωk2 = ωk1+k2 .

Now we can define Gauss sums for finite fields, which depend upon a choice of an

additive character and a multiplicative one. For finite fields, we will always use the additive

character λ defined above.

Definition 2.1.4 The Gauss sum for a multiplicative character χ is denoted S(χ) or

S(χ, λ) and is defined by

S(χ, λ) =
∑
u∈F×q

χ(u)λ(u).

We will use S(χ) throughout since λ will be fixed as εTr

There are a few useful properties of Gauss sums that can be easily proven.

Proposition 2.1.5 For a nontrivial multiplicative character χ on a finite field Fq, we have

that |S(χ)| = q1/2.

Proposition 2.1.6 For a multiplicative character χ on a finite field Fq with q = pn, we

have that S(χp) = S(χ).

This second proposition is because raising to the pth power only permutes the elements

of the sum. For this reason we collect together the characters {χ, χp, . . . , χpn−1} together

into a set we call the Frobenius orbit. The converse theorem for Gauss sums concerns

separating the multiplicative characters of a finite field Fq into their Frobenius orbits.

However, first we separate out the characters that live in degenerate Frobenius orbits.

These are the non-regular characters of Fq and are characterized by having χ = χp
k for

some k | n− 1, or equivalently, factoring through the norm of a subextension. If we write

χ = ωk, then χ is non-regular when there is some k′ | q−1
p−1 with k′ 6= 1 such that k′ | k. It

6



suffices to check k′ = pm−1
p−1 for m | n and m 6= 1. If a character is not non-regular, then it is

regular. The regular characters are those with Frobenius orbits of size n when q = pn.

We can now state the conjectured converse theorem for Gauss sums of finite fields.

Conjecture 2.1.7 (Nien) Let χ1 and χ2 be two regular multiplicative characters of Fq

with q = pn and n prime. If

S(χ1 ⊗ σ) = S(χ2 ⊗ σ), for all σ ∈ F̂×p

then χ1 = χp
i

2 for some integer i.

For n = 2; this becomes our theorem

Theorem 2.1.8 Let χ1 and χ2 be two regular multiplicative characters of Fp2 . If

S(χ1 ⊗ σ) = S(χ2 ⊗ σ), for all σ ∈ F̂×p

then χ1 = χp2 or χ1 = χ2.

The version of this that we will actually end up proving for n = 2 appears at first to

have weaker conditions, but in fact is equivalent in this case.

Theorem 2.1.9 Let χ1 and χ2 be two regular multiplicative characters of Fp2 . If

〈S(χ1 ⊗ σ)〉 = 〈S(χ2 ⊗ σ)〉, for all σ ∈ F̂×p

then χ1 = χp2 or χ1 = χ2.

The difference here is that we only assume the Gauss sums of the twisted characters

generate the same ideals, not that they are actually equal.

2.2 Stickelberger’s Theorem

Before we set out to prove our converse theorem for finite fields; it is simplest to

reframe the problem as a question about the p-adic expansions of integers. The tool that

7



allows us to do this is Stickelberger’s theorem which we shall introduce and prove in this

section. Working in the field Q(µq−1, µp), Stickelberger’s theorem gives us a factorization of

the ideal generated by S(ω−k) in terms of the the prime ideals over p and the sum of the

p-adic digits of k.

As above; we will consider the case when Fq is a field of size q = pn. We will let p be a

prime ideal in Q(µq−1) lying above p. Then we shall consider another extension Q(µq−1, µp)

with P being a prime ideal lying above p. Additionally; when it is useful for emphasis, we

will let π = ε− 1

Recall that the Teichmüller character generates F̂q, so for any χ ∈ F̂q we have χ = ωk

for some 0 ≤ k ≤ q − 1, or equivalently, χ = ω−k for some 0 ≤ k ≤ q − 1, which will be

more convenient when phrasing Stickelberger’s theorem. For such a k, we can write the

p-adic expansion of k as

k = k0 + k1p+ · · ·+ kn−1p
n−1

with 0 ≤ ki ≤ p− 1. Then we can define the functions s, γ : Z→ Z+ by

s(k) = k0 + k1 + · · ·+ kn−1

γ(k) = k0!k1! · · · kn−1!

for 0 ≤ k < q − 1 and requiring that s and γ are q − 1 periodic for other k.

Our first step towards Stickelberger’s theorem will be the following theorem which tells

how many times one prime appears in the factorization of a Gauss sum.

Theorem 2.2.1 For any integer k, we have the congruence

〈S(ω−k〉)
(ε− 1)s(k)

≡ −1

γ(k)
mod P.

In particular, ordP〈S(ω−k)〉 = s(k).

To get the full factorization of 〈S(ω−k)〉, we need a few more definitions.

For t ∈ R, we will let 0 ≤ 〈t〉 < 1 be the representative of t in R/Z. Then let

G = Gal(Q(µm)/Q) ∼= (Z/mZ)× and let σc ∈ G be defined by σc : ζ 7→ ζc and σc|µp = id;

where ζ ∈ µq−1. Then we make the following definition:

8



Definition 2.2.2 We define the Stickelberger element in the group ring Q[G] as

θ(k, p) =
∑

c∈(Z/mZ)×

〈
kc

q − 1

〉
σ−1c

Then we can get a full factorization of the ideal generated by S(ω−k). Using a ∼ b to

mean that a/b is the unit ideal, we have the following theorem.

Theorem 2.2.3 The factorization of the ideal generated by S(ω−k) is

S(ω−k)OQ(µp,µq−1) ∼ P(p−1)θ(k,p) ∼
(
pOQ(µp,µq−1)

)θ(k,p)
.

2.3 The n = 2 Gauss Sum Local Converse Theorem

Recall that we would like to prove Conjecture 2.1.7 for the case of n = 2. By using the

fact that ∃k such that χ = ωk, we can use Stickelberger’s theorem rewrite the conjecture in

the following way.

Theorem 2.3.1 Suppose that α, β ∈ Z/(p2 − 1)Z with p+ 1 - α, β and

s(α + k(p+ 1)) = s(β + k(p+ 1))

for all 0 ≤ k < p− 1. Then we have that α ≡ β mod p2 − 1 or α ≡ pβ mod p2 − 1.

Proposition 2.3.2 Theorem 2.1.9 and Theorem 2.3.1 are equivalent.

Proof. Suppose the conditions of Theorem 2.1.9 hold. If we write χ1 = ωα and χ2 = ωβ

and use the fact that all the twists can be written as σ = ωk(p+1) for 0 ≤ k < p− 1; then we

are claiming that S(ωα+k(p+1)) = S(ωβ+k(p+1)) for all 0 ≤ k < p− 1. However, by Theorem

2.2.1 if S(ωα+k(p+1)) = S(ωβ+k(p+1)) for all 0 ≤ k < p− 1 then

s(−(α + k(p+ 1))) = s(−(β + k(p+ 1))) for all 0 ≤ k < p− 1. This implies the conditions

of Theorem 2.3.1.

In the other direction, suppose that the conditions of Theorem 2.3.1 hold. Then

p+ 1 - α, β ensures that χ1 = ωα and χ2 = ωβ are regular characters of Fp2 . Then

9



s(α + k(p+ 1)) = s(β + k(p+ 1)) for all 0 ≤ k < p− 1 only provides that

ordPS(χ1 ⊗ σ) = ordPS(χ2 ⊗ σ) for all twists σ. However, this is we assume this is true for

all α, β so we look at cα and cβ and because note that ck are in bijection with k mod p− 1

for c coprime to p2 − 1, so we also have s(cα + ck(p+ 1) = s(cβ + ck(p+ 1)) which implies

ordσ−1
c P〈S(χ1 ⊗ σ)〉 = ordσ−1

c P〈S(χ2 ⊗ σ)〉

for all c coprime to p2 − 1, which tells us that 〈S(χ1 ⊗ σ)〉 = 〈S(χ2 ⊗ σ)〉 as desired.

Now that we only need to prove Theorem 2.3.1, we shall prove the n = 2 Gauss sum

local converse theorem. Our main tool for doing this will be a lemma describing how the

digit sum changes with twists.

Lemma 2.3.3 Let 0 ≤ i, t− i ≤ p− 1 and 2 ≤ ` ≤ p, then

s((t− i) + ip+ (p− `)(p+ 1)) =


p+ t− 2`+ 1 i ≤ `− 2

t− 2`+ 2 i > `− 2

.

Proof. This proof is mainly a simple computation in which we have to keep track of the

possible for cases when we have carry in the 1’s place or in the p’s place. Specifically, we

will have a carry from the 1’s into the p’s place when t− i ≥ ` which causes

p+ t− i− ` ≥ p. Similarly, we get a carry from the p’s place in to the 1’s place when either

i ≥ ` or 1 + i ≥ `, depending on if the previous carry happens. Since 0 ≤ p− ` ≤ p− 2 and

0 ≤ i, t− i ≤ p− 1, these are the only carry’s that can happen because the max value for

each digit after summing before carrying is 2p− 3. This gives us the following calculation

10



that proves the lemma.

s((t− i) + (i)p+ (p− `)(p+ 1)) = s((p+ t− i− `) + (p+ i− `)p)

=


s((t− i− `) + (p+ 1 + i− `)p) t− i ≥ `

s((p+ t− i− `) + (p+ i− `)p) t− i < `

=



s((t+ 1− i− `) + (1 + i− `)p) t− i ≥ ` and 1 + i ≥ `

s((t− i− `) + (p+ 1 + i− `)p) t− i ≥ ` and 1 + i < `

s((p+ t− i− `) + (p+ i− `)p) t− i < ` and i < `

s((p+ t+ 1− i− `) + (1 + i− `)p) t− i < ` and i ≥ `

s((t− i) + (i)p+ (p− `)(p+ 1)) =


p+ t− 2`+ 1 i ≤ `− 2

t− 2`+ 2 i > `− 2

Note that the only way to have p+ t− 2`+ 1 = t− 2`+ 2 is to have p = 1, which is not

a prime, so we will always have that s((t− i) + ip+ (p− `)(p+ 1)) takes on different values

for i ≤ `− 2 and i > `− 2.

With Lemma 2.3.3 in hand, we can now prove Theorem 2.3.1.

Proof. Note that we only need to consider the case of fixed α and can vary β to find those

that satisfy the equality of Gauss sums.

We would like to show that the condition s(α + k(p+ 1)) = s(β + k(p+ 1)) for all

0 ≤ k < p− 1 implies that α ≡ pβ mod p2 − 1 or α ≡ β mod p2 − 1. Another way of

stating this is that if s(α+ k(p+ 1)) = s(β+ k(p+ 1)) for all 0 ≤ k < p− 1 then ωα and ω−β

are in the same Frobenius orbit. Let s(α) = t = s(β) be our fixed digit sum before twists,

and let r =
⌈
t
2

⌉
− 1. Then the set of possible Frobenius orbits with a fixed digit sum t is

{{t, tp}, {(t− 1) + p, 1 + (t− 1)p}, {t− 2) + 2p, 2 + (t− 2)p}, . . . , {(t− r) + rp, r+ (t− r)p}}.
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This takes the t+ 1 integers with digit sum t and splits them into orbits of size 2 in a way

that corresponds to (cyclically) permuting the digits. When t is even, there is a degenerate

orbit {(r + 1) + (r + 1)p} where permuting the digits doesn’t change the number or the

underlying character; these correspond to non-regular characters, or characters of Fp lifted

to Fp2 . We write a generic element of an orbit as (t− i) + ip since it doesn’t matter which

element of the orbit we pick.

Our goal is then to show that with an appropriate set of twists, we can distinguish

between these orbits. I claim that it is sufficient to consider the twists by k = p− ` for

2 ≤ ` ≤ r + 1 < t; note that there are only ` satisfying these inequalities for t ≥ 4, so we

will deal with the t = 1, 2, 3 cases by hand.

First, the t = 1 case is trivial because there is only one orbit, {1, p}. Similarly, the t = 2

case is trivial because there is only one non-degenerate orbit {2, 2p} and the orbit {1 + p}

is degenerate. Finally, we have that t = 3 case. Then there are two orbits {3, 3p} and

{2 + p, 1 + 2p}. For p ≤ 3, the case of t = 3 is impossible, and for p > 3, consider twisting

by k = p− 3, from the lemma we find that s(3 + (p− 3)(p+ 1)) = p− 2 and

s(2 + p+ (p− 3)(p+ 1)) = 2p− 3 which are different for all primes, so the single twist by

p− 3 serves to distinguish between the orbits.

Now, let us first consider what happens for general t when we twist by k = p− 2.

Lemma 2.3.3 tells us that s((t− i) + ip) is either p+ t− 3 for i ≤ 0 or t− 2 for i > 0.

These are different values and so twisting by k = p− 2 allows us to distinguish {t, tp} from

{(t− i) + ip, i+ (t− i)p} for all i > 0.

Similarly, twisiting by p− ` allows us to distinguish between

{(t− `+ 2) + (`− 2)p, (`− 2) + (t− `+ 2)p} and

{(t− `+ 1) + (`− 1)p, (`− 1) + (t− `+ 1)p}. By letting ` vary from 2 up to r + 1, we are

thus able to distinguish between all the non-degenerate Frobenius orbits.

As a simple corollary of Theorem 2.3.1, we have a proof of Theorem 2.1.8, the Gauss

sum converse theorem that we were hoping to prove.
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CHAPTER 3

LOCAL CONVERSE THEOREM FOR SMOOTH REPRESENTATIONS OF

THE WEIL GROUP

Most of the introductory material on local fields will echo that in Jean-Pierre Serre’s

Local Fields [Ser79], with the material on local class field theory coming from from

Bushnell and Henniart’s The Local Langlands Conjecture for GL(2) Chapter 29 [BH06].

Adopting the notation in the second of these references, we will have the following notation

for local fields.

F and E will refer to a non-Archimedean local fields.

o is the discrete valuation ring in F .

p is the unique maximal ideal of o.

$ is the uniformizer and a generator of p.

vF will be that valuation defined on F by o.

k = o/p is the residue field of F .

q = pn = |k| is the size of the residue field where p is the characteristic.

UF is the group of units of o.

Un
F = 1 + pn for n ≥ 1 are subgroups of the unit group forming a filtration.

ψ will be an additive character of F and F̂ will be the group of additive characters of F .

χ and ξ will be characters of F× or of WF , frequently viewed as equivalent through

Local Class Field Theory, and F̂× will be the group of multiplicative characters of F .

1F will be the trivial character on F× or WF , which takes the value 1 everywhere. ΩF

will be the absolute Galois group of F and WF will be the Weil group of F .

ρ and σ will be semisimple representations of WF and ρ will be tamely ramified.
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3.1 Local Fields

We are interested in a local converse theorem for smooth, tamely ramified, semisimple,

2-dimensional representations of the Weil group of a local field. First, we need to be able to

define all the terms in stating the theorem. Even though we are proving a theorem about

representations of the Weil group WF of a local field F , the terms in the theorem must first

be defined for the mulitplicative group F× of the field.

Definition 3.1.1 A discrete valuation ring is a principal ideal domain o with a unique

non-zero prime ideal p.

We also call such a ring o a DVR. An alternative characterization of a DVR is that it is

a domain o such that its field of fractions K has a non-trivial valuation v : K → Z ∪ {∞};

that is, a function v such that v(xy) = v(x) + v(y), v(x+ y) ≥ min{v(x), v(y)}, v(x) = 0 if

and only if x = 0, and v takes more values than just 0 and ∞.

Definition 3.1.2 A (non-Archimedean) local field is a field F with a valuation v that is

locally compact with respect to the topology provided by the valuation and has finite

residue field k with |k| = q = pn. The valuation defines a basis of open sets as the additive

cosets of the v−1({x ∈ F | q−v(x) ≤ r}) for positive real numbers r.

Given a local field F , it is not difficult to show that o = {x ∈ F | q−v(x) ≤ 1} is the ring

of integers of F and is a DVR. Further, p = {x ∈ F | q−v(x) < 1} is unique maximal (prime)

ideal of the DVR o. Finally, o× = UF = {x ∈ F | q−v(x) = 1} = {x ∈ F | v(x) = 0} is the

unit group of o. A local field is isomorphic as a topological field to a finite extension of the

p-adic numbers Qp or the field of formal Laurent series Fq((T )) over a finite field.

For a DVR o or for a local field F , we define a special element called the uniformizer,

denoted by $, which is a prime in o, so that $o = p is the unique prime ideal. This choise

is unique up to units.
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3.2 L-Functions and ε-Factors of Local Fields

Though we are interested in the representation theory of the Weil group, and how we

can tell apart the representations of the Weil group, in order to define the objects we will

use to do so, we must first define them for local fields. Generally, a local converse theorem

for local fields would deal with representations of GLn(F ); however, all of the tools we need

are developed while studying GL1(F ) = F×.

An additive character of a local field F is a continuous homomorphism ψ : F → C×;

these are the 1-dimensional representations of the additive group of F . Equivalently to

saying ψ is continuous, we can say kerψ is open in the topology defined by the valuation.

We let F̂ be the group of additive characters of F , which are a group under pointwise

multiplication.

Definition 3.2.1 Let ψ ∈ F̂ with ψ 6= 1. The level of ψ is the smallest integer d such that

pd ⊆ kerψ.

We then have the following proposition mostly characterizing the additive characters of

F .

Proposition 3.2.2 Let ψ ∈ F̂ with ψ 6= 1 be a level d character.

1. Let a ∈ F . The map aψ : x 7→ ψ(ax) is a character of F . If a 6= 0, then the character

aψ has level d− vF (a), where vF is the valuation on F .

2. The map a 7→ aψ is a group isomorphism F ∼= F̂ .

We also define multiplicative characters of F which are the 1-dimensional

representations of the multiplicative group of F . In this setting, a multiplicative character

of a local field F is a continuous homomorphism χ : F× → C×. We also define level for

multiplicative characters with a slight modification.
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Definition 3.2.3 Let χ be a non-trivial character of F×. The level of χ is defined to be

the smallest integer n ≥ 0 such that Un+1
F ⊆ kerχ. We further say that χ is unramified if

UF ⊆ kerχ.

The final thing we need to define the functions of interest is the concept of duality for

representations of F×. Because we are working with topological spaces, we need a

definition of duality that respects the topological structure which will be called the

smooth dual of a character χ and will be denoted by χ̌. If (χ, V ) is a smooth

representation of F×, then let V ∗ = HomC(V,C) and let (v∗, v) 7→ 〈v∗, v〉 be the canonical

evaluation map. Then we can define a representation χ∗ of F× on the space V ∗ by

〈χ∗(g)v∗, v〉 = 〈v∗, χ(g−1)v〉.

This is not necessarily a smooth representation, but we can define V̌ = ∪K(V ∗)K where K

ranges over compact open subgroups of F× and the (V ∗)K are the subspaces of K fixed

vectors in the representation. Then we define χ̌ as the restriction to AutC(V̌ ). This (χ̌, V̌ )

is the smooth dual of the character (χ, V ).

Now we can define the L-function and the ε-factor and γ-factor for characters of F×.

We define the L-function for a character of F× as a variable of a complex variable s.

Definition 3.2.4 Let χ be a characters of F× and q be the size of the residue field of F .

Then we define the L-function of χ as L(χ, s) : C→ C by

L(χ, s) =


(1− χ($)q−s)−1 if χ is unramified,

1 otherwise
.

This will be independent of the choice of uniformizer because unramified characters χ are

trivial on units.

Next, we define the ε-factor as another function of a complex variable which is a sum of

over the units of the ring of integers of F .
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Definition 3.2.5 For characters χ of F× with level n ≥ 0 and not unramified, and ψ ∈ F̂

with level one, we define the ε-factor of χ (relative to ψ) as

ε(χ, s, ψ) = qn(
1
2
−s)

∑
x∈UF /U

n+1
F

χ(αx)−1ψ(αx)/q(n+1)/2

for any α ∈ F× such that v(α) = −n. For characters χ of F× that are unramified; we

define the ε-factor by

ε(χ, s, ψ) = qs−
1
2χ($)−1.

As a quick justifcation for only dealing with ψ of level one, we have the following lemma

which describes how ε(χ, s, ψ) changes as ψ changes.

Lemma 3.2.6 Let a ∈ F×; then for fixed χ, we have

ε(χ, s, aψ) = χ(a)‖a‖s−
1
2 ε(χ, s, ψ)

Finally, we will define the γ factor as a useful combination of the L-functions and

ε-factors.

Definition 3.2.7 For characters χ of F× and ψ of F , then we define the γ-factor of χ

(relative to ψ) by

γ(χ, s, ψ) = ε(χ, s, ψ)
L(χ̌, 1− s)
L(χ, s)

.

The γ-factor encodes information about how χ acts on the uniformizer $ and how χ

acts on the units UF in such a way that we hope the γ-factor can help distinguish

characters of F×.

As well as the definitions of L, γ, and ε, we will need a theorem that describes how ε

factors change as we twist them by high level characters; this is the stability theorem.

Theorem 3.2.8 (Stability Theorem) Let θ, χ be characters of F× of level l ≥ 0 and n ≥ 1.

Suppose that 2l < n. Let ψ ∈ F̂ with ψ 6= 1 and let c ∈ F satisfy χ(1 + x) = ψ(cx) for

x ∈ pbn/2c+1. Then

ε(θχ, s, ψ) = θ(c)−1ε(χ, s, ψ).
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To prove this; we first convert the ε-factor into a Gauss sum and then prove a lemma

about this Gauss sum. If we define the Gauss sum of χ (relative to ψ) as

τ(χ, ψ) =
∑

x∈UF /U
n+1
F

χ̌(cx)ψ(cx),

then this allows us to take the s dependence out of the ε-factor. Specifically, we have from

our definition above that for ramified χ of level n ≥ 0

ε(χ, s, ψ) = qn(
1
2
−s)τ(χ, ψ)/q(n+1)/2.

Then we have the following lemma

Lemma 3.2.9 Suppose that χ has level n ≥ 1. Let c ∈ F satisfy

χ(1 + x) = ψ(cx), for all x ∈ pbn/2c+1

Then

τ(χ, ψ) = qb(n+1)/2c
∑
y

χ̌(cy)ψ(cy)

where y ∈ U b(n+1)/2c
F /U

bn/2c+1
F .

Proof. Recall that for a level n character χ

τ(χ, ψ) =
∑

x∈UF /U
n+1
F

χ̌(cx)ψ(cx).

We will make the change of variable x = y(1 + z) with y ∈ UF/U bn/2c+1
F and

z ∈ pbn/2c+1/pn+1. Then we can rewrite the χ̌(cx)ψ(cx) in the sum as

χ̌(cy(1 + z))ψ(cy(1 + z)) = χ̌(cy)ψ(cy)ψ(c(y − 1)z).

This follows because χ̌(cy(1 + z)) = χ̌(cy)χ̌(1 + z) = χ̌(cy)χ(1 + z)−1 and by the

assumptions of the lemma, χ(1 + z)−1 = ψ(cz)−1 = ψ(−cz). Now, we can rewrite the sum

as

τ(χ, ψ) =
∑
x

χ̌(cx)ψ(cx) =
∑
y

χ̌(cy)ψ(cy)

(∑
z

ψ(c(y − 1)z)

)
.

18



The sum over y ∈ UF/U bn/2c+1
F looks superficially like what we want; but note that the

desired sum is actually over y ∈ U b(n+1)/2c
F /U

bn/2c+1
F . So we need to show that the sum over

z ∈ pbn/2c+1/pn+1 works out as necessary. Since c(y − 1) ∈ p−n, we find that

z 7→ ψ(c(y − 1)z) is a character of pbn/2c+1/pn+1. In fact, z 7→ ψ(c(y − 1)z) will be the

trivial character if and only if y ≡ 1 mod pn−bn/2c; i.e. y ∈ U b(n+1)/2c
F . Since the sum of a

character over its group is 0 except for the trivial character; we find that this sum vanishes

except when y ∈ U b(n+1)/2c
F when the sum is (pbn/2c+1 : pn+1) = qb(n+1)/2c. Making this

substitution, we find as desired that

τ(χ, ψ) = qb(n+1)/2c
∑
y

χ̌(cy)ψ(cy)

where the sum is now over y ∈ U b(n+1)/2c
F /U

bn/2c+1
F .

With this lemma in hand, we can now provide a proof of the stability theorem.

Proof. We only need to consider ψ level one because Lemma 3.2.6 tells us how to convert

to ψ of other levels. Since θ is level l and χ is level n with 2l < n, we have that θχ will be a

level n character because it is trivial on Un+1
F ⊂ U l+1

F . Similarly, we have that θχ agrees

with θ on U l+1
F . More usefully, because 2l < n, we have that θχ agrees with θ on U b(n+1)/2c

F .

Applying Lemma 3.2.9 to the Gauss sum portion of ε(θχ, s, ψ), we get

τ(θχ, ψ) = qb(n+1)/2c
∑
y

θ̌ψ̌

with the sum over y ∈ U b(n+1)/2c
F /U

bn/2c+1
F . Since θ is trivial on U b(n+1)/2c

F , this becomes

θ(c)−1τ(χ, ψ) as we expect. Substituting this into the expression for the ε-factor, we find

that

ε(θχ, s, ψ) = θ(c)−1ε(χ, s, ψ)

as desired.
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3.3 Weil Groups of Local Fields

Let F be a non-Archimedean local field and pick a separable algebraic closure F of F .

Then we can define the absolute Galois group ΩF = Gal(F/F ) which gets a natural

topology as

ΩF = lim
←

Gal(E/F )

where E/F ranges over finite Galois extensions with E ⊆ F .

For each m ≥ 1, F will have a unique unramified extensions Fm/F of degree m with

Fm ⊆ F . Let F∞ be the composite of all these fields. Then F∞/F will be the unique

maximal unramified extensions of F in F . Each of the unique subextensions Fm/F has a

cyclic Galois group Gal(Fm/F ). Each automorphism in Gal(Fm/F ) is determined by its

action on the residue field kFm , which is isomorphic to Fqm because Fm/F is an unramified

extension. So, there will be a unique element φm ∈ Gal(Fm/F ) that acts on kFm by

x 7→ xq. We then let Φm = φ−1m . We get a canonical isomorphism Gal(Fm/F )→ Z/mZ by

the map Φm 7→ 1; and by taking the limit over m; we get an isomorphism

Gal(F∞/F ) ∼= lim
←m≥1

Z/mZ ∼= Ẑ

and a unique ΦF ∈ Gal(F∞/F ) that acts like Φm on each Fm. We call this ΦF the

geometric Frobenius substitution on F∞. Similarly, we define φF = Φ−1F to be the

arithmetic Frobenius substitution on F∞. If an element of ΩF has ΦF as its image in

Gal(F∞/F ), we call it a geometric Frobenius element. We then define

IF = Gal(F/F∞) to be the inertia group of F . This subgroup IF ⊆ ΩF roughly

corresponds to the units UF of F . There is another subgroup called the wild inertia group,

denoted PF , which roughly corresponds to the units U1
F , and is the unique pro p-Sylow

subgroup of IF . These correspondences are made precise in Theorem 3.4.1

We can then define the Weil group WF as a subgroup of ΩF . We first define aWF as the

inverse image in ΩF of the subgroup 〈ΦF 〉 of Gal(F∞/F ). This is a dense normal subgroup

of ΩF generated by the Frobenius elements. We then define the Weil group of F as a
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topological group with aWF as the underlying abstract group, where IF is an open

subgroup of WF and the topology on IF as a subspace coincides with the natural topology

on IF as a subspace of ΩF .

We then have a proposition defining a few properties of the Weil group relating to field

extensions E/F .

Proposition 3.3.1 1. Let E/F be a finite extension with E ⊆ F .

(a) The group WF has a unique subgroup WE
F such that

ιF (WE
F ) = aWF ∩ ΩE

where ι is the identity map WF → aWF ⊆ ΩF .

(b) The subgroup WE
F is open and of finite index in WF ; it is normal in WF if and

only if E/F is Galois.

(c) The canonical map WE
F \WF → ΩE \ ΩF is a bijection.

(d) The canonical map ιE :WE → ΩE induces a topological isomorphism

WE
∼=WE

F .

2. The map E/F 7→ WE
F is a bijection between the set of finite extensions E of F inside

F and the set of open subgroups of WF of finite index.

Due to this proposition, we indentify WE with the subgroup WE
F of WF going forward.

The representations of WF form a particularly nice subcollection of the representations

of ΩF , and it is these representations that we will be studying.

3.4 Local Class Field Theory

Theorem 3.4.1 There is a canonical continuous group homomorphism

aF :WF → F×

with the following properties.
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1. The map aF induces a topological isomorphism Wab
F
∼= F×.

2. An element x ∈ WF is a geometric Frobenius if and only if aF (x) is a prime element

of F .

3. We have aF (IF ) = UF and aF (PF ) = U1
F .

4. If E/F is a finite separable extensions, the diagram

WE E×

WF F×

aE

aF

NE/F

commutes.

5. Let α : F → F ′ be an isomorphism of fields. The map α induces an isomorphism

α :Wab
F →Wab

F ′ , and the diagram

Wab
F Wab

F ′

F× F ′×

α

α

aF aF ′

commutes.

One consequence of Theorem 3.4.1 is that the map aF , which we call the Artin

reciprocity map, gives an isomorphism χ 7→ χ ◦ aF between the group of characters of F×

and the group of characters of WF . More precisely, we have that unramified characters of

F× (trivial on UF ) correspond to unramified characters of WF (trivial on IF ); and tamely

ramified characters of F× (trivial on U1
F , level n = 0) correspond to characters of WF

trivial on PF . We can use these correspondences to define the L-functions, ε-factors, and

γ-factors for representations of the Weil group.
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3.5 L-Functions and ε-Factors of Weil Groups

Definition 3.5.1 If χ is a character of WF , then we define

L(χ, s) = L(χ ◦ aF , s)

ε(χ, s, ψ) = ε(χ ◦ aF , s, ψ)

Where the functions on the right are those defined in Section 3.2.

Going forward, we will use χ instead of χ ◦ aF when it is clear we mean the character of

F× corresponding to the character of WF . Now that we have defined L and ε for 1

dimensional characters, we can extend their definitions to n-dimensional representations of

WF .

The L function is then easy to extend to semisimple representations of WF . We simply

say that L(σ, s) = 1 for irreducible representations σ with dimensions ≥ 2. Then we make

L multiplicative by requiring that

L(σ1 ⊕ σ2, s) = L(σ1, s)L(σ2, s).

It takes more work to define the ε-factor for all semisimple representations of WF . The

main properties we need are that if ρ1, ρ2 are semisimple representations of Wf ,then

ε(ρ1 ⊕ ρ2, s, ψF ) = ε(ρ1, s, ψF )ε(ρ2, s, ψF ),

which is the multipicativity that we expect. We also have an additional property that

allows for induction of the local constant ε for characters. This induction is the following

property:

Proposition 3.5.2 If ρ is a semisimple n-dimensional representation of WE and E ⊃ F ,

then
ε(IndE/Fρ, s, ψF )

ε(ρ, s, ψE)
=
ε(RE/F , s, ψF )n

ε(1E, s, ψE)n
.

Where 1E is the trivial character on WE and RE/F = IndEF 1E.
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Multiplicativity and Proposition 3.5.2 allows us to define the ε-factor for any

semi-simple representation because any irreducible representation of WF is the induced

representation of a character from an appropriate finite extension. Finally, as was the case

for F×, we still define the γ-factor for semi-simple representation ρ of WF as

γ(ρ, s, ψ) = ε(ρ, s, ψ)
L(ρ̌, 1− s)
L(ρ, s)

.

We also will find useful a few results from [BH06] on which representations are induced

from a representation of an extension. First, we define an admissible pair.

Definition 3.5.3 Let E/F be a tamely ramified quadratic extension and χ a character of

E×, we call (E/F, χ) an admissible pair if

1. χ does not factor through the norm map NE/F : E× → F× and,

2. if χ|U1
E
does factor through NE/F , then E/F is unramified.

We will let P2(F ) be the set of isomorphism classes of admissible pairs. Further, we will

let G02 be the set of isomorphism classes of irreducible 2-dimensional representations of WF

and Gnr
2 be the set of isomorphism classes ρ ∈ G02 such that there is a non-trivial unramified

character χ of WF such taht χ⊗ ρ ∼= ρ. With these definition, we have the following

theorem, which will allow us to work only with characters for WE for appropriate

extensions E/F .

Theorem 3.5.4 If (E/F, ξ) is an admissible pair, the representation IndE/F ξ of WF is

irreducible. The map (E/F, ξ) 7→ IndE/F ξ induces a bijection

P2(F )→ G02(F ) if p 6= 2, or

P2(F )→ Gnr
2 (F ) if p = 2.

Finally, we have another theorem from Bushnell and Henniart, Theorem A.3 in [BH05],

which refines the bijection presented above. For σ ∈ G02(F ), they let t(σ) be the number of
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(isomorphism classes) of unramified characters χ of WF such that σ ⊗ χ ∼= σ. They say

that σ is essentially tame if p does not divide n/t(σ), or equivalently, that σPF
is a sum

of characters. Then the map P2(F )→ Get
2 (F ) defined by (E/F, ξ) 7→ IndE/F ξ is a bijection

for all primes p and all n ≥ 1. Since all tamely ramified ρ are essentially tame; this tells use

that all tamely ramified irreducible ρ are induced from a tamely ramified character of an

unramified extension E/F .

3.6 Local Converse Theorem for 2 Dimensional Representations of the Weil

Group

Finally, we have all the pieces necessary to state the local converse theorem for

representations of the Weil Group. What has been proven in the most general case using

the Langlands correspondence is the following theorem:

Theorem 3.6.1 (Local Converse Theorem for Weil Groups) Let ρ1 and ρ2 be

n-dimensional semisimple representations of WF , with n ≥ 2, such that for all semi-simple

representations σ of WF with dimension k ≤ bn
2
c we have

γ(ρ1 ⊗ σ, s, ψ) = γ(ρ2 ⊗ σ, s, ψ).

Then ρ1 ∼= ρ2.

What we would like to prove here is a local converse theorem specifically for the case

n = 2, which can be stated slightly more simply as follows:

Theorem 3.6.2 (Local Converse Theorem on WF with n = 2) Let ρ1 and ρ2 be

2-dimensional, tamely ramified, semisimple representations of WF , such that for all

characters χ of WF , we have

γ(ρ1 ⊗ χ, s, ψ) = γ(ρ2 ⊗ χ, s, ψ);

then ρ1 ∼= ρ2.
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Note that we also restrict to tamely ramified representations in this theorem, though

this only matters when the ρi are irreducible. Overall, this theorem can be split into three

cases depending on the number of poles of γ, then two of those cases can be further split

into two more cases each depending on the nature of the representations involved. We shall

prove each of those cases first as lemmas, then we shall prove that those are the only cases

and so the local converse theorem on WF holds for n = 2.

For the most part, we are not interested in how γ behaves as a function of s ∈ C, so we

instead write γ(ρ,X, ψ) = γ(ρ, s, ψ) where X = q−s. Then we also have that

γ(ρ, 1− s, ψ) = γ(ρ, 1
qX
, ψ) and the same for ε and L. This simplifies the discussion around

the number of poles of γ, so we can say that γ has either 2, 1, or 0 poles without worrying

about the periodicity of q−s. In this notation, we will have the following definitions for ε,

L, and γ restated here for simplicity.

As expected, the γ-factor modification is easy and we just get that

γ(χ,X, ψ) = ε(χ,X, ψ)
L(χ̌, 1

qX
)

L(χ,X)
.

L is simple as well and we find that

L(χ,X) =


(1− χ($)X)−1 if χ is unramified,

1 otherwise.

Finally, the ε-factor takes a bit more effort to convert to an expression in terms of X, but

we find that

ε(χ,X, ψ) =


Xn
√
q

∑
x∈UF /U

n+1
F

χ(αx)−1ψ(αx) for χ of level n and vF (α) = −n

1√
qXχ($)

for χ unramified.

With these results, we can now begin proving the individual cases of Theorem 3.6.2.

Lemma 3.6.3 (γ has 2 poles) Suppose ρ1 and ρ2 are 2-dimensional, tamely ramified,

semisimple representations of WF , such that

γ(ρ1, X, ψ) = γ(ρ2, X, ψ),
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and γ(ρi, X, ψ) has 2 poles. Then ρ1 ∼= ρ2.

Proof. Suppose that γ(ρ1, X, ψ) = γ(ρ2, X, ψ) has two poles. Recall that

γ(ρi, X, ψ) = ε(ρi, X, ψ)
L(ρ̌i,

1
qX

)

L(ρi, X)
.

So γ(ρi, X, ψ) has poles only when ε(ρi, X, ψ) has poles, when L(ρ̌i,
1
qX

) has poles, and

when L(ρi, X) has zeroes. However, ε(ρi, X, ψ) never has poles because it’s only X

dependence comes from the Xn factor for not unramified level n characters, or the 1√
qX

factor for unramified characters. Note that as an actual complex function, X 6= 0 because

X = q−s, so we discount this possibility for a pole. Similarly, L(ρi, X) never has zeroes

because it is defined multiplicatively as 1 for irreducible with dimension > 1 and ramified

characters and (1− χ($)X)−1 for unramified characters. Specifically, we see that L(ρ̌i,
1
qX

)

has one pole for each unramified character in ρ̌i. Since L(ρ̌i,
1
qX

) is the only source of poles

in γ(ρi, X, ψ), we must have that L(ρ̌i,
1
qX

) has two poles and therefore ρi each contain two

unramified characters. Since the ρi are two dimensional characters of WF , we therefore

have that each ρi is in fact a direct sum of two unramified characters of WF .

Write ρi = θi ⊕ θ′i, with θi, θ′i both unramified characters of WF . Since

γ(ρ1, X, ψ) = γ(ρ2, X, ψ) have the same two poles, we must have that L(ρ̌1,
1
qX

) and

L(ρ̌2,
1
qX

) have the same poles which is equivalent to L(ρ1, X) and L(ρ2, X) having the

same poles. Because the L-function is multiplicative we have that

L(θ1, X)L(θ′1, X) = L(θ2, X)L(θ′2, X).

Similarly, because we know that all the characters involved are unramified, we find that by

treating the θi, θ′i as characters of F× we have

(1− θ1($)X)−1(1− θ′1($)X)−1 = (1− θ2($)X)−1(1− θ′2($)X)−1.

The left side has poles at X = 1
θ1($)

, 1
θ′1($)

and the right side has poles at X = 1
θ2($)

, 1
θ′2($)

.

These must be the same, so without loss of generality, we can say θ1($) = θ2($) and
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θ′1($) = θ′2($). However, unramified characters of WF correspond to unramified characters

of F× which are trivial on UF . Since every element of x ∈ F× can be written as u$m for

some u ∈ UF and m ∈ Z, we have that

θ(x) = θ(u$m) = θ(u)θ($)m = θ($)m.

So every unramified character of F× is fully determined by its value on $, and similarly for

characters of WF . This tells us that θ1 = θ2 and θ′1 = θ′2, so we clearly find that

ρ1 ∼= ρ2

which is what we wanted to show.

Next is the case when γ(ρi, X, ψ) only has one pole, which can occur in two different

ways.

Lemma 3.6.4 (γ has 1 poles) Suppose ρ1 and ρ2 are 2-dimensional, tamely ramified,

semisimple representations of WF , such that for all characters χ of WF , we have

γ(ρ1 ⊗ χ,X, ψ) = γ(ρ2 ⊗ χ,X, ψ),

and γ(ρi, X, ψ) has 1 poles. Then ρ1 ∼= ρ2.

Proof. Suppose ρ1 and ρ2 are 2-dimensional, tamely ramified, semisimple representations of

WF , such that for all characters χ of WF , we have

γ(ρ1 ⊗ χ,X, ψ) = γ(ρ2 ⊗ χ,X, ψ),

and γ(ρi, X, ψ) has 1 poles. As was mentioned in the proof of Lemma 3.6.3, the only source

of poles in γ(ρi, X, ψ) is the poles of L(ρ̌i,
1
qX
, ψ). So in order to have only one pole we

must either have that the ρi are the sum of an unramified character and a ramified tamely

ramified character; or the ρi are a sum of two unramified characters and that somehow a

pole of L(ρ̌i,
1
qX

) cancels out with a zero of L(ρi, X). We will need to show that those two

cases cannot coexist, and then prove the converse theorem in each case. We can separate
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these cases by looking at the zeroes of γ(ρi, X, ψ) as well as the poles. First, suppose

ρi = θi ⊕ ξi with θi unramified and ξi ramified tamely ramified. Then we find that

γ(θi ⊕ ξi, X, ψ) has a pole at

X =
1

qθi($)

coming from L(θ̌i,
1
qX

) and a zero at

X =
1

θi($)

coming from L(θi, X). On the other hand, suppose that ρi = θi ⊕ θ′i with θi and θ′i both

unramified. Then as before, we have that (without cancellation of zeroes and poles)

γ(ρi, X, ψ) has poles at

X =
1

qθi($)
,

1

qθ′i($)

and has zeroes at

X =
1

θi($)
,

1

θ′i($)
.

In order to only have a single pole in this case, we must have that one of the zeroes

cancels out one of the poles. Without loss of generality, we say that

θ′i($) = qθi($).

Since an unramified character θ′i is fully defined by the value it takes on $, we have that

there is only one choice for θ′i for any given θ. The left over zeroes and poles are then

required to be a pole coming from L(θ̌′i,
1
qX

) at

X =
1

q2θi($)

and a zero coming from L(θi, X) at

X =
1

θi($)

What is of note here is that in the case when ρi = θi ⊕ ξi is the sum of an unramified

character and a ramified tamely ramified character, then the ratio between the pole and

the zero of γ(ρi, X, ψ) is q. On the other hand, when ρi = θi ⊕ θ′i is the sum of two
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unramified characters with poles and zeroes that cancel out, then the ratio between the

pole and the zero of γ(ρi, X, ψ) is q2. So we can tell these cases apart by looking at the

zeroes and poles of γ(ρi, X, ψ).

Now, let us show that both of these types of representations satisfy the converse

theorem. We will start with the case where ρi = θi ⊕ θ′i is the sum of two unramified

characters with θ′i($) = qθi($). Since we have

γ(θ1 ⊕ θ′1, X, ψ) = γ(θ2 ⊕ θ′2, X, ψ)

we again must have that the poles are equal on each side. As mentioned above,

γ(θi ⊕ θ′i, X, ψ) must have a pole at X = 1
q2θ($)

if θi and θ′i are both unramified and their

poles and zeroes cancel. But
1

q2θ1($)
=

1

q2θ2($)

clearly implies θ1($) = θ2($) and so θ1 = θ2 and θ′1 = θ′2 because they are unramified and

so determined by their value at $. As desired, this gives us ρ1 = ρ2 for the unramified case.

Next, consider the case of ρi = θi⊕ ξi with θi unramified and ξi ramified tamely ramified

(level n = 0). We have that L(ρi, X) = L(θi ⊕ ξi, X) = L(θi, X)L(ξi, X) = L(θi, X) because

ramified characters have trivial L functions. So we can still identify that the poles of

γ(ρ1, X, ψ) and γ(ρ2, X, ψ) are the same so θ1($) = θ2($) which like the previous cases

tells us that θ1 = θ2, so just call it θ.

The conditions of the converse theorem tell us that

γ((θ ⊕ ξ1)⊗ χ,X, ψ) = γ((θ ⊕ ξ2)⊗ χ,X, ψ)

for all characters χ of WF . However, because (θ ⊕ ξ1)⊗ χ = (θ ⊗ χ)⊕ (ξ1 ⊗ χ) and γ is

multiplicative, we have that

γ(ξ1 ⊗ χ,X, ψ) = γ(ξ2 ⊗ χ,X, ψ)

Now, consider twisting by χ = ξ−11 . Then we have that

γ(ξ1 ⊗ ξ−11 , X, ψ) = γ(ξ2 ⊗ ξ−11 , X, ψ).
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ξ1 ⊗ ξ−11 is the trivial character 1F and is clearly unramified. Since γ(ξ2 ⊗ ξ−11 , X, ψ) must

have the same poles and zeros as γ(1F , X, ψ), we find that ξ2 ⊗ ξ−11 must also be

unramified, and agree with 1F on $, making 1F = ξ2 ⊗ ξ−11 . This is equivalent to ξ1 = ξ2.

Combined with θ1 = θ2, we find that ρ1 ∼= ρ2 as desired.

Now we turn our attention to the final case when γ has no poles, which is when there

are no unramified characters present. In this case we have the following lemma.

Lemma 3.6.5 (γ has 0 poles) Let F be a local field with residue field kF = Fq where

q = pn and p 6= 2. Suppose ρ1 and ρ2 are 2-dimensional, tamely ramified, semisimple

representations of WF , such that for all characters χ of WF , we have

γ(ρ1 ⊗ χ,X, ψ) = γ(ρ2 ⊗ χ,X, ψ),

and γ(ρi, X, ψ) has 0 poles. Then ρ1 ∼= ρ2.

Proof. Let F be a local field with a residue field not of characteristic 2, and suppose ρ1 and

ρ2 are 2-dimensional, tamely ramified, semisimple representations of WF , such that for all

characters χ of WF , we have

γ(ρ1 ⊗ χ,X, ψ) = γ(ρ2 ⊗ χ,X, ψ),

and γ(ρi, X, ψ) has 0 poles. We will need to show that there is no way for all the poles to

cancel out if one of the ρi has an unramified character as a subrepresentation. Then the

two ways in which we can have no poles are either that the ρi are the sum of two ramified

tamely ramified characters or that the ρi are two dimensional ramified tamely ramified

irreducibles. Next we will need a way to distinguish between these two cases; then we will

show that the converse theorem holds in each case.

The proof of Lemma 3.6.4 shows us why it is not possible for γ to have no poles if there

is an unramified portion of the ρi. Now, suppose first that ρi = ξi ⊕ ξ′i with ξi, ξ′i both

tamely ramified (level n=0). Consider twisting by χ = ξ−1i , then we get

ρi ⊗ χ = 1F ⊕ (ξ−1i ⊗ ξ′i). Note that γ(ρi ⊗ χ,X, ψ) will have at least one pole in this case.
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On the other hand, if ρi is a two dimensional ramified tamely ramified irreducible

representation of WF , then there is some unramified quadratic extension Ei/F and

ramified tamely ramified character ξi of WEi
such that ρi = IndEi/F ξi. Since there is a

unique unramified quadratic extension of F inside a given separable closure F , we just call

it E and let ρi = IndE/F . Recall that by Proposition 3.5.2 we have

ε(IndE/Kρ, s, ψK)

ε(ρ, s, ψE)
=
ε(RE/K , s, ψK)n

ε(1E, s, ψE)n
.

Rearranging this and rewriting in terms of X and the representations we are interested in,

we have that

ε(ρi, XF , ψF ) = ε(IndE/F ξi, XF , ψF ) = ε(ξi, XE, ψE)
ε(IndE/F1E, XF , ψF )2

ε(1E, XE, ψE)2
,

where XF = q−s and XE = (q2)−s. Now, note that (IndE/F ξi)⊗ χ = IndE/F (ξi ⊗ χ ◦NE/F ).

Since L(ρi) = 1 for ρi irreducible dimension > 1, we have that γ(ρi, X, ψ) has no poles as

expected for this case. However, we further have that γ(ρi ⊗ χ,X, ψ) will never have a pole

because IndE/F (ξi) is irreducible if and only if ξ is different than its conjugate, i.e. ξi 6= ξqi .

This is also equivalent to saying that ξi doesn’t factor through the norm. So twisting a ξi

that doesn’t factor through the norm by χ ◦NE/F will never produce something that does

factor through the norm, meaning that (IndE/F ξi)⊗ χ is irreducible and so γ(ρi ⊗ χ, s, ψ)

will never have a pole. This allows us to tell apart ρi = ξi ⊕ ξ′i and ρi = IndE/F ξi; the first

case will have some twist χ that gives γ(ρi, X, ψ) at least one pole and the second case will

never have such a χ.

Now, let us deal with the ρi = ξi ⊕ ξ′i case with ξi, ξ′i ramified tamely ramified. This case

works out much like the case when γ has one pole and ρ is a sum of an unramified and a

ramified tamely ramified character. In fact, consider the twist by χ = ξ−11 . We get

γ(1F ⊕ (ξ′1 ⊗ ξ−11 ), X, ψ) = γ((ξ2 ⊗ ξ−11 )⊕ (ξ′2 ⊗ ξ−11 ), X, ψ)

Because 1F is unramified, we must have at least one pole, possibly two poles. That is either

we are in the case of Lemma 3.6.4 or Lemma 3.6.3; either way, we find that, without loss of

generality, ξ1 = ξ2 and ξ′1 = ξ′2 and so ρ1 = ρ2.
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Finally, let us deal with the case when ρi = IndE/F ξi with ξi a tamely ramified character

of WE. We will first use stability to find the value of ξi on $, then we will use the Gauss

sum local converse to show that ξ1 and ξ2 agree sufficiently on UF to have ξ1 ∼= ξ2.

Note that the parts in the fraction for the induction constant depend only on the

extension E which is fixed, we in fact have that if ε(ρ1, X, ψF ) = ε(ρ2, X, ψF ), then

ε(ξ1, X, ψE) = ε(ξ2, X, ψE). Now, applying the Stability Theorem, Theorem 3.2.8, for E

with a twist by the level 1 character χ of E defined by χ(1 + x) = ψ($−1x), we find that

ξ1($
−1)−1ε(χ,X, ψE) = ξ2($

−1)−1ε(χ,X, ψE).

This tells us that ξ1($) = ξ2($) and so we only need to understand how they act on units.

Since the ξi are tamely ramified, we already know that they are trivial on U1
E = U1

F , we

only need to study the character’s restriction of UE/U1
E
∼= Fq2 . Similarly, when we restrict

tamely ramified characters χ of WF to the units, we can in fact study how they act on

UF/U
1
F
∼= Fq. This puts us in the case of the Gauss sum converse theorem where we have

characters of Fq2 being twisted by characters of Fq; and Lemma 3.2.9 provides this

reduction for us. Applying that reduction, and then the Gauss sum local converse theorem

proves that ξ1 ∼= ξ2 or ξ1 ∼= ξq2 on UE. However, IndE/F ξ1 and IndE/F ξq1 are isomorphic, so

we do indeed have that ρ1 ∼= ρ2 as desired.

Now that we have the necessary lemmas, we can assemble them into a proof of

Theorem 3.6.2.

Proof. Suppose that ρ1 and ρ2 are 2-dimensional tamely ramifed semi-simple

representations of WF , such that for all characters χ of WF we have

γ(ρ1 ⊗ χ,X, ψ) = γ(ρ2 ⊗ χ,X, ψ)

As mentioned before, the only place poles can come from is the factor of L(ρ̌i ⊗ χ̌, 1
qX

), so

there can be at most two poles of γ(ρi ⊗ χ,X, ψ). In the case when there are two poles,
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Lemma 3.6.3 proves the converse theorem without using any twists. Alternatively, this can

be viewed as twisiting only by the trivial character which could be thought of as a zero

dimensional thing. In the case where this is one pole, Lemma 3.6.4 proves the converse

theorem using at most 1 twist. Finally, in the case where there are zero poles, Lemma 3.6.5

proves the converse theorem using all of the twists by characters since we must use them to

distinguish irreducibles. Since we can have at most two poles and we can’t have fewer than

zero; this covers all posibilities and concludes the proof of Theorem 3.6.2.
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