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Spruce budworm (Choristoneura fumiferana; SBW) outbreaks are cyclically occurring 

phenomena in the northeastern USA and neighboring Canadian provinces. These outbreaks are 

often of landscape level causing impaired growth and mortality of the host species namely spruce 

(Picea sp.) and balsam fir (Abies balsamea (L.) Mill.). Acknowledging the recent SBW outbreak 

in Canadian provinces like Quebec and New Brunswick neighboring the state of Maine, our study 

devised comprehensive techniques to assess the susceptibility of Maine forests to SBW attack. 

This study aims to harness the power of remote sensing data and machine learning algorithms to 

model and map the susceptibility of forest in terms of host species availability and abundance 

(basal area per hectare; BAPH, and leaf area index; LAI), their maturity and the defense 

mechanism prevalent.   

In terms of host species abundance mapping our study explores the integration of satellite 

remote sensing data to model BAPH and LAI of two economically vital SBW host species, red 



spruce (Picea rubens Sarg.) and balsam fir, in Maine USA. Combining Sentinel-1 synthetic 

aperture radar (SAR), Sentinel-2 multispectral, and site variables, we used Random Forest (RF) 

and Multi-Layer Perceptron (MLP) algorithms for modeling LAI and BAPH. The results 

demonstrated the superiority of RF over MLP, achieving smaller normalized root mean square 

error (nRMSE) by 0.01 and 0.06 for LAI and BAPH, respectively. Notably, Sentinel-2 variables, 

especially the red-edge spectral vegetation indices, played a significant role in both LAI and BAPH 

estimation, with the minor inclusion of site variables, particularly elevation.  

In addition, using various satellite remote sensing data such as Sentinel-1 C-band SAR, 

PALSAR L-band SAR and Sentinel-2 multispectral, along with site variables, the study developed 

large-scale SBW stand impact types and susceptibility maps for the entire state of Maine. The 

susceptibility of the forest was assessed based on the availability of SBW host species and their 

maturity. Integrating machine-learning algorithms, RF and MLP, the best model, utilizing site 

(elevation and aspect) and Sentinel-2 data achieved an overall accuracy of 83.4% to predict SBW 

host species. Furthermore, combining the host species data with age data from Land Change 

Monitoring, Assessment, and Projection (LCMAP) products we could produce the SBW 

susceptibility map based on stand impact types with an overall accuracy of 88.3%.  

Moreover, the work builds upon the assessment of susceptibility of SBW host species 

taking into account the concentration of several canopy traits using remote sensing and site data. 

The study focused on various foliar traits affecting insect herbivory, including nutritive such as 

nitrogen (N), phosphorous (P), potassium (K), and copper (Cu), non-nutritive such as iron (Fe) 

and calcium (Ca), and defensive parameters such as equivalent water thickness (EWT) and leaf 

mass per area (LMA). Using Sentinel-2 and site data, we developed trait estimation models using 

machine-learning algorithms like Random Forest (RF), Extreme Gradient Boosting (XGB), and 



 
 

Support Vector Machine (SVM). The accuracy of the developed model was evaluated based on 

the normalized root mean square error (nRMSE). Based on the model performances, we selected 

XGB algorithm to estimate Ca, EWT, Fe, and K whereas Cu, LMA, N, and P were estimated using 

RF algorithm. Regarding the variables used, almost all the best performing models included 

Sentinel-2 red-edge indices and depth to water table (DWT) as the most important variables. 

Ultimately, the study proposed a novel framework connecting the concentrations of foliar traits in 

SBW host foliage to tree susceptibility to the pest, enabling the assessment of host susceptibility 

on a landscape level. 

To sum up, this study highlights the advantages and effectiveness of integrating satellite 

remote sensing data for enhanced pest management, providing valuable insights into tree attributes 

and susceptibility to spruce budworm outbreaks in Northeast USA. The findings offer essential 

tools for forest stakeholders to improve management strategies and mitigate potential forthcoming 

SBW outbreaks in the region. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Insects and pests are one of the major historic disturbance agents in the forests of 

northeastern USA, particularly the forests in Maine, and neighboring Canadian provinces 

(Rahimzadeh et al., 2018; Bhattarai et al., 2022b). The cyclical outbreak of native forest pests such 

as spruce budworm (Choristoneura fumiferana Clem.; SBW) has been very destructive and has 

cost forest landowners hundreds of millions of dollars following every outbreak (Wagner et al., 

2015). In addition, these episodic outbreaks also influence the composition of tree species across 

a large landscape. While fine spatial resolution forest composition data are not generally available 

at landscape scale for effective pest monitoring, constant change in the forest ecosystems, due to 

natural and human induced disturbances, make the existing forest type and composition maps less 

effective in aiding stakeholders to prepare themselves and strategize for the upcoming outbreak. 

The application of remote sensing technology in forestry has a long history (Curran, 1989; 

MacLean and MacKinnon, 1996; Holmgren and Persson 2004; Wolter and Townsend, 2008; 

Rahimzadeh et al., 2018). With the continuous advancement in this technology, producing 

products at landscape scale has become more feasible and cost effective (Wolter and Townsend, 

2011; Rahimzadeh et al., 2018; Grabska et al., 2020; Rahimzadeh et al., 2020; Bhattarai et al., 

2021). The application of remote sensing technology for effective forest health monitoring has 

even received more attention in particularly after the COVID-19 pandemic to be more integrated 

with other traditional pest monitoring methods such as annual Aerial Detection Survey (ADS) 

(Hanavan et al., 2022). Remote sensing technology can support pest monitoring and management 

through different ways from the detection of the exact location and extent of the damage (Fassnacht 

javascript:;
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et al., 2014; Rahimzadeh et al., 2018; Bhattarai et al., 2020; Donovan et al., 2021) to mapping the 

host species type and abundance (Wolter and Townsend, 2011; Bhattarai et al., 2021) and 

susceptibility to damage modeling (Bhattarai et al., 2022a; Bhattarai et al., 2023).  In the case of 

SBW, the pest is host-specific and only defoliates balsam fir [Abies balsamea (L.) Miller; BF] and 

spruce (Picea spp.) needles. Considering the unique feeding nature of SBW, the host species 

composition map is considered a key layer of information to assess the susceptibility of the forests 

to SBW defoliation before the outbreak as well as detect the exact location of the damage. Given 

the complex interaction between SBW and its host species, our study investigates the diverse 

characteristics of the SBW host species that have potential impact on their overall susceptibility to 

SBW. For instance, host composition, their abundance and maturity, and the presence of defense 

mechanism in host species directly influence the susceptibility of the host species; however, for a 

forest to be defoliated, a highly susceptible forest should coincide with the elevated SBW 

population (please refer to Bhattarai (2020) for more information on SBW life cycle and their 

behavior). Regardless, it is always desirable for stakeholders to have assessments of their forest 

regarding their susceptibility to an anticipated future outbreak.  

Evaluating the susceptibility of forests through traditional means involves labor-intensive 

and costly field inventories, making it impractical for landscape-level assessments. Additionally, 

effective monitoring of forest pest activities requires high temporal data regarding forest status, 

which is not achievable using conventional ground inventories. As a result, these traditional 

methods pose significant challenges in assessing and monitoring forest health and pest related 

vulnerability. On the other hand, remote sensing techniques have advanced tremendously in the 

past few decades due to which it is currently possible to acquire multi-scale and multi-temporal 

data essential for pest or forest disturbance monitoring at large scales. Moreover, remote sensing 
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technology offers a cost effective, rapid and technically superior alternative to the traditional forest 

disturbance monitoring methods (please refer to Bhattarai (2020) for details on the use of diverse 

remote sensing platforms for forest pest monitoring). 

1.2 Research problems 

Given the high potential of remote sensing techniques in forest health monitoring, there 

have been several recent studies to incorporate remote sensing data in forest health monitoring 

(Abdullah et al., 2019; Bhattarai et al., 2020) through different ways as explained earlier. However, 

studies incorporating physiological processes in both tree host species and the pest as well as host 

species characteristics for susceptibility to defoliation modeling are limited. There exists a 

complex relationship between the host species and the associated pests, and it changes over the 

time due to the coevolution between pests and hosts, which is essential to understand before 

formulating plans to monitor the insect/pest activities. Regarding the mechanism of the SBW 

defoliation outbreak, as mentioned earlier in the background section, outbreak occurs when an 

increased SBW population encounter the susceptible forest. Due to this reason, information on 

SBW population dynamics and forest susceptibility are equally important to determine the 

outbreak and severity of defoliation (Wagner et al., 2015; MacLean et al., 2019). However, forest 

owners do not have much control over the SBW dynamics, but they have the opportunity to assess 

the susceptibility of their forests against the forthcoming outbreak using remotely sensed 

susceptibility maps to manage their properties accordingly. 

There have been three studies to evaluate the susceptibility of SBW host species primarily 

focusing on factors such as host species composition (Wolter et al., 2011; Bhattarai et al., 2021) 

and abundance (Wolter et al., 2008), however to the best knowledge of the author there haven’t 

been any studies to incorporate other factors such as host maturity. In addition, the significance of 
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host-pest interaction, which plays a pivotal role in shaping the defensive strategies that hosts use 

against pests, has remained unexplored in the past studies. This dynamic interaction eventually 

influences the susceptibility of forests against specific pests, making it a fundamental aspect of 

monitoring overall forest health. This study presents and connects different parameters that could 

be practically used to determine SBW susceptibility namely, host composition, abundance (in 

terms of leaf area index; LAI, and basal area per hectare; BAPH), and their maturity using remote 

sensing techniques which we believe would be an efficient and cost-effective way for the 

stakeholders to monitor their forests. In addition, a novel approach to link foliar traits to the 

susceptibility of SBW host species based on their roles in SBW health and fitness (nutritive, nun-

nutritive, and defense) is presented in this work. Ultimately, this study reinforces the current 

techniques for monitoring forest health and ecological processes in general incorporating modern 

remote sensing technologies and machine learning algorithms.    

1.3 Research goals and objectives: 

The specific objectives to meet our overall goal of developing and evaluating remote 

sensing-based techniques to assess the SBW host susceptibility to defoliation and damage are: 

❖ Modeling SBW host species abundance based on new sensors and data availability: 

• Modeling the LAI and BAPH of balsam fir and red spruce (Picea rubens Sarg.; RS) using 

the combined application of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 

optical satellite data. 

• Evaluating the contribution of site variables to the estimation of LAI and BAPH. 

• Improving the accuracy of LAI and BAPH modeling through incorporating deep artificial 

neural network (ANN) algorithm.  

• Identifying key predictors for LAI and BAPH in BF and RS forests of Maine. 
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❖ Forest susceptibility modeling and mapping based on stand age and composition: 

• Evaluate the effectiveness of PALSAR-2 L-band, and Sentinel-1 C-band SAR data 

individually and their integration for modeling SBW host species together with site 

variables. 

• Employ deep ANN algorithm to improve SBW host species modeling and compare its 

performance with the widely tested Random Forest (RF) algorithm. 

• Integrate Sentinel-2, Sentinel-1, PALSAR-2, and site variables to model and map the 

SBW host species over the state of Maine at a spatial resolution of 20 m. 

• Estimate the maturity of host species using Land Change Monitoring, Assessment, and 

Projection (LCMAP) products. 

• Mapping SBW susceptibility to defoliation based on stand age and composition in Maine 

forests. 

❖ Forest susceptibility modeling and mapping based on the concentration of foliar traits in host 

canopies: 

• Estimate and map both the nutritive (Nitrogen; N, Phosphorous; P, Potassium; K, and 

Copper; Cu) and non-nutritive (Iron; Fe, and Calcium; Ca) elements using Sentinel-2 

bands and SVIs, along with site variables in SBW host species.  

• Estimate and map mechanical defensive traits, equivalent water thickness (EWT) and 

leaf mass par area (LMA) of SBW host species using Sentinel-2 bands and SVIs, along 

with site variables.  

• Compare performances of modern machine learning algorithms such as RF, support 

vector machine (SVM), and extreme gradient boosting (XGB) for modeling SBW host 

species foliar traits. 
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• Propose a framework for determining the susceptibility of SBW host species by assessing 

the relationship between host foliar trait values and SBW defoliation levels.  

1.4 Thesis structure and overview of each chapter: 

This thesis contains five chapters as depicted in Figure 1.1. The introductory chapter serves 

as the first chapter, while the final chapter comprises thoughts on integration, conclusion and future 

directions. Rest of the chapters consist of three independent research manuscripts. Chapter 1 

provides an overall introduction and background of the research idea, past research approaches 

and problems, and our objectives and approaches to overcome the problems.  

Chapter 2 explores the potential of Sentinel-1 C-band SAR, Sentinel-2 optical imagery and 

site variables to model BAPH and LAI of the major SBW host species (BF, and RS) using RF and 

ANN algorithms. This chapter aims to recommend the best variables combination and an algorithm 

to model BAPH and LAI of BF and RS.  

Chapter 3 integrates multi-source satellite and site data to model and map the susceptibility 

of SBW host species based on the composition and maturity of the entire forested area in Maine. 

RF and ANN algorithms were used to evaluate the usefulness of Sentinel-2, Sentinel-1 (C-band 

SAR), and PALSAR-2 (L-band SAR) data along with site variables to model SBW host species. 

In addition, the time series of Land Change Monitoring, Assessment, and Projection (LCMAP) 

products were used to determine the age of the SBW host species to ultimately assess the 

susceptibility of SBW host stands. A susceptibility to SBW defoliation map for the entire state of 

Maine was produced as the final product from this chapter.  

Chapter 4 attempts to link diverse SBW host species canopy traits with their susceptibility 

to SBW. This chapter evaluates the performance of several machine learning algorithms namely, 

RF, SVM, and XGB to model eight different SBW host canopy traits (nutritive, non-nutritive, and 
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defense) using Sentinel-2 and site data. This chapter proposes the best algorithm and variables’ 

combination to estimate these foliar canopy traits and a framework to link them with the SBW 

susceptibility.  

Finally, Chapter 5 presents the conclusion of the entire study. It summarizes and sheds light 

on how we can integrate the ideas from three different chapters (Chapters 2-4) for effective SBW 

management. It also discusses about the major takeaways from our work, limitations and future 

directions.  

 

 

Figure 1. 1. Structure of the thesis 
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CHAPTER 2 

ESTIMATING SPECIES-SPECIFIC LEAF AREA INDEX AND BASAL AREA USING 

OPTICAL AND SAR REMOTE SENSING DATA IN ACADIAN FORESTS, USA 

“The contents of this chapter have been published in Bhattarai et al. (2022b).” 

2.1 Introduction 

Forest resources play a vital role in the long-term fulfillment of societal needs and ensuring 

the continued availability of ecological services; however, the forest systems around the world are 

under increasing threats from several stressors such as pests and diseases, climate change, and 

over-exploitation. Therefore, providing comprehensive information about key forest attributes and 

dynamics is essential for strategic planning and sustainable forest ecosystem management. Forest 

inventory attributes such as leaf area index (LAI) and basal area per ha (BAPH) are primarily of 

interest to both the research community and land managers because they are significant indicators 

of forest condition, structure, and function (Fassnacht et al., 1994; Mensah et al., 2020).  

LAI is considered as a determinant of silvicultural characteristics like vegetation growth, 

stocking, and wood productivity and largely correlates with soil water storage and transpiration 

(Running, 1992), photosynthetic capacity (Mensah et al., 2020), the magnitude of carbon and 

energy fluxes (Fassnacht et al., 1994), and many more biological and ecological phenomena on 

the stand, regional, and global scales. BAPH as a measure of forest density, is another central 

attribute of a forest stand to be considered for sustainable forest management (Ahmadi et al., 2020).  

LAI and BAPH measurement and mapping hold a long history and have been widely 

executed using traditional field measurement methods (Fang et al., 2019). Direct measurement of 

these parameters using destructive sampling in the field is neither feasible nor desirable on a 

regional or global scale (Fassnacht et al., 1994; Dube et al., 2019). With the advent of freely 
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available satellite data, remote sensing techniques are gaining popularity among researchers for a 

rapid, accurate, and efficient estimation of forest stand attributes and their temporal evolutions on 

a landscape level (Fang et al., 2019).  

There exists a suite of non-commercial remote sensing data to derive the LAI and BAPH 

in forests. Single-date optical data such as Landsat (Dube et al., 2019; Neinavaz et al., 2019), 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Sprintsin et al., 2007; Qiao et al., 

2019), and Sentinel-2 (Korhonen et al., 2017; Mananze et al., 2018; Darvishzadeh et al., 2019b) 

have been widely used for the estimation of LAI. However, a recent trend depicts the preference 

of Sentinel-2 data over other satellite data sources attributed to their decent and even finer 

resolution (spatial, spectral, and temporal) at no acquisition cost (Korhonen et al., 2017; 

Darvishzadeh et al., 2019b; Meyer et al., 2019). In addition, the use of synthetic aperture radar 

(SAR) data has also been reported for LAI modeling (Manninen et al., 2005; Stankevich et al., 

2017), which can be a complementary data source for the optical data. However, the combined use 

of SAR and optical data for the LAI modeling across diverse or mixed forest areas has not been 

reported. In contrast, BAPH modeling has been done primarily using either optical data such as 

Landsat (Wolter et al., 2008), and Sentinel-2 (Astola et al., 2019; Ahmadi et al., 2020) or SAR 

data (Townsend, 2002). To our knowledge only one study was reported that used a combination 

of the two types of data (Wolter and Townsend, 2011). Given that the optical and SAR data 

represent signals from different regions of the electromagnetic spectrum, and are complementary 

to each other, the incorporation of SAR data is expected to add structural information of tree 

canopy to the optical data that mainly reflect biochemical properties (Wolter and Townsend, 2011; 

Bhattarai et al., 2021). 
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While BAPH estimation is widely performed using statistical modeling utilizing its 

relationship with remote sensing variables, particularly spectral vegetation indices (SVIs) (Wolter 

et al., 2008; Ahmadi et al., 2020 ), the estimation of LAI is generally based on either of the 

following methods: 1) empirical methods that statistically relate LAI to canopy reflectance or 

SVIs; or 2) physical or radiative transfer models where LAI is retrieved through inversion of a 

spectral library created in forward mode (Delegido et al., 2011; Fang et al., 2019; Darvishzadeh et 

al., 2019b). Empirical methods are often biome- and/or time-specific and can suffer from 

saturation effect (Delegido et al., 2011); but this can be addressed by including appropriate site 

variables and optimized band combinations for creating SVIs, in particular red-edge and three-

band combination SVIs (Mananze et al., 2018; Wang et al., 2018c). In addition, using a 

combination of suitable SVIs and robust machine learning algorithms, empirical models can 

outperform physical ones due to their statistical superiority (Cui and Kerekes, 2018; Manzane et 

al., 2018). Furthermore, the empirical methods are simple and straightforward for both 

interpretation and future development (Delegido et al., 2011; Fang et al., 2019).  

Our study focused on the estimation of both LAI and BAPH for two commercially and 

ecologically important tree species in eastern North America, balsam fir (Abies balsamea (L.) 

Mill.; BF) and red spruce (Picea rubens Sarg.; RS), which are also threatened by a periodic 

outbreak of eastern spruce budworm (Choristoneura fumiferana Clem.; SBW) (Rahimzadeh-

Bajgiran et al., 2018). The susceptibility of the forest stands to SBW is largely impacted by the 

distribution and stand characteristics of host species (Chen et al., 2021; Wolter et al., 2008). A 

comprehensive inventory of host species can guide us to identify areas with high host-species 

abundance, perform effective silvicultural operations, and management approaches on both stand 

and landscape levels to mitigate the susceptibility and eventually future damage from the SBW. 
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In general, we aimed to accurately estimate the abundance of two primary SBW host 

species in Maine, USA. Our specific objectives were:  

•  Modeling the LAI and BAPH of BF and RS using the combined application of 

Sentinel-1 SAR and Sentinel-2 optical satellite data. 

• Evaluating the contribution of site variables to the estimation of LAI and BAPH. 

• Improving the accuracy of LAI and BAPH modeling through incorporating deep 

learning algorithms. 

• Identifying key predictors for LAI and BAPH in BF and RS forests of Maine. 

2.2 Materials and Methods 

The workflow presented in Figure 2.1 summarizes the entire procedure of our study. 

Explanations of each step in the workflow are described in later sections.  

2.2.1 Study area and field data 

This study was conducted in the state of Maine, USA (Figure 2.1). Maine has 89.1 percent 

of the total land area covered with forest, where BF and RS are the most abundant tree species in 

terms of number (36 percent of the entire stems) and volume (83.2 percent of the total tree volume), 

respectively (Butler, 2018).  
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Figure 2. 1. General workflow of the methodology adopted to model leaf area index (LAI), and 

basal area per hectare (BAPH). VV and VH are the Vertical-Vertical, and Vertical-Horizontal 

polarization modes, respectively. RF: Random Forest; MLP: Multi-Layer Perceptron 

The ground plot data were collected from 12 University of Maine Cooperative Forestry 

Research Unit’s Commercial Thinning Research Network (CTRN) sites (Figure 2.2) in northern 

and central Maine in summer 2018. We used a total of 73 measurement plots (26.6×30.5 m2) with 

40 dominant BF and 33 dominant RS plots. The tree-level measurements: diameter at breast height 

(DBH), crown length (CL), and tree height (HT) were measured in each plot (DeRose and 

Seymour, 2010). Tree leaf area (TLA) was calculated using a species- and site-specific allometric 

equation (Weiskittel et al., 2009): 

TLA= b0 (DBH (b1
+ b

2
CL+ b

3 
(HT/DBH)))   (1) 
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where, b0, b1, b2, and b3 are the unique parameters of the site-specific, tree-level leaf area 

equation for different tree species with remaining variables already defined above. Finally, LAI 

was derived using the following equation: 

LAI=TLA/plot area     (2) 

BAPH for each plot was estimated using the DBH. The minimum/maximum values for the 

LAI and BAPH of inventory plots were 0.22 m2 m-2/5.85 m2 m-2 and 2.22 m2 ha-1 /48.33 m2 ha-1, 

respectively.   

 

Figure 2. 2. Location of University of Maine Cooperative Forestry Research Unit’s Commercial 

Thinning Research Network (CTRN) sites (a) and forest type map retrieved from the National 

Land Cover Database (NLCD 2016) (b) where the evergreen forest type is dominated by balsam 

fir (c) and red spruce (d). QC: Quebec; NB: New Brunswick; ME: Maine; NH: New Hampshire. 
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2.2.2 Satellite data collection and preprocessing 

We downloaded 21 multi-temporal Sentinel-2A and 2B Level 1C Top-Of-Atmosphere 

(L1C-TOA) reflectance images (https://earthexplorer.usgs.gov/) between 2017 and 2020 and 

synthetic aperture radar (SAR) Sentinel-1 images (https://asf.alaska.edu/) for 2018. Multi-

temporal images for three seasons of mid-spring (May, MSp), mid-summer (June and July, MSm) 

and fall (September through November, Fall) were used for modeling BAPH, whereas LAI 

estimation was conducted using single-date imagery from the peak growing season (June-July). 

We used the Sen2Cor plugin in Sentinel Application Platform (SNAP) to convert Sentinel-

2 L1C-TOA products to L2A surface reflectance products and then to calculate several SVIs at 20 

m spatial resolution (Korhonen et al., 2017; Dube et al., 2019; Bhattarai et al., 2021). Our variables 

include both spectral bands and SVIs, resulting in 118 Sentinel-2 variables from three dates for 

BAPH estimation, and 36 variables (single-date) for LAI estimation.  

The dual-polarized (VH: Vertical-Horizontal, and VV: Vertical-Vertical) Sentinel-1 data 

were preprocessed in SNAP, then resampled to 20 m spatial resolution (Bhattarai et al. 2021). In 

addition to single-date speckle filtering, we also incorporated multi-temporal speckle filtering in 

the preprocessing workflow of SAR imagery, considering the promising results from previous 

studies (Yuan et al., 2018). The multi-temporal speckle filtering method was expected to better 

suppress the speckles in SAR images without compromising the spatial resolution, taking 

advantage of temporal information from the images. However, in our study, multi-temporal 

speckle filtering did not produce better results (results not included) than the single-date speckle 

filtering; consequently, models were built using the data from single-date speckle filtering. We 

ultimately derived two sets of six (three-date; VV_MSp, VH_MSp, VV_MSm, VH_MSm, 
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VV_Fall, VH_Fall) and two (single-date; VV_MSm, VH_MSm) variables from Sentinel-1 for 

BAPH and LAI modeling, respectively.   

2.2.3 Modeling LAI and BAPH 

Artificial neural networks (ANN) (Jain et al., 1996) were used and compared with the 

widely used machine learning algorithm, Random Forest (RF) (Breiman, 2001), for modeling LAI 

and BAPH estimation. We used a feedforward ANN known as Multi-Layer Perceptron (MLP), 

which is trained with a backpropagation technique (Jain et al., 1996). From the application point 

of view, MLP is becoming popular among researchers in various realms, including analyzing 

satellite data (Foody, 2004; Astola et al., 2019). On the other hand, RF is an ensemble of decision 

trees proven suitable in remote sensing data analysis due to its interpretation simplicity and 

usability with different data types (Astola et al., 2019; Bhattarai et al., 2021).  

The VSURF R-package was used for Sentinel-2 variable reduction based on the recursive 

variables elimination technique (Bhattarai et al., 2021). In addition, the Pearson correlation 

coefficient (ranging between -1 and +1) between the variables returned after running the VSURF 

algorithm was evaluated, and highly correlated variables (correlation coefficient approaching -1 

or +1) were eliminated. Eventually, the SAR and site variables (elevation, slope, aspect, and depth 

to water table (DWT) at 10 m spatial resolution) (White et al., 2013) were incorporated with the 

Sentinel-2 remote sensing variables to reinforce the model. MLP and RF models were run with the 

final sets of variables in R 3.5.1 using the Caret package, compared and the best model was used 

for the final prediction.  

We selected the two final individual models with the best accuracies to estimate LAI and 

BAPH for RS and BF. Final models were validated based on the repeated k-fold cross-validation 

technique, where five-fold cross-validation was repeated five times. External validation was 
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carried out on the test data (30% of total data), which were never used for model training. 

Furthermore, the performance of the models was assessed based on the coefficient of 

determination (R2), root mean squared error (RMSE), and normalized RMSE (nRMSE: 

normalized with range), along with their standard deviations (sd).  

Table 2. 1. Sentinel-2 derived SVIs used for RS and BF LAI and BAPH modeling. 

SVIs Equation 

Structure 

Atmospherically Resistant Vegetation Index (ARVI) (B8A-2*B4+ B2 )/(B8A+2* B4+ B2) 

Enhanced Vegetation Index7 (EVI7) 2.5*(B7-B4)/(1+B7+6*B4-7.5*B2) 

Enhanced Vegetation Index8 (EVI8) 2.5*(B8A-B4)/(1+B8A+6* B4-7.5*B2) 

Modified Simple Ratio (MSR) ((B7/B4)-1)/sqrt((B7/B4)+1) 

Normalized Difference Vegetation Index (NDVI)  (B8A-B4)/(B8A+B4) 

Soil Adjusted Vegetation Index (SAVI) 1.5*(B8A-B4)/(B8A+B4+0.5) 

Wide Dynamic Range Vegetation Index (WDRVI) ((0.01*B7)-B4) /((0.01*B7+B4)+((1-

0.01)/(1+0.01))) 

Physiology/stress 

Anthocyanin Reflectance Index1 (ARI1) (1/B3)-(1/B5) 

Anthocyanin Reflectance Index2 (ARI2) (B8A/B3)-(B8A/B5) 

Carotenoid Reflectance Index1 (CRI1) (1/B2)-(1/B3) 

Carotenoid Reflectance Index2 (CRI2) (1/B2)-(1/B5) 

Normalized Difference Infrared Index11 (NDII11) (B8A-B11)/(B8A+B11) 

Normalized Difference Infrared Index 12 (NDII12) (B8A-B12)/(B8A+B12) 

Plant Senescence Reflectance Index (PSRI) (B4−B3)/B8A 

Biochemistry 

Chlorophyll Green Index (GCI) (B8A/B3) –1 

Chlorophyll Red Edge (Clre) (B7/B5)-1 

Green Atmospherically Resistant Index (GARI) (B8A-B3-(B2-B4))/(B8A+B3-(B2-B4))  

Green NDVI (GNDVI) (B8A-B3)/(B8A+B3) 

Inverted Red Edge Chlorophyll Index (IRECI) (B7-B4)*(B6/B5) 

MERIS Terrestrial Chlorophyll Index (MTCI) (B6-B5)/(B5-B4) 

Modified Chlorophyll Absorption in Reflectance 

Index (MCARI) 

1-((0.2)*(B5-B3)/(B5-B4)) 

Normalized Difference Vegetation Index45 

(NDVI45) 

(B5-B4)/(B5+B4) 

Normalized Difference Vegetation Index65 

(NDVI65) 
 

 

 

(B6-B5)/(B6+B5) 
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Table 2.1 continued… 

 

 

Red-Edge Normalized Difference Vegetation Index 

(NDVIRE) 

(B8A-B6)/(B8A+B6) 

Sentinel-2 Red Edge Position (S2REP) 705+35*((((B7+B4)/2)-B5)/(B6-B5)) 

Transformed Chlorophyll Absorption in Reflectance 

Index (TCARI) 
3∗((B5-B4)-0.2∗(B5-B3)∗(B5/B4))  

Triangular Vegetation Index (TVI) 0.5∗(120∗(B6−B3)−200∗(B4−B3) 

 

2.3 Results 

2.3.1. Selection of Sentinel-1, Sentinel-2, and site variables for modeling 

The final set of variables (including Sentinel-1, Sentinel-2, and site variables) as shown in 

Figure 2.3 depicted the dominance of Sentinel-2 variables for the RS, and BF LAI and BAPH 

modeling. Most of the Sentinel-2 variables selected for the prediction were red-edge variables and 

represented the category of SVIs expressing physiology/stress (CRI2, PSRI, CRI1) and leaf 

chemistry (S2REP, TCARI, IRECI, and NDVIRE). Specifically, S2REP and IRECI were 

prominent for modeling BAPH, while NDVIRE and IRECI were significant for LAI. In addition, 

the variables selected for BAPH estimation mainly consisted of mid-summer as compared to mid-

spring and fall variables.  

The incorporation of Sentinel-1 variables did not benefit any of the final models, although 

these variables demonstrated some promise on integration with Sentinel-2 variables during the 

intermediate formulations of LAI models (Table 2.2). However, the site variables were significant 

for all models. Elevation was among the best variables for modeling LAI and BAPH of both 

species, while DWT was important for modeling LAI for RS only. Slope and aspect were not 

influential for any of the models.  
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Figure 2. 3. Variable importance plots for four final models using Sentinel-1, Sentinel-2, and site 

variables. Variable abbreviations follow the pattern of, variable name_season of acquisition. MSp: 

mid-spring; MSm: mid-summer; Fall: fall (refer to Table 2.1 for the variables names and 

information). 

2.3.2. Model performance and validation 

Several combinations of Sentinel-1, Sentinel-2, and site variables were tested for LAI and 

BAPH modeling using the RF algorithm, and the outcomes are presented in Table 2.2. In this table, 

the rows in bold indicate our best model combinations based on Figure 2.3. However, to be 

comparable with available literature we also evaluated single best SVI and SAR variables for 

model building.  

The RF models developed for LAI estimation attained the lowest nRMSE of 0.14 and 0.18 

for RS and BF, respectively, with Sentinel-2 multi-variable combination. The superiority of the 

multi-variable model was observed over models based on a single SVI for LAI estimation in our 

study (Table 2.2). Further addition of SAR variables marginally decreased the estimation error 
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(0.72 m2 m-2 for RS and 1.07 m2 m-2 for BF) with nRMSE almost the same; however, the 

combination of Sentinel-2 and site variables generated better results. The combination of Sentinel-

2 and site variables (Elevation and DWT) attained an overall lowest LAI estimation nRMSE of 

0.12 for RS, whereas Sentinel-2 variables plus elevation yielded the lowest estimation nRMSE of 

0.16 for BF. 

BAPH for both BF and RS was estimated with nRMSE of 0.12, using Sentinel-2 variables 

alone. The addition of Sentinel-1 variables did not improve the accuracy further. Nevertheless, 

incorporating site variables (elevation) decreased the RMSE slightly to 5.69 m2 ha-1 for BF-BAPH 

and 5.18 m2 ha-1 for RS-BAPH with the nRMSE unchanged at 0.12. Besides elevation, none of the 

site variables (slope, aspect, or DWT) helped to improve the model.  

Sentinel-1 variables alone performed poorer than expected with RF (Table 2.2). However, 

the addition of site variables, especially elevation, improved the model accuracy marginally for all 

models (RS-LAI, BF-LAI, and RS-BAPH) except BF-BAPH, where the model error increased 

after the addition of elevation. After incorporating elevation, the lowest nRMSEs achieved with 

Sentinel-1 variables were 0.27, 0.32, 0.28, and 0.30 for RS-LAI, BF-LAI, RS-BAPH, and BF-

BAPH models, respectively.  

Under further evaluation of the performance of final variables obtained after variable 

reduction (Figure 2.3) using MLP regression, none of the formulated models could yield better 

accuracy than their RF regression counterparts (Figure 2.4). A single hidden layer returned the 

best results for all four MLP models. RS-LAI and BF-LAI attained the best result with six and five 

neurons, respectively, while RS-BAPH and BF-BAPH required seven individual neurons in the 

hidden layer. The nRMSEs with the MLP algorithm for RS-LAI, BF-LAI, RS-BAPH, and BF-

BAPH models were 0.13 (0.04), 0.18 (0.06), 0.14 (0.03), and 0.18 (0.04), respectively. 
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The four best RF models presented in bold in Table 2.2 were selected to predict the 

independent test dataset. The model performance on the testing dataset (Figure 2.5) confirms the 

stability of the models we created using our training data. We obtained a robust nRMSE as low as 

0.13 and 0.15 for BF-BAPH, and RS-BAPH whereas these values were 0.18 and 0.17 for BF-LAI, 

and RS-LAI, respectively. Figure 2.5 demonstrates the relationship between the predicted and 

actual LAI and BAPH values, which highlights our models’ capacity on a relatively independent 

dataset.  

Table 2. 2. Performance of the models formulated to estimate LAI and BAPH using RF model. 

DWT: depth to the water table. SAR includes six variables (VV_MSp, VH_MSp, VV_MSm, 

VH_MSm, VV_Fall, VH_Fall) for BAPH while two variables (VV_MSm, VH_MSm) for LAI 

modeling. 

Models               Variables used R2 (sd) RMSE (sd) nRMSE (sd) 

RS-LAI IRECI 

NDVIRE 

PSRI 

IRECI+Elevation 

IRECI+NDVIRE+PSRI  

0.45 (0.15) 

0.45 (0.21) 

0.25 (0.16) 

0.68 (0.18) 

0.67 (0.17) 

0.95 (0.15) 

1.00 (0.28) 

1.10 (0.20) 

0.75 (0.21) 

0.74 (0.17) 

0.18 (0.03) 

0.19 (0.05) 

0.21 (0.04) 

0.15 (0.04) 

0.14 (0.03) 

IRECI+NDVIRE+PSRI+Elevation 0.74 (0.16) 0.65 (0.16) 0.13 (0.03) 

IRECI+NDVIRE+PSRI+Elevation+DWT 0.75 (0.16) 0.63 (0.19) 0.12 (0.04) 

IRECI+NDVIRE+PSRI+SAR 0.69 (0.17) 0.72 (0.20) 0.14 (0.04) 

SAR 0.11 (0.13) 1.00 (0.20) 0.29 (0.06) 

SAR + Elevation 0.10 (0.13) 0.93 (0.17) 0.27 (0.05) 

BF-LAI NDVIRE 

IRECI 

CRI1 

NDVIRE+Elevation 

NDVIRE+IRECI+CRI1 

0.59 (0.15) 

0.36 (0.15) 

0.26 (0.18) 

0.71 (0.13) 

0.71 (0.13) 

1.31 (0.23) 

1.66 (0.15) 

1.84 (0.36) 

1.06 (0.23) 

1.09 (0.21) 

0.22 (0.04) 

0.28 (0.04) 

0.31 (0.06) 

0.18 (0.04) 

0.19 (0.04) 

NDVIRE+IRECI+CRI1+Elevation 0.78 (0.10) 0.95 (0.19) 0.16 (0.03) 

NDVIRE+IRECI+CRI1+Elevation+DWT 0.77 (0.09) 0.97 (0.19) 0.17 (0.03) 

NDVIRE+IRECI+CRI1+SAR 0.72 (0.11) 1.07 (0.20) 0.18 (0.03) 

SAR 0.13 (0.13) 1.08 (0.19) 0.32 (0.06) 

SAR+Elevation 0.12 (0.14) 1.05 (0.17) 0.32 (0.05) 

RS-BAPH S2REP_Fall+IRECI_MSm+PSRI_Fall 

+PSRI_MSp+NDVIRE_MSm+B11_MSp 

+CRI1_MSm  

0.79 (0.12) 5.27 (1.29) 0.12 (0.03) 

 S2REP_Fall+IRECI_MSm+PSRI_Fall 

+PSRI_MSp+NDVIRE_MSm+B11_MSp 

+CRI1_MSm+Elevation 

0.80 (0.11) 5.18 (1.23) 0.12 (0.03) 
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Table 2.2 continued… 

 

 S2REP_Fall+IRECI_MSm+PSRI_Fall 

+PSRI_MSp+NDVIRE_MSm+B11_MSp 

+CRI1_MSm+Elevation+DWT 

0.80 (0.12) 5.20 (1.32) 0.12 (0.03) 

 S2REP_Fall+IRECI_MSm+PSRI_Fall 

+PSRI_MSp+NDVIRE_MSm+B11_MSp 

+CRI1_MSm+SAR 

0.79 (0.10) 5.47 (1.33) 0.13 (0.03) 

 SAR 0.11 (0.14) 8.77 (1.87) 0.29 (0.06) 

 SAR+Elevation 0.14 (0.15) 8.55 (1.84) 0.28 (0.06) 

BF-BAPH S2REP_Fall+S2REP_MSm+TCARI_MSp 

+CRI2_MSm 

0.87 (0.06) 5.71 (1.45) 0.12 (0.03) 

S2REP_Fall+S2REP_MSm+TCARI_MSp 

+CRI2_MSm+Elevation 

0.87 (0.06) 5.69 (1.44) 0.12 (0.03) 

S2REP_Fall+S2REP_MSm+TCARI_MSp 

+CRI2_MSm+Elevation+DWT 

0.88 (0.06) 5.85 (1.27) 0.13 (0.03) 

S2REP_Fall+S2REP_MSm+TCARI_MSp 

+CRI2_MSm+SAR 

0.84 (0.08) 6.40 (1.49) 0.14 (0.03) 

SAR 0.17 (0.15) 7.99 (1.11) 0.30 (0.04) 

SAR+Elevation 0.15 (0.14) 8.11 (1.17) 0.30 (0.04) 

 

 

Figure 2. 4. LAI, and BAPH model accuracy for the RF and MLP models using the best performing 

variables obtained after the variable reduction procedure (Table 2.2 and Figure 2.3). Accuracy 

metrics are presented with standard deviation (sd) inside the parenthesis. Error bars represent one 

sd. 
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Figure 2. 5. Actual vs. predicted values of LAI and BAPH for four best RF regression models 

(Table 2.2). The diagonal line running across each subplot is a 1:1 relationship between the actual 

and predicted values. 

2.4 Discussion 

Our study attempted to construct models to estimate the species-specific LAI and BAPH 

of two economically important tree species in Maine, namely, red spruce (RS) and balsam fir (BF. 

Previous studies on the estimation of LAI (Korhonen et al., 2017; Neinavaz et al., 2019) and BAPH 

(Ahmadi et al., 2020) of forest cover were not species-specific. These species-specific models to 

estimate LAI and BAPH are essential to determine the susceptibility of forests to host-specific 

defoliators like SBW and to evaluate the basal area of the hosts under risk, respectively. In 

addition, we evaluated the combined use of SAR and optical data for LAI and BAPH modeling 

and included several site variables in estimating both LAI and BAPH in our study.  



23 
 

We used combined Sentinel-2 multispectral, Sentinel-1 SAR, and site data with widely 

used machine learning algorithms (RF and MLP). Our results demonstrate that incorporating 

Sentinel-1 SAR variables did not improve models based on Sentinel-2 data using either single-

date or a multi-temporal speckle filtering procedure. Our results in terms of the performance of 

Sentinel-1 SAR data for LAI estimation are in contrast to the findings from Manninen et al. (2005). 

They reported the superiority of radar (Environmental Satellite (ENVISAT) Advanced Synthetic 

Aperture Radar (ASAR) C-band) data over optical (SPOT high-resolution visible and infrared 

(HRVIR1) imagery for the estimation of LAI in the boreal forest of Finland (estimation error of 

0.28 m2 m-2 vs. 0.39 m2 m-2 respectively). Stankevich et al. (2017) also demonstrated a promising 

relationship (R2=0.81) between the relative difference polarization index (RDPI) (derived from 

Sentinel-1 bands) and the LAI of temperate deciduous and mixed forest in Ukraine, which could 

not be observed in our study using VV, and VH polarized bands. The inferior result from SAR 

data in our study compared to other studies could be attributed to the differences in variables used 

(RDPI vs raw bands) and sensors (SPOT-HRVIR1 vs Sentinel-2) as well as the type of forest under 

consideration. More importantly, our models are species specific which might not be directly 

comparable with the above studies.  

The modeling of BAPH also demonstrated the superiority of optical variables (Sentinel-2) 

over the SAR variables. A similar observation for tree species BAPH modeling in Minnesota was 

reported by Wolter and Townsend (2011), where the performances of Radarsat (C-band SAR) and 

PALSAR (L-band SAR) were inferior to that of Landsat-5 data. In agreement with our findings, 

Shamsoddini (2012) reported the superior performance of SPOT-5 optical data for BAPH 

estimation as compared to the Advanced Land Observation Satellite (ALOS) radar data for radiata 

pine (Pinus radiata L.) plantation in Australia. 
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We formulated Sentinel-2 multi-variable SVI, and individual spectral band models for both 

LAI and BAPH estimation to include the combined effect of different variables responsible for the 

determination of unique canopy traits. The aforementioned approach (multi-variable modeling) 

has already been practiced in several studies from the past for both LAI (Korhonen et al., 2017; 

Dube et al., 2019; Meyer et al., 2019) and BAPH (Wolter and Townsend, 2011; Astola et al., 2019; 

Ahmadi et al., 2020) estimation with a great promise which can be observed in our results as well 

(Table 2.2). The nRMSE was improved by 0.06 for RS-LAI and BF-LAI, using multi-variables in 

place of the single best predicting variable. Single variables were not tested for BAPH models 

since we used multi-temporal data for modeling. 

The dominance of red-edge variables for modeling LAI (NDVIRE, IRECI, PSRI, and 

CRI1) and BAPH (S2REP, NDVIRE, IRECI, TCARI, PSRI, CRI1, and CRI2) in our study are in 

agreement with the findings from the previous investigations (Korhonen et al., 2017; Wang et al., 

2018c; Darvishzadeh et al., 2019b). Majasalmi and Rautiainen (2016) found a moderate 

relationship between S2REP and/or IRECI and LAI, which does not align fully with our results 

(S2REP not selected). Nevertheless, NDVIRE (highly correlated with S2REP) was one of the most 

influential variables for the LAI models we developed. While the majority of the available studies 

on LAI estimation are focused on the broader spectrum of forest types (Majasalmi and Rautiainen, 

2016; Korhonen et al., 2017; Meyer et al., 2019), our study proposes an algorithm that can estimate 

the LAI of specific tree species.  

For BAPH estimation, the major role of red-edge variables in our study could be supported 

with several other studies with similar findings. Astola et al. (2019) compared the potential of 

Landsat-8 and Sentinel-2 variables for predicting several forest variables, including the BAPH in 

the boreal forest in southern Finland, where they concluded the advantage of red-edge bands in 
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Sentinel-2, which resulted in better performance compared to Landsat-8. Furthermore, the study 

on mapping BAPH and other stand variables in northern Iran conducted by Ahmadi et al. (2020) 

also emphasizes the prime role of red-edge bands in estimating species-specific BAPH. 

Site variables played a significant role in estimating both LAI and BAPH in our study. 

There have been very few investigations regarding the contribution of site variables to forest 

biophysical parameters estimation; however, their incorporation with remote sensing variables has 

produced improved results for similar studies (Bhattarai et al., 2020; Rahimzadeh-Bajgiran et al., 

2020; Bhattarai et al., 2021). A recent study from Ahmadi et al. (2020) on estimating forest BAPH 

integrating site variables with Sentinel-2 data highlights the importance of elevation, which aligns 

with our findings. We found elevation to be one of the best variables for the estimation of LAI and 

relatively noteworthy in BAPH modeling (Figure 2.3 and Table 2.2). In general, the inclusion of 

site variables in the final model (Sentinel-2 variables) improved the RMSE by 0.11-0.14 m2 m-2 

(nRMSE rose by 0.02-0.03) for LAI models, whereas by 0.02-0.09 m2 ha-1 (nRMSE unchanged) 

for BAPH models.  

Comparing the performances of RF and MLP algorithms using the final sets of reduced 

variables (Figure 2.3), RF model outperformed MLP in terms of the estimation error (Figure 2.4); 

however, the RS-LAI model performed slightly better with MLP algorithm in terms of R2. The 

results suggest that RF regression can model tree inventories (LAI and BAPH) comparatively 

better than ANN. Similar to our findings, several other researches have suggested using other 

algorithms like Gaussian process regression (Verrelst et al., 2015) and RF (Wei et al., 2017; Wang 

et al., 2018a) over the ANN algorithm for the estimation of biophysical properties of vegetation. 

The better performance of RF in our study can be attributed to the robustness of the RF algorithm 
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in handling high variability in the field data, which was evident in previous findings as well (Wang 

et al., 2018a; Dube et al., 2019).   

Both LAI and BAPH models were successfully cross-validated. Our R2 values of 0.80-0.87 

for BAPH models (Table 2.2) are relatively higher than some previous studies and our RMSE 

values of 5.18-5.69 m2 ha-1 are lower. For example, Townsend (2002) used a combination of radar 

images (ERS-1, JERS-1, and Radarsat) and Landsat imagery to achieve an overall validation R2 

of 0.59-0.87 and RMSE of 6.71-13.40 m2 ha-1 for modeling BAPH of a mixed forest in North 

Carolina. Further, Wolter and Townsend (2011) used multi-sensor optical and SAR data to 

estimate the abundance of various coniferous and broadleaved species where the BAPH model for 

balsam fir attained an R2 value of 0.78, which is comparatively lower than the R2 value we 

achieved (0.87); nonetheless, the RMSE value they reported (2.26 m2 ha-1; nRMSE unknown) is 

better than that of ours. Ahmadi et al. (2020) also achieved the highest R2 of only 0.48 and RMSE 

of 8.12 m2 ha-1 (inferior performance as compared to our model) for BAPH modeling using 

Bayesian additive regression trees technique.  

The LAI models we developed attained a cross-validated R2 of 0.75-0.78 and RMSE of 

0.63- 0.95 m2 m-2. Our accuracy metrics were comparable and even better at times than other 

similar models reported in the literature (Korhonean et al., 2017; Dube et al., 2019; Meyer et al., 

2019; Neinavaz et al., 2019; Qiao et al., 2019). Meyer et al. (2019) attained the best R2 of 0.59 and 

RMSE of 0.88 m2 m-2 for the LAI estimation of a temperate forest in Germany that is lower in 

terms of R2 while close to ours in terms of the RMSE. Furthermore, Korhonean et al. (2017) used 

Sentinel-2 and Landsat-8 to compare their potential to estimate LAI in the boreal forest of Finland 

with the highest cross-validated R2 of 0.73, RMSE of 0.59, and NRMSE of 0.19, which is slightly 

better than our models in terms of RMSE but not in terms of R2 (0.75-0.78) or nRMSE (0.12-0.16).  
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The empirical method we used for LAI and BAPH estimation using RF is promising for 

future reference; however, the comparisons we made between different studies acknowledges that 

they have used unique data collected from diverse sites and sensors. Given that there are limited 

studies on species-specific inventory parameter estimation using remote sensing techniques, our 

models can be useful for the estimation of BF and RS LAI and BAPH in Maine and similar 

geographical regions. Nevertheless, we highly recommend that future studies evaluate the strength 

of other machine learning algorithms as well as SAR L-band and P-band data for LAI and BAPH 

modeling.      

2.5 Conclusions 

Sentinel-1 and -2 data are invaluable resources for remote sensing applications in forest 

resources, whose potential has been studied in this analysis for BAPH and LAI estimation for two 

economically and ecologically conifers, RS and BF, in Maine, USA. Specifically, the diverse SVIs 

derived from Sentinel-2 imagery represent a multitude of canopy properties. Sentinel-1 SAR 

imagery was not found to be helpful in our study and needs additional evaluation in future studies. 

In particular, site variables were found promising in prediction models and should be considered 

more in future work.  

Our study further demonstrated the superiority of RF over the MLP algorithm for 

estimating canopy biophysical parameters, implying the adequacy of the commonly used machine 

learning algorithms over deep learning algorithms for this particular application. However, the use 

of deep learning algorithms should still be considered for other datasets and variable combinations. 

The accuracy produced by our statistical models is encouraging. The models developed could be 

used by stakeholders to predict BF and RS abundance for future forest management activities as 

they are simple to build and cost-effective. In light of SBW outbreak, evaluation of host abundance 
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in terms of LAI and BAPH is a simplified concept that can assist the forest managers in adopting 

a desirable silvicultural practice to increase the resistance of the broader forest ecosystem against 

possible outbreaks in the future. 
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CHAPTER 3 

MULTI-SOURCE MAPPING OF FOREST SUSCEPTIBILITY TO SPRUCE 

BUDWORM DEFOLIATION BASED ON STAND AGE AND COMPOSITION ACROSS 

A COMPLEX LANDSCAPE IN MAINE, USA 

“The contents of this chapter have been published in Bhattarai et al. (2022a).” 

3.1 Introduction 

Species composition mapping with their detailed spatial information is crucial for stand as 

well as landscape-level forest management. Species composition over a region serves as an 

indicator of habitat quality and biodiversity (Riedler et al. 2015), forest health (Terhonen et al. 

2019), and pest susceptibility (Riihimaki et al. 2004). Therefore, up-to-date information on the 

constituent forest species of a landscape is beneficial for the forest managers in framing robust 

management or conservation plans to attain a healthy and sustainably growing forest.  

In eastern North America, spruce (Picea spp)-balsam fir (Abis balsamea (L.) Mill.) forests 

have important ecological and economical values such as production of industrial timber and 

pulpwood, serving as habitat to wildlife, sustaining water resources and providing recreational 

services to the society; however, their growth and survival are severely affected by cyclic outbreak 

(recurrence period of about 30-40 years) of the eastern spruce budworm (Choristoneura 

fumiferana Clem.; SBW) in the region. SBW is one of the historic forest disturbance agents in the 

Northeastern United States and Canada, which has been a significant threat to these forests 

(MacLean et al. 2019; Rahimzadeh-Bajgiran et al. 2018; Rose and Lindquist 1994). The recurrent 

outbreak pattern of SBW and its potential to invade a large area within a few years renders 

challenges to its control. The current SBW outbreak in the region started in 2006 from Quebec, 

Canada, and defoliated more than 13 million hectares of forests in Quebec by 2020 and is spreading 
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towards the northern forests of Maine, USA, and other bordering territories (MacLean et al. 2019; 

Ministère des Forêts, de la Faune et des Parcs 2020). In this context, the state of Maine 

(neighboring Quebec) recorded a loss of hundreds of millions of dollars during the last SBW 

outbreak in the 1970s-1980s (Wagner et al. 2015) when both forest composition and SBW 

defoliation data were coarse and incomplete for effective outbreak management. This warrants 

preparedness to respond to the upcoming outbreak effectively, informed by spatially 

comprehensive products that incorporate forest composition-based susceptibility maps produced 

through modern remote sensing technology.  

The host-specific SBW primarily feeds on the needles of balsam fir, red spruce (Picea 

rubens Sarg.), and white spruce (Picea glauca), but damages to other conifer species can also 

occur when these are growing in a mixture with the favored tree species (Rose and Lindquist 1994). 

In general, the available SBW host species in the Northeastern USA and Canada (from high to low 

SBW susceptibility; the tendency of being attacked) are balsam fir, white spruce, red spruce, and 

black spruce (Picea mariana (Mill.) (Bhattarai et al. 2020; Hennigar et al. 2008; Wolter et al. 

2008), which are also the most important commercial tree species in the region. There exists a 

complex interaction between the population of SBW and the availability of host species for a 

spruce-fir forest to be infected. The forest experiences defoliation when an elevated SBW 

population coincides with the host species; however, the population of SBW is controlled by the 

speed of outbreak spread as well as the application of chemical treatments to suppress them 

(MacLean et al. 2019).  

Nevertheless, the host availability in the forest plays a major role in severing the 

defoliation. In addition, the mortality and growth reduction after the defoliation of host species 

depends upon their maturity, where mature hosts are more impacted than young ones (Hennigar et 



31 
 

al. 2011). Based on the premise of the host-maturity-dependent nature of SBW defoliation severity, 

a precise and periodically updated host species composition product incorporating maturity (stand 

impact types map) is of great significance for regular assessment of the forests, modifying 

management approaches, and preparing the landowners for the future outbreaks in general 

(Bhattarai et al. 2021; Wagner et al. 2015).   

Forest-based species composition assessment holds a long history; however, the methods 

involved in the past such as in-situ field and aerial surveys, were associated with high resource 

consumption. With the development of satellite-based remote sensing data acquisition 

technologies over the past few decades, a diverse range of spatial, spectral, and temporal 

information has become available to researchers for mapping tree species on large scale and high 

resolution at minimum cost. From the suite of optical remote sensing data openly available, 

Landsat (Attarchi and Gloaguen 2014; Soleimannejad et al. 2019; Thompson et al. 2015), and 

Sentinel-2 (Bhattarai et al. 2021; Grabska et al. 2019; Grabska et al. 2020; Immitzer et al. 2019; 

Persson et al. 2018; Wessel et al. 2018) data are widely used for species composition mapping; 

yet, Sentinel-2 data is more desirable attributed to their suitable spatial, spectral, and temporal 

resolutions (Bhattarai et al. 2021; Grabska et al. 2019). Very high resolution commercial optical 

imagery such as those from Worldview satellites, as well as hyperspectral imagery are also 

available and perhaps better suited for tree-level identification but they come with higher cost and 

are only locally accessible or only collected on-demand with lower coverage (Furniss et al. 2021; 

Immitzer et al. 2018). Therefore, data from sensors such as Sentinel-2, which provide fine spectral 

and spatial resolution with reasonable temporal resolution (every 5 days), are ideal for forest 

composition mapping.  
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Active remote sensing data like light detection and ranging (LiDAR) are also used either 

alone (Holmgren and Persson 2004) or in combination with other optical data (Hartling et al. 2019) 

to map tree species. Nonetheless, their high cost of acquisition and local availability limit their 

applicability. Sentinel-1 C-band Synthetic aperture radar (SAR) provides global coverage at no 

cost to the end users with high temporal resolution of six days, and it has become more popular 

for vegetation classification (Bhattarai et al. 2021; Dostalova et al. 2021; Erinjery et al. 2018). 

Longer wavelength SAR data like L-band SAR are generally commercially available and have 

been recommended (Bhattarai et al. 2021; Erinjery et al. 2018) and used (Attarchi and Gloaguen 

2014; Liesenberg and Gloaguen 2013; Wolter and Townsend 2011) largely for forest composition 

mapping due to their superiority over C-band SAR data. Furthermore, in recent years, the 

integrated use of cross-sensor data such as radar-radar (Lardeux et al. 2011; Wolter and Townsend 

2011), or optical-radar (Attarchi and Gloaguen 2014; Bhattarai et al. 2021; Wolter and Townsend 

2011; Yu et al. 2018) has garnered interest among the researchers in the field of vegetation 

mapping. In particular, the integration of optical and radar data can characterize the vegetation 

from different perspectives as they are believed to be complementary to each other (Bhattarai et 

al. 2021; Jones and Vaughan 2010). 

Pest host species composition mapping on a landscape level is a relatively newer approach, 

and very few investigations have been reported in this area so far (Bhattarai et al. 2021; Wolter et 

al. 2008). A recent study from Bhattarai et al. (2021) modeled SBW tree host species in New 

Brunswick, Canada, using freely available remote sensing (Sentinel-1, Sentinel-2), and site data. 

However, other than the availability of the host trees, for pests like SBW, the maturity of the forest 

is also a key factor (Hennigar et al. 2011) to determine overall vulnerability. In this work, we 

incorporated additional and improved remote sensing and site variables and compared the accuracy 
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of two widely used classification algorithms to classify SBW host species into eight classes. We 

also produced a SBW susceptibility to defoliation product based on stand impact types (host 

species composition product incorporating maturity) in Maine, USA. Additionally, this study also 

devises a technique to estimate the forest stand maturity utilizing the archive of annual land cover 

and land cover change data. In short, this work leverages and improves upon our prior work 

(Bhattarai et al. 2021) by the incorporation of additional remote sensing products, accounting for 

both stand composition as well as age, and extending the number of impact types mapped, while 

evaluating an alternative nonparametric modeling approach. 

Our specific objectives were to: 1) evaluate the effectiveness of PALSAR-2 L-band, and 

Sentinel-1 C-band SAR data individually and their integration for modeling SBW host species 

together with site variables, 2) employ deep artificial neural network (ANN) algorithm to improve 

SBW host species modeling and compare its performance with the widely tested Random Forest 

(RF) algorithm, 3) integrate Sentinel-2, Sentinel-1, PALSAR-2, and site variables to model and 

map the SBW host species over the state of Maine at a spatial resolution of 20 m, 4) estimate the 

maturity of host species using Land Change Monitoring, Assessment, and Projection (LCMAP) 

products, and 5) mapping SBW susceptibility to defoliation based on stand impact types in Maine 

forests. 

3.2 Materials and Methods 

The overall schematic diagram of our entire study and the methods involved is presented 

in Figure 3.1.  Elaboration of each step is provided in the subsequent sections. 
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Figure 3. 1. Methodological flowchart of the study. The whole study was broadly segmented into 

four parts: (1) field and multi-sensor remote sensing data acquisition and preprocessing, (2) data 

modeling using random forest (RF), and multi-layer perceptron (MLP) algorithms and model 

evaluation, (3) host species map creation using the best model, and (4) age adjusted SBW host 

species and susceptibility mapping using Land Change Monitoring, Assessment, and Projection 

(LCMAP) products. HH (Horizontal-Horizontal), and HV (Horizontal-Vertical) are the 

polarization modes available for PALSAR-2 images, while VV, and VH are the polarization modes 

for Sentinel-1 images. DWT: Depth to Water Table; TWI: Topographic Wetness Index; iBGI: 

improved Biomass Growth Index; SVIs: spectral vegetation indices. 

 

3.2.1 Study area 

The study area comprises most of the state of Maine, USA where SBW susceptible forests 

exist and satellite and field data were available (Figure 3.2). The extrapolation of study area outside 

the range of training data was based on the assumption that the training data used in the study are 

representative of the forest types prevalent throughout the study area. Maine is a maritime state 

with nine diverse climatic zones running from northern uplands to the coastal south of the state 

(Briggs and Lenin 1992). Forests in Maine cover approximately 89.1 percent of the total land area, 
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with the dominance of balsam fir and red spruce in terms of stem number and volume, respectively 

(Butler 2018). The major tree species found in Maine other than balsam fir and red spruce are red 

maple (Acer rubrum L.), yellow birch (Populus alleghanensis Britt.), paper birch (Populus 

papyrifera Marshall), American beech (Fagus grandifolia), quaking aspen (Populus tremuloides 

Michex.), white spruce, black spruce, northern white cedar (Thuja occidentalis L.), eastern 

hemlock (Tsuga canadensis (L.) Carr.), and eastern white pine (Pinus strobus L.) (Butler 2018). 

Almost all the forest in Maine, except a small portion in the southwest, belongs to the Acadian 

forest, a transitional forest between northern coniferous boreal and southern broadleaved forest 

(Rowe 1972).  

 

Figure 3. 2. Study area and the location of sample plots. Training data were obtained from multiple 

sites, namely, University of Maine Cooperative Forestry Research Unit’s Commercial Thinning 

Research Network (CTRN) sites, Carbon Monitoring System (CMS) sites, Howland forest, and 

Penobscot Experimental Forest (PEF). The forest type map presented was acquired from the 

National Land Cover Database (NLCD 2016). QC: Quebec, Canada; NB: New Brunswick, 

Canada; NH: New Hampshire, USA; ME: Maine, USA. 



36 
 

3.2.2 Field data collection for model training and validation 

Ground reference data were obtained from four different field campaigns in Maine 

completed between 2015 and 2018 from a total of 324 sample plots. The four inventory data 

sources were: 1) University of Maine Cooperative Forestry Research Unit’s Commercial Thinning 

Research Network (CTRN) sites (74 plots; Kuehne et al., 2020), 2) Carbon Monitoring System 

(CMS; Deo et al., 2017) sites (28 plots), 3) Howland Research Forest database (48 plots; Teets et 

al., 2018), and 4) Penobscot Experimental Forest database (174 plots; Puhlick et al., 2020). Plot 

sizes were approximately 800 m2 in all sites. Plot-wise basal area was calculated for all the 

constituent tree species, and a threshold of 70% combined basal area was applied to assign each 

plot to one of the eight SBW host species classes developed for our study: balsam fir (BF; 47 

plots), broadleaved (BL; 17 plots), BF and BL (BF/BL; 32 plots), conifers other than BF and spruce 

(Con; 32 plots), Con and BF (Con/BF; 66 plots), Con and BL (Con/BL; 42 plots), spruce (SP; 39 

plots), and Con and SP (Con/SP; 49 plots). In addition to the host species composition field data, 

we also obtained the SBW defoliation data (333 plots classified into nil, light and moderate 

defoliation classes) for the entire state of Maine (2020) to evaluate our final SBW susceptibility 

based on stand impact types map. 

3.2.3 Satellite data acquisition and preprocessing 

3.2.3.1 Sentinel-2 optical data 

We downloaded 30 Sentinel-2 (A, and B) Level 1C Top-Of-Atmosphere (L1C-TOA) 

reflectance images (https://earthexplorer.usgs.gov/) to include three seasons. Data were collected 

from mid-spring (MSp): May, mid-summer (MSm): June, and July, and fall (Fall): September, 

October, and November) (Table 3.1) to represent the unique biological events taking place on the 

tree canopies throughout the year. Essentially, the leaf-on (MSm, and MSp images) and leaf-off 
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(Fall images) conditions along with the distinct changes in leaf chemistry occurring towards the 

end of the fall season can be beneficial to discriminate the canopies of tree species from each other. 

All L1C-TOA products were converted into L2A surface reflectance products and subsequently 

resampled to 20 m spatial resolution using the Sen2Cor plugin available in Sentinel Application 

Platform (SNAP) software. Eventually, nine L2A spectral bands (B2: Blue (490 nm), B3: Green 

(560 nm), B4: Red (665 nm), B5: Red-Edge (705nm), B6: Red-Edge (740 nm), B7: Red-Edge 

(783 nm), B8A: Near Infrared (865 nm; NIR), B11: Shortwave Infrared (1610 nm; SWIR), B12: 

SWIR (2190 nm)) were used to derive spectral vegetation indices (SVIs) for further analysis. We 

used nine spectral bands and 27 Sentinel-2 based SVIs (Table A.1) from three seasons (108 

variables altogether) as optical variables for modeling. Finally, all the spectral bands and SVIs 

from the respective seasons were masked for clouds/haze and non-forested areas (water bodies, 

developed areas, and agricultural lands) and mosaicked (reflectance values averaged at 

overlapping areas). 

3.2.3.2 Sentinel-1 and PALSAR-2 SAR data 

Sentinel-1 Ground Range Detected (GRD) C-band SAR images collected using 

interferometric wide swath (IW) mode were downloaded from two different sources to compare 

the effectiveness of multi-temporal speckle filtering vs monthly averaging during SAR data 

preprocessing. These preprocessing techniques are capable of suppressing the radar noises better, 

incorporating the temporal information (Bhattarai et al. 2022b), which were not tested in previous 

study conducted by Bhattarai et al. (2021). Data were collected for three seasons (MSp, MSm, and 

Fall) of 2018: one using the website of Alaska Satellite Facility (ASF; https://asf.alaska.edu/) 

(Table 3.1) and the other from Google Earth Engine (GEE) platform. The images downloaded 

from the ASF website were preprocessed in SNAP (Filipponi 2019), where the speckle filtering 
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step during the preprocessing workflow was performed using the multi-temporal speckle filtering 

technique (Bhattarai et al. 2022b). In contrast, the images downloaded from the GEE (already 

preprocessed except for the speckle filtering) were averaged monthly, which would ultimately 

suppress speckles. Finally, we acquired two separate sets of dual-polarized amplitude bands: VV 

(Vertical-Vertical) and VH (Vertical-Horizontal) resampled to 20 m spatial resolution. We used 

these amplitude bands to create Normalized Ratio Procedure between Bands (NRPB; Filgueiras et 

al. 2019) (Table A.1), resulting in two sets of nine C-band SAR variables from three seasons.  

Freely available global 25 m resolution L-band  PALSAR-2 yearly mosaic data (Table 3.1) 

from Japan Aerospace Exploration Agency were downloaded for 2018 from GEE platform. This 

yearly averaged world mosaic is in dual-polarization mode: HH (Horizontal-Horizontal), and HV 

(Horizontal-Vertical). The analysis-ready image data values were converted into the backscatter 

intensity values (gamma naught) in decibel units by using the calibration equation provided: 

𝛾° = 10 ∗ 𝑙𝑜𝑔10(𝐷𝑁)2 + 𝐶𝐹    (1) 

where, 𝛾° is the gamma naught value, DN is the image product's digital number, and CF is 

the calibration factor provided. The HH and HV amplitude bands with gamma naught values 

obtained thereafter were resampled to 20 m spatial resolution for final analysis. 

Table 3. 1. Multi-sensor remote sensing data used for our study. Multi-temporal images (from 

three seasons: mid-spring (MSp), mid-summer (MSm), and fall (Fall)) were collected for both 

Sentinel-1 and Sentinel-2 sensors, whereas an annual world mosaic was obtained for PALSAR-2. 

Sensor Imagery date Tile numbers/product 

ID 

Resolution 

Multispectral optical 

instrument (Sentinel-2) 

May 18 2018 TCL, TDN Resampled to 

20 m May 05 2018 TDK, TEK 

May 24 2020 TDL  

 May 10 2018 TDM, TEM, TEN  

 May 13 2018 TCK  

 May 19 2020 TEL  
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Table 3.1 continued…  

 

July 07 2018 

 

 

TCK, TCL, TDN 

 

 July 09 2018 TDK, TEL, TEK  

 June 18 2020 TDL, TDM  

 July 19 2018 TEM, TEN  

 October 05 2020 TCK, TCL  

 October 17 2017 TDK, TDL, TEK  

 November 10 2020 TDM, TEM, TEN  

 September 30 2019 TDN  

 October 31 2020 TEL  

C-band SAR (Sentinel-1) May 04 2018 D74F, 6067, 210C Resampled to 

20 m  May 09 2018 937A 

October 12 2018 DDC7  

October 07 2018 1BA5, 517A, 9B05  

July 08 2018 9C13  

July 03 2018 0B57, 65C6, 31E2  

L-band SAR (PALSAR-2) 2018 ----------------------- Resampled to 

20m 

 

3.2.4 Variable selection and modeling approaches 

Table A.1 presents all Sentinel-1, and Sentinel-2 based SVIs used for our study. Altogether, 

we used 27 Sentinel-2 based SVIs and nine spectral bands, a single Sentinel-1 based SVI, and two 

bands (VV and VH) for three different seasons. The dimension of optical (Sentinel-2: 108 

variables), and SAR (Sentinel-1: nine variables; PALSAR-2: two variables) data were reduced 

separately and they were supplemented with site data (elevation, slope, aspect, latitude, depth to 

water table (DWT; White et al. 2013), topographic wetness index (TWI; Hennigar et al. 2017), 

improved biomass growth index (iBGI; Rahimzadeh et al. 2020), and soil types (U.S. Department 

of Agriculture 2016). We used VSURF R package (Genuer et al. 2015) for the variables’ 

dimensionality reduction, which selects the best predictor variables in three basic steps: 1) removal 

of irrelevant variables, 2) selection of all variables contributing to the prediction, and 3) 

elimination of the redundant variables obtained from Step 2. In addition, the Pearson correlation 

coefficient was estimated among the variables selected by the VSURF algorithm, and highly 
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correlated variables were removed. One of the variables in a pair under correlation evaluation with 

the correlation coefficient value smaller than - 0.7 and greater than + 0.7 (subjective evaluation) 

was removed based on the overall performance of the model with and without that particular 

variable. Ultimately, the optimum variables obtained from both remote sensing data (optical and 

radar) were modeled individually and combined with each other and site variables to obtain a best 

possible model. 

For the classification of SBW host species, Random Forest (RF), one of the most widely 

used machine learning algorithms for remote sensing data analysis, was used. RF is an ensemble 

of decision trees that makes classification decisions based on the majority votes from the decision 

trees developed. It is a non-parametric machine-learning algorithm and returns out-of-bag (OOB) 

accuracy metrics every time the model is run, preventing the necessity of additional ground data 

for external model validation (Breiman 2001). We also formulated an ANN algorithm (Jain et al. 

1996) to examine its performance against the RF algorithm. Our study used Multi-Layer 

Perceptron (MLP), a feedforward ANN well known for remote sensing data analysis (Astola et al. 

2019; Foody 2004), which uses the backpropagation technique for model training. In addition, 10-

fold cross-validation was performed for accuracy assessment in the case of the MLP algorithm, 

whereas the OOB accuracy metrics produced from the internal validation technique were adopted 

for RF. All the models were run in R 3.5.1 using the Caret package. Essentially, we ran our RF 

and MLP models in three different scenarios: 1) using Sentinel-2 variables only; 2) combining 

SAR (Sentinel-1 and PALSAR-2) with Sentinel-2 and site variables; and 3) combining SAR, and 

site variables only. In advance to running any of our model formulations, the training data was 

corrected for class-wise imbalances using R-package SMOTE as performed by Bhattarai et al. 

(2022b) to avoid the potential classification bias in the models. 
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3.2.5 Age determination of host species 

Forest age determination using remote sensing technique is generally performed in 

combination with in-situ data (Maltamo et al. 2020; Zhang et al. 2014); however, we used the 

historic LCMAP products (spatial resolution of 30 m) from 1985 to 2018 

(https://www.usgs.gov/core-science-systems/eros/lcmap) for the stand age estimation. We 

selected two products from the LCMAP database: 1) primary land cover (LCPRI) and 2) annual 

land cover change (LCACHG) data. The thematic change detection method was applied over two 

land cover classified images from 1985 and 2018 to detect the land cover transitions from one 

class to another. Among the eight land cover classes (Barren, Ice/Snow, Wetlands, Water, Tree 

Cover, Grass/Shrub, Cropland, and Developed) available in the LCPRI data, we were only 

concerned about the changes taking place among the Barren, Tree Cover, and Grass/Shrub cover 

types. All forest areas with the transitions; Barren to Tree Cover, Barren to Grass/Shrub, Tree 

Cover to Grass/Shrub, and Grass/Shrub to Tree Cover within the period of 33 years (1985-2018) 

were classified as young stands while the Tree Cover class that did not change throughout was 

classified as mature stands.  

 Additionally, we created a cumulative LCACHG image intersecting all the 

LCACHG images throughout the period of 33 years to examine probable intermediate disturbances 

on the Tree Cover class. This procedure avoids false classification of Tree Cover class as mature 

in 2018, which might have been harvested between 1985 and 2018 and regrown as forest later. 

Eventually, the LCMAP derived stand age data were used to classify the SBW host species in 

terms of their maturity into two classes (mature: > 33 years, and young: < 33 years). The age 

threshold for SBW host species maturity has been widely adopted as 40 years (Hennigar et al. 

2008); nevertheless, we used a threshold age of 33 years given that the LCMAP data were 
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unavailable beyond the window of 1985-2018. Finally, SBW susceptibility to defoliation map was 

produced based on the host-maturity-specific ranking suggested by Hennigar et al. (2011) (mature 

BF > immature BF > mature SP > immature SP) and evaluated using SBW defoliation field data 

available for Maine.  

3.3 Results 

3.3.1 Variables’ dimensionality reduction for modeling  

The optimum Sentinel-2 variables selected after using the VSURF algorithm and 

eliminating correlated variables based on their correlation coefficients are presented in Figure 3.3. 

The variable size was reduced from 108 to eight, and from 11 to three for Sentinel-2, and SAR 

data, respectively. The final three variables selected from SAR data were VH_Fall and VH_MSm 

from Sentinel-1 and HV from PALSAR-2. Among the SAR variables selected after the variable 

reduction procedure, HV band from PALSAR-2 (L-band SAR) was the most important variable 

followed by VH_MSm, and VH_Fall variables from Sentinel-1 (C-band SAR) Sensor. Regarding 

Sentinel-1 variables, the monthly averaged image variables (obtained from GEE) performed 

slightly better than the single date image variables obtained from ASF (results not included), due 

to which single date SAR variables were dropped from further analysis. Similarly, the important 

Sentinel-2 variables selected after the variable elimination step comprised the bands and indices 

from all three seasons (MSp: B11_MSp, Sentinel-2 Red Edge Position (S2REP_MSp), 

Anthocyanin Reflectance Index1 (ARI1_MSp), MSm: S2REP_MSm, B8A_MSm, Normalized 

Difference Vegetation Index45 (NDVI45_MSm), and Fall: Red-Edge Normalized Difference 

Vegetation Index (NDVIRE_Fall), B11_Fall), demonstrating the key role of multi-temporal 

imagery in tree species classification. Among the selected variables, the majority of them were 



43 
 

from the red-edge region, with SVIs expressing biochemistry (NDVIRE, S2REP, and NDVI45) 

and physiology/stress (ARI1). 

 

Figure 3. 3. Sentinel-2 variables obtained after the variables’ dimensionality reduction using the 

Variable Selection Using Random Forest (VSURF) technique along with their importance in SBW 

host species classification modeling. The variable abbreviations were based on the convention: 

name of the variable_season of image acquisition (refer to Table A.1 for further information on 

variables). MSp: mid-spring; MSm: mid-summer; Fall: fall. 

3.3.2 Model formulation, performance evaluation, and map production 

We formulated several models with Sentinel-1, Sentinel-2, PALSAR-2, and site data using 

the RF and MLP algorithms. Among multiple models evaluated, the results for the best-performing 

models from the three scenarios mentioned in Section 2.4 are presented in Figure 3.4. The RF 

models yielded better outcomes for all the model formulations than MLP. Based on preliminary 
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comparisons of model performance, the hyper-parameters, number of trees grown (ntree) and 

variables at each split (mtry) for all the RF models formulated were 500 and two, respectively. In 

the case of MLP models, a single hidden layer attained the highest accuracy. MLP models with 

Sentinel-2 variables only, Sentinel-2, SAR and site variables, and SAR and site variables returned 

the best results (overall accuracy (OA) of 64.4%, 70.1%, and 49.5%) with nine, 14, and eight 

neurons in the hidden layer, respectively.  

 Using RF, the OA obtained with the best Sentinel-2 variables (Figure 3.3) was 

81.7%. The model’s class-specific accuracy for BF (PA: 90%, UA: 98%) and SP (PA: 94%, UA: 

97%) classes were even better.  On the other hand, the combination of Sentinel-2 variables and 

site variables (elevation, and aspect) produced the best overall accuracy (OA: 83.4%); addition of 

other site variables could not contribute to increasing the model accuracy. Nevertheless, this 

combination could not improve the accuracies for BF (PA: 90%, UA: 98%) and SP classes (PA: 

94%, UA: 97%). The incorporation of SAR with Sentinel-2 and site variables did not improve the 

Sentinel-2 + Site model further. The best model with SAR and site variables (SAR + Site) included 

Sentinel-1 (VH_Fall, VH_MSm), PALSAR-2 (HV), and site variables (elevation, aspect, and 

slope) and resulted in an OA of 77.9% (Figure 3.4). The model also demonstrated a reasonable 

accuracy for BF (PA: 88%, UA: 88%) and SP (PA: 89%, UA: 89%) classes. 
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Figure 3. 4. Comparison of the best performing RF and MLP classification models based on their 

overall accuracy (OA) presented as numbers over the bars. Sentinel-2 variables were the variables 

obtained after running the VSURF algorithm for variables reduction. RF accuracies were based on 

the OOB error estimates, while MLP accuracies were obtained after 10-fold cross-validation. 

DWT: Depth to Water Table; TWI: Topographic Wetness Index; MSp: mid-spring; MSm: mid-

summer; Fall: fall. 

Evaluating the classification accuracy and confusion associated with the two different 

algorithms tested in this study (Figure 3.4), the accuracy was relatively higher for separating 

broadleaved from conifer classes compared to the separation between the conifer classes. The 

overall best RF model (Sentinel-2 + Elevation + Aspect), classified the tree species into eight 

classes with good producer’s accuracy (PA), and user’s accuracy (UA), especially for BF (PA: 

90%, UA: 98%) and SP (PA: 94%, UA: 97%) classes. Similarly the best model with MLP and site 

variables (Sentinel-2 + Elevation + Aspect + DWT + TWI) also indicated promising class-wise 
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accuracies for BF (PA: 87%, UA: 94%), and SP (PA: 89%, UA: 88%) classes. However, the class-

wise accuracies for other classes declined considerably when we used MLP in place of RF 

algorithm (Table 3.2).  

Table 3. 2. Confusion matrices for the overall best performing RF (out of bag error based) and 

MLP (10-fold cross-validated) models and their accuracy estimation for the SBW host species 

classification. The entries are the % occurrences in each class. UA is the user’s accuracy, and PA 

is the producer’s accuracy. BF: balsam fir; BF/BL: balsam fir and broadleaved; BL: broadleaved 

species; Con: conifers other than balsam fir and spruce majority; Con/BF: coniferous and balsam 

fir; Con/BL: coniferous and broadleaved; Con/SP: coniferous and spruce; SP: spruce. 

Models Species BF 
BF/ 

BL 
BL Con 

Con/ 

BF 

Con/ 

BL 

Con/ 

SP 
SP Total 

PA 

(%) 

Best RF (Sentinel-2 + 

Elevation + Aspect) 

BF 90 2 6 0 0 0 0 2 100 90 

BF/BL 0 86 0 0 14 0 0 0 100 86 

BL 0 3 91 3 0 0 3 0 100 91 

Con 0 0 9 61 4 13 13 0 100 61 

Con/BF 2 2 0 0 88 3 5 0 100 88 

Con/BL 0 0 3 17 14 59 7 0 100 59 

Con/SP 0 0 0 7 6 6 81 0 100 81 

SP 0 0 3 0 0 0 3 94 100 94 

UA (%) 98 89 82 64 83 71 71 97   

Overall accuracy: 83.4%  

Best MLP (Sentinel-2 + 

Elevation + Aspect + 

DWT + TWI) 

BF 87 5 6 0 0 0 0 2 100 87 

BF/BL 1 39 8 2 46 2 2 0 100 39 

BL 3 4 84 6 0 2 0 1 100 84 

Con 1 1 4 50 5 24 15 0 100 50 

Con/BF 1 5 0 2 74 10 7 1 100 74 

Con/BL 0 3 5 14 29 40 8 1 100 40 

Con/SP 0 3 2 6 13 4 63 9 100 63 

SP 1 0 0 0 1 1 8 89 100 89 

UA (%) 94 54 78 54 65 44 59 88   

Overall accuracy: 70.1%  

 

The two best models, one from each RF, and MLP algorithm (Table 3.2) category, were 

used to produce host species composition maps of the study area at 20 m spatial resolution (Figure 

3.5). The individual map classified the study area into eight tree species classes (five hosts: BF, 

BF/BL, Con/BF, Con/SP, and SP; three non-hosts: Con, BL, and Con/BL). Host species 

composition maps created using both algorithms demonstrate the dominance of SBW host species, 
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mainly BF and SP, in the north, whereas broadleaved species (non-hosts) are more frequently 

found towards the southern part. In addition, we presented detailed classification maps in Figure 

3.5c and 3.5d for a subset of our study area to facilitate a better comparison between the maps 

created using RF, and MLP algorithms.  

3.3.3 Classifying tree species by maturity and mapping stand impact types and 

susceptibility to  SBW defoliation based on stand impact types 

The species composition map produced from our overall best model (Figure 3.5a) was used 

further to classify tree species classes based on their maturity (Figure 3.6), also named as SBW 

stand impact types map in our study. Based on the available data, the forest age classes derived 

from the LCMAP products were applied to the species composition map to classify each of those 

eight classes into two maturity classes, young (< 33 years) and mature (> 33 years).  
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Figure 3. 5. SBW host species composition maps at 20 m spatial resolution produced using the 

overall best RF (a) and MLP (b) models with their respective subsets (c, and d) presenting the 

species classes in detail (refer to Table 3.2 for more information on variables used and model 

performances). The central coordinates of the selected subsets are -69.48°W and 46.87°N. BF: 

balsam fir; BF/BL: balsam fir and broadleaved; BL: broadleaved species; Con: conifers other than 

balsam fir, and spruce majority; Con/BF: coniferous, and balsam fir; Con/BL: coniferous, and 

broadleaved; Con/SP: coniferous, and spruce; SP: spruce. 
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Figure 3. 6. Age adjusted SBW stand impact types map created coupling the stand age information 

with the host species composition map. BF: balsam fir; BF/BL: balsam fir and broadleaved; BL: 

broadleaved species; Con: conifers other than balsam fir and spruce majority; Con/BF: coniferous, 

and balsam fir; Con/BL: coniferous, and broadleaved; Con/SP: coniferous, and spruce; SP: spruce. 

We used the SBW stand impact types map (Figure 6) to produce SBW susceptibility map 

(Figure 3.7a). The SBW susceptibility map was based on the defoliation impact rating of our host 

classes as: Mature BF > Young BF > Mature SP > Young SP > Mature Con/BF >Young Con/BF 

>Mature Con/SP > Young Con/SP > Mature BF/BL > Young BF/BL (Hennigar et al., 2011). 

Evaluating the SBW susceptibility based on stand impact types map for the state of Maine, it is 

evident that northern forests are at much higher risk to the SBW as compared to the southern 

forests.   
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Figure 3.7 illustrates the current status of SBW defoliation in Maine (2020) overlaid on the 

SBW susceptibility based on stand impact types map created from our study. The overall trend of 

defoliation across the state exhibits higher defoliation in the northern part. Moreover, the severity 

of SBW defoliation on the ground from 2020 coincides with the SBW susceptibility based on stand 

impact types predicted by our study (better seen in zoomed windows in Figure 3.7c and 3.7d). 

Among 333 comparison points (nil: 155; light: 144; moderate: 34) with percent SBW defoliation 

data available, 88.3% were in agreement with the host species classes predicted by our model 

(Table 3.3). Furthermore, 89.7% of the validation points with nil (< 10%) ground defoliation fell 

within the first five high SBW stand impact type classes (Mature BF, Young BF, Mature SP, 

Young SP, and Mature Con/BF) (Table 3.3 and Figure 3.7). However, for light (11% - 30%) and 

moderate (31% - 70%) defoliation classes, 87.5%, and 85.3% of points, fell within the first four 

high SBW stand impact type classes (Mature BF, Young BF, Mature SP, and Young SP), 

respectively. Evaluating the 11.7% defoliation points falling outside our susceptibility based on 

stand impact types map, 87.2% were nil to light in terms of defoliation severity whereas only 

12.8% were moderately defoliated (Table 3.3).  
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Figure 3. 7. The SBW susceptibility based on stand impact types  map created from our study (a) 

alongside the SBW defoliation recorded in Maine for the year 2020 (b; 333 plots). Two subsets of 

study area represent the areas with the majority of light defoliation (c; 11% - 30%) and moderate 

defoliation (d; 31% - 70%). BF: balsam fir; BF/BL: balsam fir and broadleaved; Con/BF: 

coniferous and balsam fir; Con/SP: coniferous and spruce; SP: spruce.  

 

Table 3. 3. Evaluation of the agreement between the SBW susceptibility based on stand impact 

types and the percent SBW defoliation recorded over multiple sites throughout the state of Maine 

for 2020 (333 plots). The SBW defoliation data used for validation are not necessarily from pure 

host species plots; rather they indicate the severity of SBW defoliation in selected trees in those 

sites. 

SBW defoliation 

level 2020 

Points falling 

within host classes 

(%) 

Points falling outside 

host classes 

(%) 

Nil (0 – 10)% 89.7 10.3 

Light (11 – 30)% 87.5 12.5 

Moderate (31 – 70)% 85.3 14.7 

Overall 88.3 11.7 
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3.4 Discussion 

Classification of tree species from a pest-susceptibility point of view is a relatively novel 

concept and very few studies have attempted to explore the potential of remote sensing techniques 

for this purpose (Bhattarai et al. 2021; Wolter and Townsend 2011). Our study modeled and 

mapped tree species for nearly the entire state of Maine (~6.5 million ha of forest) and assessed 

their potential susceptibility to the imminent SBW outbreak. To the best of our knowledge, 

potential susceptibility assessment of forests to SBW defoliation based on age and composition on 

a landscape level using remote sensing data has never been reported in the literature. Moreover, 

the host species composition map produced in this study is by itself a valuable resource and a key 

layer for SBW defoliation detection using either remote sensing data or aerial surveys. We used 

an array of optical (Sentinel-2), radar (Sentinel-1, and PALSAR-2), and several topographic 

variables (elevation, slope, aspect, latitude, TWI, DWT) as well as soil types and iBGI for 

modeling tree species using RF, and MLP algorithms. We also utilized the LCMAP data to produce 

the age adjusted SBW susceptibility map based on stand impact types.  

3.4.1 Random Forest and Multi-Layer Perceptron performances for forest composition 

mapping 

The MLP algorithm used for modeling host species did not perform better than the RF 

algorithm (Table 3.2, and Figure 3.4) in our study. The cross-validated OA (70.1%) for the best 

MLP model were considerably lower than those obtained with the best RF model (OA: 83.4%). 

Our findings align with the results from Zagajewski et al. (2021) where they obtained a better 

accuracy using RF than ANN model (OA: 85% vs 77%) working with Landsat-8 imagery for tree 

species classification in Czech-Polish border. According to the authors, the use of ANNs like MLP 

might be inefficient to classify forests with the moderate resolution pixel information derived from 
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Landsat-8 and Sentinel-2 imagery. Furthermore, several studies on the performance comparison 

between ANN and RF models outside the discipline of tree species or vegetation classification 

suggest the better performance of RF (Sevgen et al. 2019; Wang et al. 2018a) compared to the 

performance of ANN models similar to what was found here.   

 In contrast, Raczko and Zagajewski (2017) produced better results with ANN than 

RF (OA: 77% vs 62%) for tree species classification using hyperspectral imagery (spatial and 

spectral resolution of 3.35 m and 288 bands, respectively) in the Northwestern Poland. However, 

they used a higher number of training data (120 sample pixels for each class) as compared to the 

number of training data we used (23 - 60 sample plots per class). Further, they did not use the 

internal validation technique available in the RF algorithm that would have provided more data for 

RF model training, preventing the need for extra samples for model validation and their overall 

accuracy was not higher than what we obtained in this study. Future studies may also consider the 

use of multi-objective algorithms (Legaard et al. 2020) for species classification. 

3.4.2 Role of site variables in classifying tree species 

There are multitudes of studies on tree species composition and forest type classification 

modeling using remote sensing data; nevertheless, little attention has been given to incorporating 

topographic variables in the model. We tested several available site variables in our host species 

classification models and reported their importance. The best model derived using SAR variables 

performed better with the inclusion of site variables (elevation, aspect, and slope) in our study. 

Our overall best model (Sentinel-2 and site variables) includes two site variables, namely, 

elevation, and aspect, which is in agreement with the study conducted by Grabska et al. (2020) on 

tree species classification in the Polish Carpathians, combining Sentinel-2, and site variables. Their 

study demonstrates the highest contribution of elevation among all other variables used for 
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modeling. Similarly, Bhattarai et al. (2021) and Hoscilo and Lewandowska (2019) also emphasize 

the importance of elevation in tree species mapping when used together with the remote sensing 

data. Elevation is also an important factor related to landscape-level SBW defoliation patterns 

during an outbreak (Cen et al. 2021), which further supports its use in our analysis. 

3.4.3 Contribution of L-band vs C-band SAR variables in tree species classification 

The better performance of L-band PALSAR-2 over C-band Sentinel-1 data for tree species 

classification in our study aligns well with the results from similar previous studies (Li et al. 2012; 

Turkar et al. 2012; Wolter and Townsend 2011). There have been several research reports on tree 

species (Bhattarai et al. 2021) or forest types classification (Erinjery et al. 2018) using Sentinel-1, 

and Sentinel-2 imagery where the major setback of C-band SAR for tree species discrimination 

has been attributed to its shorter wavelength (lower canopy penetration). The issue of lower canopy 

penetration could be overcome using longer wavelength SAR data like L-band PALSAR-2, which 

is also well demonstrated by our results. There is a breadth of literature currently available on the 

contribution of C-band SAR data (Sentinel-1) to forest types mapping when coupled with Sentinel-

2 optical data (Biswas et al. 2020; Erinjery et al. 2018); however, these studies are focused on the 

classification of broad forest types with very few SVIs used from Sentinel-2 data. For example, 

Eringery et al. (2018) used Sentinel-1 and Sentinel-2 datasets for mapping forest types in the 

tropical rainforest of Western Ghats, India, into five classes and reported an improved accuracy 

after the inclusion of Sentinel-1 bands. However, NDVI was the only SVI used from Sentinel-2 

data. Similarly, the study on forest types mapping (six classes) in southern Myanmar using 

Sentinel-1, Sentinel-2, and Landsat-8 conducted by Biswas et al. (2020) mainly used spectral 

bands from optical sensors failing to make optimum use of numerous possible red-edge SVIs 



55 
 

(Table A.1), especially from Sentinel-2 imagery, which would have better vegetation identification 

capabilities as compared to spectral bands only.    

3.4.4 Contribution of SAR vs optical multi-temporal variables in tree species classification 

The better performance of individual Sentinel-2 based variables as compared to SAR 

variables in our study could be attributed to the potential of Sentinel-2 sensor to capture 

information for a wide range of tree canopy properties like structure, biochemistry, and physiology 

(Bhattarai et al. 2021; Erinjery et al. 2018). On the other hand, SAR images are generally helpful 

for detecting the tree canopy structure and are not sensitive to the chemical composition of foliage. 

The integration of SAR (particularly L-band SAR) with site data produced a promising result (OA: 

77.9%) for species classification. However, the model with Sentinel-2 and site variables performed 

the best (OA: 83.4%). Yet, the SAR and site data based model could be a good alternative in the 

absence of atmospherically uncontaminated optical images like Sentinel-2. Our findings 

demonstrate the dominance of multi-temporal Sentinel-2 based red-edge SVIs (NDVIRE, 

NDVI45, S2REP, and ARI1; see Table A.1 for the abbreviations), as well as NIR (B8a) and SWIR 

(B11) bands for tree-species identification. Similar to our outcomes, Bolyn et al. (2018) reported 

the prime role of Sentinel-2 based SWIR (B11), NIR (B8a), and red-edge variables for species 

composition mapping using multi-temporal Sentinel-2 imagery in the Belgian Ardenne ecoregion. 

Furthermore, Bhattarai et al. (2021) indicated the importance of Sentinel-2 based red-edge, SWIR, 

and NIR variables for forest composition mapping.   

The efficacy of multi-temporal Sentinel-2 based red-edge, SWIR, and NIR variables for 

tree-species classification has been widely reported in several other recent studies (Hoscilo and 

Lewandowska 2019; Grabska et al. 2020). Our study demonstrates the usefulness of imagery from 

the onset of growing season (spring to summer) and senescence (fall) for discriminating tree 
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species, which aligns with the findings from similar investigations for optical (Grabska et al. 2019; 

Hoscilo and Lewandowska 2019; Immitzer et al. 2019) as well as SAR imagery (Bhattarai et al. 

2021). The significance of multi-temporal imagery for species classification is grounded on the 

fact that they have the potential to capture a series of unique phenological events taking place in 

plant canopy throughout the year (Bhattarai et al. 2021; Grabska et al. 2019; Immitzer et al. 2019). 

In case of dual polarized SAR bands (VV and VH from Sentinel-1 and HH and HV from PALSAR-

2), the cross-polarized bands (VH, and HV) were more important for tree species discrimination 

in our study (Figure 3.4), which is in line with the results from Rignot et al. (1994), and Bhattarai 

et al. (2021). However, the importance of Sentinel-1 based SVI (NRPB) was not noticeable in our 

study.  

3.4.5 Evaluating tree species classification model performances 

The high species classification accuracy we attained based on Sentinel-2 and site variables 

(OA: 83.4%) was encouraging. In particular, the class-wise accuracies for the major host species 

classes, BF (PA: 90%, UA: 98%) and SP (PA: 94%, UA: 97%) were notable. A recent study 

conducted on SBW host species classification using Sentinel-1, Sentinel-2, and site variables in 

northern New Brunswick reported the highest OA of 73% for classifying host species into five 

classes with class-wise accuracies of PA: 73% and UA: 71% for balsam fir and PA: 77% and UA: 

71% for spruce classes (Bhattarai et al. 2021). In this work, we classified SBW host species into 

eight classes and obtained significantly higher accuracies. Similarly, Wolter and Townsend (2011) 

used a combination of Landsat TM, SPOT, Radarsat (C-band SAR), and PALSAR (L-band SAR) 

to classify tree species in northern Minnesota into 12 classes (three SBW host species classes) and 

achieved an OA of 78%. Among the SBW host species classified, the class-wise accuracy for 

balsam fir (PA: 67%, UA: 80%), black spruce (PA: 83%, UA: 80%), and white spruce (PA: 64%, 
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UA: 91%) were comparatively lower than what we achieved. Regarding general tree species 

classification models, Hoscilo and Landowska (2019) used multi-temporal Sentinel-2 data to 

classify tree species in southern Poland with an OA of 81.7% (lower than ours). Furthermore, 

Grabska et al. (2020) achieved an OA of 85.6% (comparable to ours); classifying Polish 

Carpathians' tree species into 11 classes using multi-temporal Sentinel-2 imagery and site 

variables. However, they used a complex model with 64 variables for the prediction. Similarly, 

Grabska et al. (2019), and Immitzer et al. (2019) attained a better OA compared to ours (92.4% 

and 89%, respectively), for tree species classification using multi-temporal Sentinel-2 imagery; 

yet, those studies focused on classifying relatively homogenous forests. In contrast, we attempted 

to identify the closely associated and mixed host species classes, for example, BF, Con/BF, BF/BL, 

SP, Con, and Con/SP. On the other hand, several other related studies (Biswas et al. 2020; 

Liesenberg and Gloaguen 2013; Yu et al. 2018) achieved better OA than our model; nevertheless, 

their emphasis was on vegetation type classification rather than individual tree species or host 

species classification. 

3.4.6 SBW susceptibility mapping based on stand impact types and its implications in 

Maine 

In addition to the spatial delineation of host species, their age assessment is crucial from 

the pest vulnerability point of view, especially for the SBW (Bhattarai et al. 2020; Hennigar et al. 

2011); yet, it is a challenging task to estimate the age of forests on a landscape level. Presumably, 

there have not been any publications to compare with our study regarding the maturity mapping 

of tree species in light of pest vulnerability using remote sensing data. We used the freely available 

archives of LCMAP (LCPRI and LCACHG) products to estimate the age of host species and 

classify them into two classes (young and mature) for the first time. The maturity map created 
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could be used as a baseline product for the future to predict the annual vulnerability of the host 

stands incorporating several dynamic variables like winter temperature, wind characteristics, SBW 

larval counts, etc. Besides, the final product SBW susceptibility based on stand impact types map 

obtained from our study independently possesses the potential to inform the stakeholders about 

the host stands which are at a higher risk of damage from defoliation. The SBW susceptibility map 

evaluated using the latest SBW defoliation ground data (2020) from Maine demonstrates high 

promise with an overall agreement of 88.3% between our impact rating and SBW defoliation on 

the ground (Table 3.3, and Figure 3.7). The SBW susceptibility based on stand impact types map 

covering almost the entire state of Maine is the first-ever product attempted towards the landscape 

level (~6.5 million ha area) potential susceptibility mapping. Taking note of the forthcoming SBW 

outbreak in Maine, our map products at finer spatial resolution of 20 m will serve as a valuable 

supplement for forest managers to conduct management interventions on a larger scale to prevent 

the forest from possible future damage.  

3.5 Conclusion 

Our study presents a SBW susceptibility product derived from the integration of host 

species composition and their maturity on a landscape level (~6.5 million ha) at 20 m spatial 

resolution using freely available multi-source remote sensing and site data. We obtained the best 

modeling accuracy using the RF algorithm, demonstrating its robustness and suitability for tree 

species classification even with limited data; however, the MLP algorithm is worth exploring 

further, especially when larger training samples are available. As expected, incorporating SAR 

data with optical data for tree species classification was helpful, particularly the L-band PALSAR-

2 data, but the performance of our best model was already high without the contribution of SAR 

data. In addition, our study demonstrates strong evidence of the importance of site variables for 
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tree species identification in complex and diverse landscapes, which should be integrated and 

investigated more in related future endeavors. Furthermore, we suggest an alternative model with 

a decent accuracy (OA: 77.9%) for tree species classification using SAR and site data in case good-

quality optical images are unavailable.  

Age determination of forest stands on a landscape level is challenging; nonetheless, our 

study proposes a promising method to estimate it using a time series of historical land-cover 

classification data. As of present, our final product (SBW susceptibility based on stand impact 

types map) is believed to benefit the forest stakeholders in developing effective pest management 

strategies to minimize the impact of the approaching SBW outbreak. At the same time, our study 

provides a platform for future studies to improve the proposed SBW susceptibility classification 

model based on stand impact types capturing the advancements in remote sensing technology. 
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CHAPTER 4 

ESTIMATING NUTRITIVE, NON-NUTRITIVE AND DEFENSE FOLIAR TRAITS IN 

SPRUCE-FIR STANDS USING REMOTE SENSING AND SITE DATA 

“The contents of this chapter have been published in Bhattarai et al. (2023).” 

4.1 Introduction 

Leaf foliar chemistry plays an important role in host plant quality for herbivores by 

providing necessary components of their diet that can increase feeding, or by producing defensive 

compounds that could deter feeding. The composition of compounds and elements in leaves can 

also be used as indicators of plant stress as well as productivity over time, and the variability in 

foliar chemistry between different host species has been correlated to different levels of resistance 

to herbivory (Herms and Mattson 1992; Fuentealba and Bauce 2016). Collecting foliage samples 

followed by laboratory analyses is a traditional and seemingly easy approach to assess foliar traits; 

however, it can be extremely time consuming and expensive to make temporally extensive 

comparisons (Chlus and Townsend, 2022). Furthermore, mapping the concentration of these 

elements in forestlands at a landscape level can be even more challenging.  

One major herbivore threatening the health and productivity of the forests in northeastern 

USA and neighboring Canadian provinces is eastern spruce budworm (SBW; Choristoneura 

fumiferana Clemens). SBW is a native forest pest in the region and its outbreak has a return period 

of approximately three to seven decades (Royama, 1984), mainly affecting balsam fir [Abies 

balsamea (L.) Miller] and spruce (Picea spp.). SBW has eight stages in its lifecycle including six 

larval instars (L1 being the youngest and L6 being the oldest), along with pupal and adult stages 

where L5 and L6 instars cause most of the damage (consumption of ~ 95 % of the host needles). 

The larva enters hibernation in late summer, emerges in the following spring as L2 and starts 
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feeding on host buds and new foliage (Miller, 1977). Multiple consecutive years of feeding can 

cause the removal of all age classes of foliage in host trees. The feeding larva constructs feeding 

sites in host branches by webbing together several branches and creating a tunnel. SBW has the 

potential to completely defoliate and kill a host tree in around half a decade after the onset of 

outbreak if no interventions are applied (Maclean et al., 2019). The outbreaks can last between 5 

and 20 years in the affected area and they can be highly catastrophic at the landscape scale 

(Rahimzadeh-Bajgiran et al., 2018; Bhattarai et al., 2021). 

SBW’s main host species, balsam fir and spruce, possess a variety of chemical elements 

and compounds (referred to as foliar traits hereafter), such as iron (Fe), calcium (Ca), cellulose, 

condensed tannins, terpenes and phenolics, that can reduce herbivory (Mattson et al., 1991; 

Fuentealba and Bauce, 2016; Fuentealba et al., 2020). In contrast, the host foliage also contains 

other foliar traits, including copper (Cu), nitrogen (N), potassium (K), phosphorous (P), and sugars, 

that could increase the palatability of the needles and enhance insects' fitness (Mattson et al., 1991).  

The level of impact from SBW attack on host trees can be influenced by the combination 

of both nutritive and non-nutritive foliar elements. Therefore, evaluating the chemical profile of 

host trees would be valuable in assessing their risk to SBW attacks. In addition, the mechanical 

properties of needles, particularly their toughness, can be instrumental in the success of herbivores. 

These morphological traits, which are influenced by the amount of water, fiber, and cellulose, are 

as important, if not more so, than chemical properties (Fuentealba et al., 2020). Information on 

foliar traits can also be used for assessing ecological functions including forest productivity, 

nutrient content and leaf litter decay rates (Curran, 1989). 

Different traits in plants are responsible for unique roles, and the need for their estimation 

depends on the objectives of the study. For instance, while the estimation of N and chlorophyll 
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abundance can be used to assess the vigor and productivity of a forest (Abdullah et al., 2019), these 

components alone might not be enough to estimate the quality of a tree for an attacking herbivore. 

When evaluating the host quality with respect to a pest such as SBW, interactions between the 

plant and insect warrant the assessment of both nutritive and non-nutritive traits. In the past, several 

researchers attempted to assess the susceptibility of host species to SBW in a laboratory setting by 

evaluating the effects of several micro- (Fe and Cu) and macro-nutrients (Ca, K, Mg, N, P) on 

SBW health and reproduction (Mattson et al., 1991). More recently, studies have focused on 

assessing the nutrients and defensive chemicals present in SBW host species (Fuentealba and 

Bauce, 2016; Funtealba et al., 2020). The relationship between foliar chemistry and SBW 

defoliation proposed by these studies have the potential to be linked with remote sensing sensors 

and up-scaled to a landscape level to produce comprehensive SBW susceptibility/resilience maps. 

Currently, there is no literature on using remote sensing data to map either nutrients/non-nutrients 

or the defensive mechanisms/chemicals present in SBW host species. 

There are well-established remote sensing techniques (from field spectroscopy to satellite 

remote sensing) that relate foliar chemistry to the reflectance spectra, which are worth exploring 

for foliar trait measurements. Advancements in technology have revolutionized the field of remote 

sensing, allowing for signal acquisition from the ground in different spatial, spectral, and temporal 

scales suited for target applications. There have been numerous successful attempts to map canopy 

traits and leaf pigments using satellite imagery. For instance, high resolution multispectral imagery 

such as RapidEye (Darvishzadeh et al., 2019) has been used in estimating several plant foliar traits 

including chlorophyll, Mg, carbon (C), N, P, K, Ca, and water content. Studies on foliar pigment 

estimation using hyperspectral imagery (Huber et al., 2008; Axelsson et al., 2013; Chlus and 

Townsend, 2022) suggest that high spectral resolution imagery may be even better at assessing 
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foliar biochemical traits (Curran, 1989; Chlus and Townsend, 2022). However, the use of medium 

resolution multispectral satellite data, such as Sentinel-2 imagery, for estimating leaf chemistry is 

just starting to attract attention within the scientific community with promising results (e.g., Gara 

et al., 2019; Ma et al., 2019; Gara et al., 2022). This success could be attributed to the presence of 

red-edge bands, which are sensitive to canopy pigments, and higher temporal resolution of the 

data. Using Sentinel-2 data to estimate canopy traits like chlorophyll (Darvishzadeh et al., 2019; 

Gara et al., 2019) and N (Abdullah et al., 2019; Gara et al., 2019; Ma et al., 2019) has been reported 

but other essential traits such as P, K, Ca, Fe, Cu, Mg, etc., are less reported in the literature.  

Generally, it has been a common practice to rely on multivariate statistical methods to 

model foliar traits using remotely sensed data (Curran, 1989). However, with the emergence of 

artificial intelligence, several machine-learning algorithms have been employed to model the 

complex relationship between plant foliar traits and the associated reflection spectra better 

(Axelsson et al., 2013; Gara et al., 2019; Chlus and Townsend, 2022). In this study, we used 

Sentinel-2 spectral bands and derived spectral vegetation indices (SVIs) to model foliar traits on a 

landscape level using modern machine learning algorithms. Our study aimed to estimate and map 

several important foliar traits of SBW host species (spruce and fir), with an emphasis on their 

defensive characteristics against herbivory. In general, it is often assumed that the concentration 

of non-nutritive and defensive traits is inversely related, while the concentration of nutritive traits 

is positively related to host susceptibility. However, it is important to consider that certain factors 

can influence these relationships. For instance, when it comes to the concentration of nutrients like 

N and P, they are essential components of photosynthesis. Their low concentration will force plants 

to allocate fewer resources to the production of defensive compounds as they prioritize using these 

nutrients for photosynthetic processes. Consequently, this reduced investment in defensive 
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compounds can lead to higher susceptibility of host species to herbivory.  Additionally, equivalent 

water thickness (EWT), although considered a defensive trait in our study, is directly associated 

with the softness of the plant’s needles, indicating that a higher EWT could make the host species 

more susceptible to herbivorous attacks. In contrast, leaf mass per area known as LMA is a measure 

of needle toughness with higher values preventing herbivory. Specifically, our study sought to 

address the following objectives: 

1. Estimate and map both the nutritive (N, P, K, and Cu) and non-nutritive (Fe, and Ca) 

elements using Sentinel-2 bands and SVIs, along with site variables in SBW host species.  

2. Estimate and map mechanical defensive traits, EWT and LMA of SBW host species using 

Sentinel-2 bands and SVIs, along with site variables.  

3. Compare the performance of modern machine learning algorithms for modeling SBW host 

species foliar traits. 

4. Propose a framework for determining the susceptibility of SBW host species by assessing 

the relationship between host foliar trait values and SBW defoliation levels.  

4.2 Materials and Methods  

Figure 4.1 provides an overview of the study workflow. Subsequent sections will explain 

each step in more detail.  



65 
 

 

Figure 4. 1. The typical sequence of the steps involved in our study.  The entire study was 

organized into four major segments: 1) remote sensing data collection and preprocessing 

(including site variables), 2) leaf samples collection, laboratory analysis, and upscaling the leaf 

traits to plot level, 3) modeling the traits using random forest (RF), extreme gradient boosting 

(XGB) and support vector machine (SVM) algorithms, and 4) establishing a framework to link 

trait measurements to spruce budworm (SBW) host species susceptibility to the attack. DWT: 

depth to water table; LAI: leaf area index; TWI: topographic wetness index. 

4.2.1 Study area 

The study area is located in Hancock County, Maine, USA. It encompasses a portion of 

Donnell Pond, which is public property situated only a few miles from the Atlantic coast (Figure 

4.2). The study area is completely contained within the Acadian forest system and the southeast 

coast zone among the nine predominant climatic zones in Maine (Briggs and Lemin, 1992). The 

prevailing tree species in our study area are spruce species, in particular red spruce (Picea rubens 

Sargent), and balsam fir. Other conifer species are northern white cedar (Thuja occidentalis L.), 

and eastern hemlock [Tsuga Canadensis (L.) Carrière].  
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Figure 4. 2. Location of the study area and the distribution of sampling plots. Foliar samples 

were collected from 40 locations. Species composition map of the study area was adopted from 

Bhattarai et al. (2022a). BF: balsam fir; SP: spruce; BL: broadleaved species; Con: conifers other 

than spruce-fir; BF/BL: mixed balsam fir/broadleaved; Con/BF, Con/BL and Con/SP are mixed 

coniferous/ balsam fir, coniferous/broadleaved and coniferous/spruce, respectively. 

4.2.2 Leaf sample collection, lab measurements and upscaling the foliar traits 

 

A field campaign was carried out between July and August 2021. We established forty 20 

x 20 m plots in the SBW host-dominated stands where we sampled needles. The central coordinates 

of each plot were recorded with sub-meter accuracy (after post processing) using a Trimble Geo 

7x GPS (Sunnyvale, CA). Within each plot, diameter at breast height (DBH) was measured, and 

was used as proxy for species abundance in a plot for community weighting of foliar traits 

(explained in detail in section 2.3) before upscaling them to canopy level. In addition, tree heights 

were recorded to identify dominant and co-dominant trees in a plot, which were eventually used 
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as sample trees to collect needles. Furthermore, to measure leaf area index (LAI), we used an LAI-

2200 TC plant canopy analyzer (LI-COR, Inc., Lincoln, NE) in each plot in order to upscale the 

leaf level measurements to canopy level. In case of a completely homogeneous plot, five trees 

from dominant and co-dominant categories (visible to the satellite sensor) were selected (one in 

the center and four in corners) to collect leaf samples; however, in a plot with mixed species, 

samples were collected from every dominant and co-dominant tree species in that plot. We 

collected at least one sunlit branch from each sampled tree. The upper sections of the canopies 

were accessed using a slingshot to collect sunlit foliar samples. The collected needles were 

wrapped with moist paper towels, placed in zip-lock polythene bags, and transferred to a laboratory 

for additional measurements.  

We randomly selected approximately three grams from the multi-year needles from the 

SBW host tree branches (dominated by red spruce) of each plot and then recorded measurements 

of the fresh weight using an analytical (0.0001 g) digital scale, and their surface area using an 

AM350 leaf surface scanner (ADC BioScientific Ltd, Hoddesdon, UK). The needles were then 

dried in an oven at 65°C for approximately 72 hours, and their dry weights were measured. Based 

on these measurements, we calculated the foliar traits of SBW host species that represent the 

properties associated with mechanical defenses using Equation 1 and 2.   

𝐸𝑊𝑇 (𝑔 𝑐𝑚−2) =  
𝐹𝑊 − 𝐷𝑊

𝑆𝐴
                         (1) 

𝐿𝑀𝐴 (𝑔 𝑐𝑚−2) =  
𝐷𝑊

𝑆𝐴
                                     (2)    

where, 𝐹𝑊 is the fresh weight of needles, 𝐷𝑊 is the dry weight of needles and 𝑆𝐴 is the surface 

area of the fresh needles. In order to obtain an accurate surface area measurement, we corrected 

the surface area obtained after scanning the cylindrical spruce needles using the AM350 by 
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multiplying the values by 2.57, as recommended by Waring (1983). The dried needles were then 

carefully powdered using an electric grinder and sent to a chemistry lab for the estimation of our 

target nutritive and non-nutritive elements (Ca, Cu, Fe, K, N, and P).   

Concentrations of Ca, K, N, and P in the foliar samples were given as percentages of the 

sample dry weight, which was then converted to area-based estimation (g cm-2) by multiplying the 

percentage values with their respective dry mass per unit area (g cm-2) (Gara et al., 2022). Cu and 

Fe estimates were received as mg kg-1 of the dry sample weight, which were then converted to 

area-based measurements (g cm-2) by multiplying the values with their corresponding dry mass 

per unit area (g cm-2) values.   

4.2.3 Upscaling foliar traits to plot and canopy levels 

 

Our sample plots were predominantly composed of red spruce; however, to account for the 

effects of other species on plot level trait expression, the mean canopy trait of each sample plot 

was derived by community weighting the trait values of all the species present in the plot by their 

relative basal area. We subsequently employed an area-based trait upscaling approach to upscale 

the community-weighted trait values to an individual plot. This approach involved using the leaf 

area index (LAI) values to upscale foliar traits from the leaf to the plot level, as described in 

Equation 3 (Homolova et al., 2013).   

𝑇𝑟𝑎𝑖𝑡𝑃𝑙𝑜𝑡 = (∑ 𝑇𝑛 

𝑥

𝑛=1

× 𝐵𝐴𝑛)  × 𝐿𝐴𝐼                 (3) 

where,  𝑇𝑟𝑎𝑖𝑡𝑃𝑙𝑜𝑡 is the community weighted average trait expression for a plot, 𝑥 is the total 

number of species in a plot, 𝑇𝑛 is the trait value for the species 𝑛, 𝐵𝐴𝑛 is the relative basal area of 

the species 𝑛 in the particular plot and 𝐿𝐴𝐼 is the leaf area index of that plot. 
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4.2.4 Satellite and site data acquisition and preprocessing 

We downloaded a single cloud-free Sentinel-2A Level 1C Top-Of-Atmosphere (L1C-

TOA) reflectance image (https://earthexplorer.usgs.gov/) for the peak growing season (July 7, 

2021) corresponding to the date of field data collection. The L1C-TOA imagery was converted to 

surface reflectance products (L2A) using the Sent2Cor plugin within the Sentinel Application 

Platform (SNAP). L2A products were resampled to 20 m and used to derive several SVIs. The 

SVIs were particularly selected based on their sensitivity to canopy biochemistry. (see Bhattarai 

et al., 2022a; Bhattarai et al., 2022b).  

We used a total of 36 remote sensing variables to predict several foliar traits. These 

included 27 SVIs (Table A.1) and nine spectral bands (Bhattarai et al., 2022a). The quality scene 

classification image, obtained after atmospherically correcting L1C-TOA images in SNAP, was 

used to mask out everything except for forested areas in the image. Next, a SBW host and non-

host species mask for the state of Maine (Bhattarai et al. 2022a) was used to exclude all the non-

host species from the analysis. Lastly, five site variables including aspect, elevation, depth to water 

table (DWT), slope, and topographic wetness index (TWI), all at 20 m spatial resolution, were 

integrated with Sentinel-2 variables to improve model performance. 

4.2.5 Variable selection and machine learning algorithms  

 

Three techniques were used for modelling foliar traits of SBW host species. Random 

forests (RF) is a non-parametric method that uses an ensemble of decision trees to make decisions 

(Breiman, 2001). The bootstrapping techniques used in RF to generate individual trees is widely 

utilized to normalize the potential effects of multicollinearity. Support vector machine (SVM) is 

also a non-parametric modeling algorithm known for its ability to resolve regression and 

classification problems by identifying an optimum hyperplane (Cortes and Vapnik, 1995). 
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Moreover, we evaluated the effectiveness of extreme gradient boosting (XGB) algorithm for 

modeling canopy traits. Similar to RF, XGB (Chen and Guestrin, 2016) is an algorithm which 

makes decisions using an ensemble of decision trees; however, the trees are not independent. 

Additional trees are built one after another in order to improve the weaknesses of the previous tree 

and improve the accuracy of the overall model.  

We used Caret R package to execute all models (Kuhn, 2008). Model formulation and 

evaluation involved the implementation of a five-folded cross-validation technique, which was 

repeated five times to ensure the robustness of the model. Regarding the model cross validation, 

the entire training dataset was divided into five folds where four folds were used to train the model 

and the remaining fold for validation until all the folds were used for training and validation once. 

The final accuracy reported was obtained after averaging the accuracies of all the models 

formulated within the cross-validation framework.  For each trait of interest, we used the optimum 

variables to obtain model performances using three different algorithms (RF, XGB and SVM).  

Optimum variables for modeling each trait were determined in two steps: i) obtaining 

optimum remote sensing variables using VSURF algorithm, and ii) integrating site variables with 

the remote sensing variables obtained from the first step and evaluating different combinations 

based on the overall accuracy of the created models. VSURF R package (Genuer et al., 2010) was 

used to reduce the dimensionality of the variables and to identify the optimum variables for 

modeling the canopy traits. This approach helps to eliminate redundant or less informative 

variables in three steps: 1) eliminating irrelevant variables, 2) selecting all the variables 

contributing to prediction and 3) excluding redundant/correlated variables from the list of variables 

acquired from the second step (Bhattarai et al., 2022a). 
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The models’ performances were evaluated using the normalized RMSE (nRMSE) 

(Bhattarai et al., 2022b) and their respective standard deviations (sd). RMSE was normalized with 

the range of the data (nRMSE = RMSE / Data range).  Finally, we selected the best-performing 

algorithm to produce the final trait map for the study area. 

4.3 Results 

 

4.3.1 Selected variables and their importance evaluation 

 

The variables used for modeling the eight traits obtained from VSURF algorithm are 

presented in Figure 4.3. A variable importance plot was not generated for the Ca estimation model 

as it was built using only one variable (B5). The optimum variables were subsequently used for 

modeling traits using three different algorithms (RF, XGB, and SVM) (Figure 4.4) and the 

importance of variables for the best model was ranked for the studied traits.   

 

Figure 4. 3. Variables used for modeling different traits along with their overall importance 

(presented in the x-axis) in the model. Sentinel-2 Red Edge Position (S2REP); Normalized 

Difference Vegetation Index65 (NDVI65); Wide Dynamic Range Vegetation Index (WDRVI); 

Anthocyanin Reflectance Index1 (ARI1). 
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Evaluating the effectiveness of several variables used for modeling, it was evident that the 

red-edge variables were playing a pivotal role in terms of nutritional/non-nutritional and host 

species defensive trait estimations. It also demonstrates the potential of Sentinel-2 data for 

predicting the foliar traits in general. In particular, Normalized Difference Vegetation Index65 

(NDVI65) was dominantly expressed for the estimation of five out of eight traits (EWT, Fe, LMA, 

N, and P) (Figure 4.3). Similarly, Sentinel-2 Red Edge Position (S2REP) was also one of the 

important variables for modeling five traits (EWT, LMA, N, P, and K). In addition, Anthocyanin 

Reflectance Index1 (ARI1) was picked by the VSURF algorithm as one of the important variables 

for estimating Fe, whereas Wide Dynamic Range Vegetation Index (WDRVI) was found useful 

for predicting EWT. Individual spectral bands also expressed themselves strongly for the 

prediction of several traits (B7 and B8A for Cu, B4 for K, and B5 for Ca) (Figure 4.3). Moreover, 

site variables, particularly DWT, slope, aspect, and TWI, contributed significantly to the prediction 

of foliar traits and were important in six of the eight trait models. P and Ca were the two traits for 

which models did not recognize site variables as important for modeling.  

4.3.2 Assessing the performance of machine learning algorithms for traits estimation 

 

The performances of different machine learning algorithms for all traits are presented in 

Figure 4.4. The grid search for all the targeted algorithms (RF, XGB, and SVM) was executed in 

R using the Caret package. 
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Figure 4. 4. Cross-validated nRMSE values obtained for modeling eight different plot level traits 

using RF, XGB, and SVM. The error bars represent one standard deviation of nRMSE. An 

asterisk adjacent to the corresponding bar indicates the final model used for prediction. 

 

In general, SVM algorithm produced inferior results compared to RF and XGB algorithms 

for modeling all the foliar traits in our study. SVM and RF algorithms produced identical nRMSE 

value (0.18) for the Cu model (Figure 4.4). However, the RF algorithm was preferred over the 

SVM due to its lower sd. The RF algorithm outperformed the XGB algorithm for four trait models, 

Cu (nRMSE: 0.18), LMA (nRMSE: 0.16), N (nRMSE: 0.16), and P (nRMSE: 0.22) (Figure 4.4). 

On the other hand, XGB algorithm performed better for the remaining models, Ca (nRMSE: 0.16), 

EWT (nRMSE: 0.12), Fe (nRMSE: 0.19), and K (nRMSE: 0.14) (Figure 4.4). Of all the traits, 

EWT was predicted with the highest accuracy (nRMSE of 0.12 using XGB), while P was predicted 
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with the lowest accuracy (nRMSE of 0.22 using RF). Additional performance metrics, including 

R2 and RMSE, for all the formulated models are presented in Table 4.1. 

Table 4. 1. XGB, RF and SVM algorithms in estimating different canopy traits (see Figure 4.1 

and Figure 4.3 for abbreviations). RMSE values for all the traits are in g m-2 except for Fe and 

Cu (mg m-2). Bold values are the metrics for the best performing models.   

Traits (algorithm 

chosen) 

Algorithm Variables 

used 

R2 (sd) RMSE (sd) nRMSE 

(sd) 

Ca (XGB) 

XGB 

B5 

0.47 (0.33) 0.66 (0.29) 0.16 (0.07) 

RF 0.32(0.24) 0.85 (0.34) 0.20 (0.08) 

SVM 0.19 (0.13) 0.95 (0.36) 0.23 (0.09) 

Cu (RF) 

XGB 
B8A, B7, 

DWT 

NA (NA) 0.2 (0.038) 0.25 (0.05) 

RF 0.42 (0.13) 0.15 (0.016) 0.18 (0.02) 

SVM 0.42 (0.16) 0.15 (0.018) 0.18 (0.02) 

EWT (XGB) 

XGB S2REP, 

WDRVI, 

NDVI65, 

aspect 

0.72 (0.12) 50.9 (15.1) 0.12 (0.04) 

RF 0.58 (0.18) 59.34 (9.63) 0.14 (0.02) 

SVM 0.44 (0.20) 71.09 (11.34) 0.17 (0.02) 

Fe (XGB) 

XGB NDVI65, 

ARI1, DWT, 

aspect 

0.48 (0.27) 2.6 (0.78) 0.19 (0.06) 

RF 0.40 (0.17) 2.7 (0.38) 0.22 (0.03) 

SVM 0.17 (0.15) 3.3 (0.39) 0.24 (0.03) 

LMA (RF) 

XGB NDVI65, 

S2REP, aspect, 

slope 

0.59 (0.29) 57.83 (18.80) 0.17 (0.06) 

RF 0.51 (0.19) 55.50 (10.58) 0.14 (0.02) 

SVM 0.37 (0.19) 66.18 (10.22) 0.19 (0.03) 

N (RF) 

XGB NDVI65, 

S2REP, DWT, 

aspect, TWI 

0.69 (0.19) 0.52 (0.14) 0.16 (0.05) 

RF 0.64 (0.01) 0.52 (0.08) 0.16 (0.03) 

SVM 0.55 (0.14) 0.59 (0.08) 0.19 (0.03) 

P (RF) 

XGB 
NDVI65, 

S2REP 

0.50 (0.22) 0.09 (0.02) 0.24 (0.06) 

RF 0.44 (0.14) 0.08 (0.01) 0.22 (0.04) 

SVM 0.43 (0.14) 0.09 (0.02) 0.24 (0.04) 

K (XGB) 

XGB 
B4, S2REP, 

DWT, aspect 

0.63 (0.28) 0.25 (0.05) 0.14 (0.02) 

RF 0.50 (0.18) 0.30 (0.07) 0.16 (0.04) 

SVM 0.43 (0.23) 0.31 (0.06) 0.17 (0.04) 

 

Prediction maps were made for all canopy traits of SBW host species using their respective 

best models (Figure 4.5). The predicted foliar traits ranged from 2 – 5 g m-2 for N, 0.2 – 0.5 g m-2 

for P, 0.8 – 3 g m-2 for K, 0.8 – 4.8 g m-2 for Ca, 0.4 – 1 mg m-2 for Cu, 7 – 19 mg m-2 for Fe, 219 
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– 629 g m-2 for EWT and 171 – 560 g m-2 for LMA in the study area. It should be noted that these 

ranges were obtained for the SBW host stands from a coastal environment.    

 

Figure 4. 5. SBW nutritional, non-nutritional and host species defense traits prediction maps at 

20 m spatial resolution. The final models for Cu, LMA, N, and P were developed using random 

forest (RF) algorithm while the extreme gradient boosting (XGB) algorithm was employed to 

create the final model for Ca, EWT, Fe, and K. 
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Figure 4. 6. Correlation between the predicted plot level (20 m spatial resolution) traits for the 

entire study area as demonstrated in Figure 4.5. It is important to mention that this relationship is 

not derived from the field data, but from the predicted maps depicted in Figure 4.5. 

The degree of correlation between all the predicted trait maps obtained from our study area 

was evaluated (Figure 4.6). It is apparent that most of the traits are positively correlated with each 

other. However, Ca is the only trait not indicating significant positive relation with any of the traits 

under investigation. Similar to Ca, K also exhibit a weaker relationship with the rest of the 

predicted traits. In contrast, N, P, EWT, and LMA show a general moderate to high level of positive 

correlation with each other (N-P: 0.9; N-EWT: 0.86; N-LMA: 0.75; P-EWT: 0.82; P-LMA: 0.66; 

EWT-LMA:0.82) (Figure 4.6).  
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4.3.3 Implications of trait measurements in understanding host-pest interactions 

 

Spatially explicit information on foliar traits can provide valuable insights into plant 

growth, productivity and health dynamics. By utilizing remote sensing data, the scope of 

application can be extended to a landscape level. However, the absence of threshold values for the 

concentration of canopy traits that significantly impact ecological processes, such as forest 

productivity or susceptibility to herbivory, hinders the effective use of produced canopy trait maps 

in real-world scenarios. In this study, we estimated eight different canopy traits from three 

categories in terms of their usefulness towards SBW success: 1) nutritive traits (N, P, K, and Cu), 

2) non-nutritive traits (Fe and Ca), and 3) defensive morphological traits (LMA and EWT). 

Although, due to the constraints related to multi-temporal field data collection and experimental 

setup, the thresholds for host canopy traits associated with host species’ susceptibility to SBW 

attack were not determined. We present a framework (Figure 4.7) that could be used to classify 

host species into different susceptibility classes (least susceptible, moderately susceptible, and 

highly susceptible) based on the estimated trait values. We used LMA (defensive trait), K (nutritive 

trait), and N (nutritive trait but favors defense) as an example, where LMA and N values are 

negatively correlated with the susceptibility of SBW host species while K is positively correlated. 

All the experimental plots proposed in our framework should be control (untreated) plots since 

any application of SBW suppression treatment between two measurements might influence the 

natural activities of the pest.  
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Figure 4. 7. Framework for linking plot-level trait values (such as plot LMA, K, and N) to the 

susceptibility of SBW host species against SBW attack. The tool involves conducting visits to the 

plots before and after infestation. During the initial visit, traits are measured, whereas the degree 

of defoliation is measured during the subsequent visit. 

 

4.4. Discussion 

 

This study investigated a new method of estimating plant canopy traits by using remote 

sensing and site data. Recently, there has been growing interest among researchers in estimating 

canopy foliar traits using this technique due to its ability to be an easy and cost-effective approach 

to evaluate plant health and productivity. However, to date, no studies have attempted to relate 

estimated foliar traits to a plants’ ability to reduce herbivory. In fact, most studies focus only on 

estimations of very common plant pigments, such as chlorophyll and N, which are less valuable 

for assessing forest well-being and productivity from an ecological perspective. Our research 
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bridges two popular disciplines: foliar trait estimation and insect-plant interactions, especially in 

regard to traits associated with potential defensive mechanisms of plants. We also used modern 

machine learning algorithms to make predictions of foliar traits and to compare their accuracies 

for trait estimation. 

4.4.1. Machine learning algorithms and their performances for traits mapping 

 

Overall, our results indicate that XGB and RF algorithms outperformed the SVM algorithm 

for estimating targeted canopy traits using remote sensing and site variables (Figure 4.4; Table 

4.1). However, it is worth noting that the SVM algorithm still achieved decent performance 

[nRMSE range: 0.17 (EWT) – 0.24 (Fe and P)]. We observed that XGB and RF were both suitable 

for estimating four trait models (XGB: Ca, EWT, Fe, and K; RF: Cu, LMA, N, and P). 

Nevertheless, XGB generally performed better than RF in terms of the R2 values (Table 4.1). These 

findings are consistent with several other studies that have reported the performance of RF, XGB, 

and SVM algorithms for trait estimation. The study conducted by Miao et al. (2022) on estimating 

leaf nutrients of Mangrove during summer using Sentinel-2 variables noted a comparable accuracy 

between RF and XGB for N [RF: nRMSE (0.09) vs. XGB: nRMSE (0.10)] and a better 

performance of RF over XGB for P [RF: nRMSE (0.15) vs. XGB: nRMSE (0.16)]. Similarly, 

Prado-Osco et al. (2019) reported a comparable RMSE of 2.09 for RF and 2.04 for XGB in an 

attempt to estimate canopy N content of citrus trees using UAV imagery, whereas SVM exhibited 

inferior performance with an RMSE of 5.15.  

In contrast, Zhang et al. (2022) reported better performance of XGB over RF for the 

estimation of foliar N [RF: nRMSE (0.47) vs. XGB: nRMSE (0.44)], P [RF: nRMSE (0.40) vs. 

XGB: nRMSE (0.29)] and specific leaf area [inverse of LMA; RF: nRMSE (0.41) vs. XGB: 

nRMSE (0.26)]. Nonetheless, it is worth noting that their study differs from ours in terms of the 
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study area location and vegetation types involved, as they focused on alpine meadows while our 

study estimated canopy traits of temperate forest trees. Regarding data modeling, Georganos et al. 

(2018) reported superior performance of XGB, followed by RF and SVM, with a small number of 

training samples (< 60) in their study on land use-land cover modeling, which is in agreement with 

our findings. 

To our best understanding, no studies have reported on the estimation of Ca, Cu, EWT, Fe, 

and K using the XGB algorithm, which could be compared with RF and SVM. However, there are 

several instances where some of the aforementioned foliar traits have been measured using either 

a single algorithm or a different algorithm than the ones used in our study. When comparing the 

best models from the literature with the ones we created, our results are consistently comparable 

or even superior in terms of the estimation of N (Wang et al. (2018b): nRMSE (0.18); Gara et al. 

(2019): nRMSE (0.19); Zhang et al. (2022): nRMSE (0.22)), P (Axelsson et al. (2013): nRMSE 

(0.57); Zhang et al. (2022): nRMSE (0.20)), K (Axelsson et al. (2013): nRMSE (0.29); Chlus and 

Townsend (2022): nRMSE (0.17)), Ca (Axelsson et al. (2013): nRMSE (0.57); Chlus and 

Townsend (2022): nRMSE (0.26)), EWT (Liu et al. (2016): nRMSE (0.20)), and LMA (Gara et 

al. (2019): nRMSE (0.19); Chlus and Townsend (2022): nRMSE (0.17)). There were no records 

available in the literature for modeling canopy Fe and Cu using satellite imagery and machine 

learning algorithms to compare with our results.  

4.4.2. Remote sensing and site variables for modeling canopy traits 

 

Our study demonstrates the primary role of remote sensing variables in estimating a suite 

of diverse canopy traits; yet site variables were influential in all the of the models except for Ca 

and P. Focusing on the remote sensing variables, red-edge variables had a significant contribution 

in estimating the entire set of canopy traits. Our results on the selection of red-edge variables for 
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N estimation are consistent with several other studies (e.g., Gara et al., 2019; Prado-Osco et al., 

2019; Miao et al., 2022). In addition, several researchers have demonstrated the sensitivity of NIR  

and SWIR wavelengths to N (e.g., Curran, 1989; Kokaly and Clark, 1999), with the absorption of 

the wavelengths attributed to, for example, N-Hydrogen (N-H) stretch (1510 nm), Oxygen-

Hydrogen (O-H) stretch/O-H deformation (1940 nm), N-H bend (second overtone)/Carbon-N (C-

N) stretch (2180 nm) etc.  

Among the limited literature on the estimation of canopy P using remote sensing data, 

Milton et al. (1991) suggested the significance of red-edge wavelengths for estimating foliage P, 

which was consistent with our results; however, the study from Mutanga and Kumar, (2007) 

contradicts this finding. The authors claim that the wavebands from the SWIR region are better to 

estimate the P content in plant canopies. The inconsistency in which spectral bands should be used 

to predict canopy P content, plus the lower accuracy for the estimation (nRMSE: 0.22 in our study), 

may be attributed to the generally low P concentration in leaves. In addition, the absence of 

prominent P-bonded compounds sensitive to the range of electromagnetic spectrum that 

researchers generally work with (400 nm – 2500 nm) may be playing a role (Porder et al., 2005; 

Axelsson et al., 2013; Homolova et al., 2013).  

Similar to the findings reported by Gara et al. (2022), the results from our study 

demonstrate the key role of red-edge variables and a visible band (B4) in estimating canopy K. 

Nevertheless, Asner et al. (2011) recommended a full spectrum of electromagnetic radiation from 

visible (400 nm) to SWIR (2500 nm) for the better estimation of canopy K. In general, K, similar 

to P, does not have prominent absorption compounds, which could affect the absorption throughout 

the visible to SWIR range, forcing us to approximate it directly (Axelsson et al., 2013). However, 

we found that it was possible to estimate it with decent accuracy (nRMSE: 0.14) by leveraging its 
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correlation with other compounds, particularly hydrocarbon compounds like cellulose, starch, 

sugar, etc., present in the leaves (Chlus and Townsend, 2022). Moreover, the same trajectory is 

followed by canopy Ca and Fe (Asner et al., 2011; Axelsson et al., 2013). It is crucial to underscore 

that the concentration of these elements (except for Cu) vary seasonally in the plant canopy, which 

also might impact the strength of their imprint in the range of electromagnetic spectrum we are 

working with (Chlus and Townsend, 2022).  

As opposed to our expectation, the models for traits expressing canopy water (EWT), and 

dry matter/structure (LMA) content did not find SWIR-based variables important as proposed by 

Curan (1989). It is not uncommon to observe the inclusion of variables sensitive to LAI (red-edge 

indices in our case) for the estimation of EWT (Liu et al., 2016) and LMA (Gara et al., 2019) as 

witnessed in our study. Furthermore, the SWIR region of the electromagnetic spectrum is very 

sensitive to the dry matter content in leaves. Nevertheless, dry matter content can be masked by 

the water content when dealing with green foliage (Riano et al., 2005; Feret et al., 2019). Our 

results are similar to a study conducted by Liu et al. (2016) that found NDVI performed the best 

among all other SWIR variables when evaluating various hyperspectral indices for estimating 

EWT. Furthermore, the authors revealed the existence of a very high correlation (correlation 

coefficient of 0.94) between LAI and EWT in their study that could be attributed to the influential 

role of red-edge variables for water content estimation.  

Similar to the remote sensing variables, as we expected, site variables, in particular, DWT, 

TWI, and aspect played a significant role in estimating spruce and fir foliar traits. Taking into 

account the literature available on traits estimation using remote sensing data, it is apparent that 

researchers have rarely incorporated site or environmental variables into their analyses. However, 

a recent research conducted by Gara et al. (2022) estimated the foliar traits of conifer species and 
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reported the important role of a site variable (DWT). Moreover, in support of our findings, Loozen 

et al. (2020) have emphasized the significance of site variables in estimating foliar nitrogen levels 

in European forests. 

4.4.3 Correlation between traits and the limitations of proposed susceptibility framework  

 

Based on our study, it is evident that there exists a significant correlation among the 

nutritive (N, P, K, and Cu), non-nutritive (Fe, and Ca), and defense (EWT, and LMA) foliar traits 

(Figure 4.6).  Specifically, there were certain pairs exhibiting strong correlations: N and P 

(correlation coefficient: 0.9), EWT, and LMA (correlation coefficient: 0.82), EWT and N 

(correlation coefficient: 0.86), and EWT and P (correlation coefficient: 0.82). Given these strong 

correlations, it is possible to strategically select specific variables and exclude others for the sake 

of convenience in analysis. In addition, eliminating correlated traits can significantly reduce the 

cost of laboratory analysis.  

The presented framework for linking canopy traits to host-species susceptibility is both 

simple and promising. However, it is important to acknowledge its limitations. One notable 

limitation is the current inability of the framework to account for the interaction effects between 

the nutritive, non-nutritive, and defensive traits in both the plant and insect system. This interaction 

is complex and needs further exploration in order to fully understand its implications. Moreover, 

the existing framework represents a relatively simplistic model, and there is room for improvement 

by incorporating additional trait variables. Expanding the range of traits considered, we could 

refine the model and enhance its robustness. Additionally, it is crucial to recognize that the 

coevolutionary relationship between herbivorous insects and host plant species has the potential 

to modify the nature and/or importance of the traits as a metric of susceptibility. This is especially 

true based on if the insect is native vs. non-native, or a generalist vs. a specialist. It is therefore 
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important to verify and update the framework regularly to account for any modifications resulting 

from these plant-insect interactions. 

4.5 Conclusions 

 

Our study modeled eight different nutritive, non-nutritive and defensive foliar traits in 

spruce-fir stands and compared model performances using remote sensing, site variables, and three 

different machine-learning algorithms. Among the three algorithms, XGB and RF exhibited better 

performance in overall traits estimation compared to SVM. In particular, we recommend the XGB 

algorithm over RF due to its superiority evaluating multiple accuracy metrics such as R2 and 

RMSE. However, the accuracy of SVM was decent and could be tested in future for similar studies.  

Remote sensing data, especially the red-edge variables, proved essential for estimating 

canopy traits of spruce-fir stands, which played a crucial role in estimating foliar traits from green 

foliage. However, additional investigations are required to validate the adequacy of red-edge bands 

in estimating a broader range of foliar traits. Additionally, site variables were found to be an 

integral part of the trait models and we strongly recommend future studies to incorporate site 

variables in their analyses to improve the accuracy of trait estimations.  

Ultimately, we propose a novel framework for linking the estimated trait values with 

susceptibility of the host species against their pests that could be utilized by researchers to create 

host susceptibility maps using canopy trait values. We believe that this approach can be a 

complementary method to existing trait estimation tools. Additionally, trait maps could help 

forest managers make meaningful inferences at a landscape level regarding the health and 

productivity of their forestlands. 
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CHAPTER 5 

INTEGRATION, CONCLUSIONS, AND FUTURE DIRECTIONS 

5.1 Integration of spruce budworm (SBW) susceptibility assessment techniques 

This study investigated several techniques to assess forest susceptibility to SBW as well as 

exploring product needs for SBW outbreak planning and management. The focus was on 

improving preparedness prior to actual forest defoliation and damage enabled by remote sensing 

technology. The common and widely adopted technique of evaluating pest susceptibility of a forest 

using host-composition layer has been reinforced in our study using the stand maturity information 

derived using Land Change Monitoring, Assessment, and Projection (LCMAP) products. 

Moreover, we also used several machine learning algorithms to model SBW host abundance in 

terms of leaf area index (LAI) and basal area per hectare (BAPH) in the areas where SBW host 

species are present. This provides us with in-depth information about the host species richness in 

the area mapped as host species by our host composition model. The host abundance in terms of 

leaf area could be useful for the forest community to derive information about the foliage density 

available for SBW to defoliate while basal area could be used as a proxy for wood materials or 

value under potential risk. Moving forward, our study further strengthens the susceptibility 

mapping technique incorporating the insect and host physiology and their interaction. Given that, 

the host species use several defense strategies against the pests, not all the attempts from pests to 

attack on hosts turn out to be successful and not all the individual host trees are equally susceptible. 

In this regard, the quantification of defensive, nutritive and non-nutritive traits present in SBW 

host species can aid in the comprehensive analysis of host species resilience against the pest.     

While each of the three aforementioned techniques for assessing the susceptibility of SBW 

host species is individually robust enough, their collective use seemingly produces better 
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outcomes. The individual techniques could be sequentially used, with three distinct methods 

corresponding to three stages within a process. As illustrated in Figure 5.1, the initial step involves 

discriminating between host species and non-host species, followed by assessing the maturity of 

the identified host species. Moving to the second stage, the quantification of abundance through 

indicators such as LAI and BAPH takes place in the regions classified as host forests from the 

preceding step. Ultimately, in the final stage, host abundance is coupled with the evaluation of 

nutritive, non-nutritive and defense traits present in the host species, particularly foliage. It is 

expected that this integrated approach is comprehensive and is likely to yield a robust, reliable, 

and cost-effective alternative for conducting landscape-level assessments of forest susceptibility 

in general.          

 

Figure 5. 1. Integrated approach for the estimation of forest susceptibility to SBW defoliation. 

LAI: leaf area index; BAPH: basal area per hectare. 
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5.2 Limitations and future directions 

Monitoring of insect/pest induced disturbances, particularly SBW in our case is crucial 

from economical, ecological and societal points of view. Our study sought to devise various 

individual techniques to assess the susceptibility of landscapes to SBW which could be eventually 

combined to formulate a robust framework. The study largely focused on one of the major factors 

causing an outbreak, forest susceptibility where we modeled host species composition, their 

abundances and foliar traits. However, there are still areas where we can integrate scenarios such 

as phenology of insects and environmental factors like precipitation, spring temperatures, wind 

direction, etc. to better predict SBW outbreak at a landscape scale However, such studies require 

good quality historical SBW defoliation data that were not available for this research in particular 

with the spatial resolution used in this study (20 m). Nevertheless, our work provides a very helpful 

insight into monitoring and assessing the status of forested landscapes before the outbreak, which 

will aid landowners to formulate management plans against the potential future outbreaks. 

Through this study, we introduced a novel framework to link canopy foliar traits to 

susceptibility of forests to pests (SBW in our case) which will put value on the predicted foliar 

traits for actual application in the real world. In addition, we suggest the use of freely available 

archives of LCMAP data for estimating the age of forest stands based on their promise from our 

study.  

Throughout this study, several machine learning algorithms such as random forest (RF) 

support vector machine (SVM), artificial neural networks (ANNs), and extreme gradient boosting 

(XGB) were used to model diverse forest susceptibility indicators, namely, forest composition, 

abundance (LAI, and BAPH) and foliar traits (nutritive, non-nutritive, and defense). RF was often 

found to outperform all other algorithms. However, XGB marked its superiority along with RF for 
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some foliar traits estimation such as calcium (Ca), equivalent water thickness (EWT), iron (Fe), 

and potassium (K). In this entire study, Sentinel-2 data, in particular, the red-edge spectral 

vegetation indices derived from it proved to be the essential remote sensing data for estimating all 

three host susceptibility indicators. In addition, synthetic aperture radar (SAR), to be specific, L-

band SAR data added some benefits during the development of forest composition models (SBW 

host species included) when integrated with optical data. Furthermore, site variables were pivotal 

in all the modelling approaches.  

Together with numerous advantages, remote sensing techniques come with several 

limitations for forest health monitoring. Remote sensing techniques rely heavily on the quality of 

available satellite imagery, which can be affected by environmental factors such as cloud cover 

and atmospheric conditions, and the resolution (temporal, spectral, and spatial) of sensor itself. 

With the recent continuous advancements in remote sensing technologies, these challenges could 

be overcome by fusing multiple sensor types and data as well as taking advantage of artificial 

intelligence (AI) and big data leading to more efficient and cost-effective forest health monitoring.     
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APPENDIX 

Table A. 1. Sentinel-1 and Sentinel-2 based spectral vegetation indices (SVIs) used as predictor 

variables for the SBW host species classification in our study. SVIs derived from Sentinel-2 

imagery were selected based on their sensitivity towards canopy structure, physiology/stress, and 

biochemistry. 

SVIs Equation Reference 

Structure  

Atmospherically Resistant Vegetation 

Index (ARVI) 

(B8A−2B4+ B2)

(B8A+2 B4+ B2)
  Kaufman and Tanre 

(1992) 

Enhanced Vegetation Index7 (EVI7) 2.5(B7−B4)

(1+B7+6B4−7.5B2)
  Majasalmi and 

Rautiainen (2016) 

Enhanced Vegetation Index8 (EVI8) 2.5(B8A−B4)

(1+B8A+6B4−7.5B2)
  Huete et al. (2002) 

Modified Simple Ratio (MSR) ((B7/B4)−1)

sqrt((B7/B4)+1)
  Chen (1996) 

Normalized Difference Vegetation 

Index (NDVI)  

(B8A−B4)

(B8A+B4)
  Rouse et al. (1974) 

Soil Adjusted Vegetation Index (SAVI) 1.5(B8A−B4)

(B8A+B4+0.5)
  Huete (1988) 

Wide Dynamic Range Vegetation Index 

(WDRVI) 

((0.01B7)−B4) 

((0.01B7+B4)+0.98)
  Majasalmi and 

Rautiainen (2016) 

Physiology/stress  

Anthocyanin Reflectance Index1 

(ARI1) 
(

1

B3
) − (

1

B5
)  Gitelson et al. (2001) 

Anthocyanin Reflectance Index2 

(ARI2) 
(

B8A

B3
) − (

B8A

B5
)  Gitelson et al. (2001) 

Carotenoid Reflectance Index1 (CRI1) (
1

B2
) − (

1

B3
)  Gitelson et al. (2002) 

Carotenoid Reflectance Index2 (CRI2) (
1

B2
) − (

1

B5
)  Gitelson et al. (2002) 

Normalized Difference Infrared Index11 

(NDII11) 

(B8A−B11)

(B8A+B11)
  Hardisky et al. (1983) 

Normalized Difference Infrared Index 

12 (NDII12) 

(B8A−B12)

(B8A+B12)
  Key et al. (2002) 

Plant Senescence Reflectance Index 

(PSRI) 

(B4−B3)

( B8A)
  Merzlyak et al. (1999) 

Biochemistry  

Chlorophyll Green Index (GCI) (
B8A

B3
) − 1  Gitelson et al. (2003) 

Chlorophyll Red Edge (Clre) (
B7

B5
) − 1  Gitelson et al. (2003) 

Green Atmospherically Resistant Index 

(GARI) 

(B8A−B3−(B2−B4))

(B8A+B3−(B2−B4)) 
  Gitelson et al. (1996) 

Green NDVI (GNDVI) (B8A−B3)

(B8A+B3)
  Gitelson et al. (1996) 

Inverted Red Edge Chlorophyll Index 

(IRECI) 
(

B6

B5
) (B7 − B4)  Clevers et al. (2000) 

   



103 
 

Table A.1. continued… 

 

 

MERIS Terrestrial Chlorophyll Index 

(MTCI) 

(B6−B5)

(B5−B4)
  Dash and Curran 

(2007) 

Modified Chlorophyll Absorption in 

Reflectance Index (MCARI) 
1 − (

(0.2(B5−B3))

B5−B4
)  Daughtry et al. (2000) 

Normalized Difference Vegetation 

Index45 (NDVI45) 

(B5− B4)

( B5+ B4)
  Delegido et al. (2011) 

Normalized Difference Vegetation 

Index65 (NDVI65) 

(B6− B5)

( B6+ b5)
  Gitelson and Merzlyak 

(1994) 

Red-Edge Normalized Difference 

Vegetation Index (NDVIRE) 

(B8A− B6)

(B8A+ B6)
  Gitelson and Merzlyak 

(1994) 

Sentinel-2 Red Edge Position (S2REP) 
705 + 35 (

((
B7+B4)

2
)−B5)

(B6−B5)
)  

Guyot and Baret (1988) 

Transformed Chlorophyll Absorption in 

Reflectance Index (TCARI) 
3(𝐵5 − 𝐵4) − 0.2(𝐵5 −

𝐵3) (
B5

B4
)  

Haboudane et al. 

(2002) 

Triangular Vegetation Index (TVI) 0.5(120(B6 − B3) −
200(B4 − B3))  

Broge and Leblanc 

(2001) 

Sentinel-1   

Normalized Ratio Procedure between 

Bands (NRPB) 

(σVH −  σVV)

( σVH +  σVV)
 

Filgueiras et al. (2019) 
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