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In the realm of science and engineering, there is a need for models that can accurately 

describe complex systems. High-fidelity models are often used for this purpose, but they tend to 

be costly to create and impractical to use for many applications including design optimization. On 

the other hand, low-fidelity models offer a more affordable alternative, but sacrifice accuracy. To 

strike a balance between accuracy and cost, multifidelity surrogate modeling (MFSM) has emerged 

as a viable solution by integrating data from sources with different levels of fidelity. This research 

aims to contribute to the understanding of MFSM by exploring the previous research in this field 

and examining the performance of two existing MFSM techniques, namely Co-Kriging and Linear 

Regression Multifidelity Surrogate (LR-MFS) in terms of efficiency and accuracy. Based on the 

recent studies, these two approaches are the ones most widely used in the MFSM domain. Co-

Kriging is primarily focused on interpolation, while the LR-MFS leans towards regression 

analysis. As a result, Co-Kriging excels at capturing local variations accurately, whereas the LR-

MFS is better suited for capturing broader global trends. Consequently, it is logical to explore the 

possibility of merging the strengths of both Co-Kriging and the LR-MFS to create a more efficient 

surrogate modeling technique. A novel approach, Co-Kriging-LR-MFS Ensemble Model based on 

K-means clustering method is introduced to exploit the advantages offered by both high- and low-

fidelity models while detecting performance discrepancies in each region based on error analysis. 

The primary objective of this investigation is to advance the understanding of the benefits and 

limitations associated with multifidelity surrogate modeling for scientific inquiry while seeking 

ways to improve its overall performance in engineering. At the end, to evaluate the performance 



 

of the Co-Kriging-LR-MFS Ensemble Model, two test cases involving the Laplace’s equation and 

Peaks function are implemented. The results show that in both cases, the total Root Mean Square 

Error (RMSE) in the Co-Kriging-LR-MFS ensemble surrogate modeling approach improves by 

26.27% and 27.88% as compared to the best stand-alone predictive model, respectively. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Surrogate modeling 

Within the modeling domain, a surrogate model becomes a highly valuable asset. It serves as an 

intermediate point between intricate and complex models by offering a simplified alternative. The 

purpose behind this is to replicate the behavior or predictions of the original model without 

incurring excessive computational costs or complexity. This thesis explores various methods for 

approximating functions that yield real-valued outputs. Specifically, it focuses on functions 

denoted as 𝑧(𝒙) within a defined input parameter space 𝑄 ⊂ 𝑅. These particular functions are 

commonly known as "Blackbox functions" in computer experiments, representing the output of 

computer code when provided with certain input parameters 𝒙. To approximate the relationship 

between the input variables 𝒙 and the response variable 𝑧(𝒙), we rely on an experimental design 

set of 𝑛 samples, i.e., 𝐷 = {𝒙(1), 𝒙(2), … , 𝒙(𝑛)} along with their corresponding outputs  𝒛 =

{ 𝑧(𝒙(1)), 𝑧(𝒙(2)), … , 𝑧(𝒙(𝑛))}
𝑇

.  

However, this data set alone is insufficient for constructing a reliable surrogate model for 𝑧(𝒙), 

and it is necessary to make assumptions about the nature of the function itself. An important 

consideration in this process is determining the required number of observations, 𝑛. Given the 

increasing complexity of computer simulators, conducting a large number of simulations for tasks 

such as uncertainty quantification, sensitivity analysis or optimization can be impractical. Thus, 

the objective of this research is to develop a fast approximation method – often referred to as a 

surrogate model or metamodel – that utilizes only a limited number of observations. Statistical 

methods play a crucial role in analyzing computer experiments due to multiple sources of 

uncertainty involved in the process. 

1.2. Multifidelity models 

The concept of fidelity in modeling pertains to the degree of accuracy offered by a predictive 

model or simulation. Typically, high-fidelity (HF) models yield accurate predictions; however, 

they often require substantial computational resources. In contrast, low-fidelity (LF) models are 

computationally cheap, but they often lack the accuracy of HF models. Multifidelity models (MFs) 

combine HF and LF models to achieve rapid yet reliable predictions. These models have gained 
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significant traction due to their capacity to generate approximate models with remarkable accuracy 

while minimizing computational cost. To take advantage of both HF and LF models, a number of 

multifidelity surrogate models (MFSMs) based on different approximation functions (e.g., 

Kriging, polynomial response surface, and radial basis function) have been developed. 

1.2.1. Correction techniques 

In MFSMs, three primary correction techniques are employed: additive, multiplicative, and 

comprehensive. 

1.2.1.1. Additive correction 

Additive correction captures the difference between HF and LF models such that the MFSM of the 

HF model is expressed as 

𝑦𝑀𝐹(𝒙) ≈ 𝑦̂𝐻𝐹(𝒙) = 𝑦𝐿𝐹(𝒙) + 𝛿(𝒙) 

 

(1.1) 

where 𝑦̂𝐻𝐹(𝒙) represents the multifidelity approximation of the HF model, 𝑦𝐿𝐹 represents the LF 

model, and 𝛿(𝒙) represents an additive correction or discrepancy function to address variations 

between HF and LF models. In cases where computational cost or another limitation is a hindrance, 

LF model can be swapped with its approximate model.  

1.2.1.2. Multiplicative correction 

In an alternative approach, the MFSM can be mathematically represented by incorporating a 

multiplicative correction factor as 

𝑦𝑀𝐹(𝒙) ≈ 𝑦̂𝐻𝐹(𝒙) = 𝜌(𝒙)𝑦𝐿𝐹(𝒙) 

 

(1.2) 

where 𝜌(𝒙) is an approximation function incorporating the ratio of the HF and LF models at each 

common location given by vector 𝒙. It is worth noting that if the LF model proves to be too costly, 

it can be replaced by an approximate model.  

1.2.2.3. Comprehensive correction 

Within the context of MFSM, a comprehensive correction approach involves utilizing both 

additive and multiplicative adjustments within a unified framework expressed as 
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𝑦𝑀𝐹(𝒙) ≈ 𝑦̂𝐻𝐹(𝒙) = 𝜌(𝒙)𝑦𝐿𝐹(𝒙) + 𝛿(𝒙) 

 

(1.3) 

where the function 𝜌(𝒙) serves as a representation of the multiplicative correction function while 

𝛿(𝒙) is used to represent the additive correction approximation function. An examination of 

previous scholarly works highlights that the preferred approach typically involves maintaining a 

constant value for 𝜌(𝒙) and using a surrogate model to estimate the additive correction 𝛿(𝒙). 

1.3. High-fidelity and low-fidelity data sets 

In the context of modeling and simulation, high- and low-fidelity data sets refer to different levels 

of detail or accuracy in the representation of a system. Whether a model is considered to have high 

or low fidelity depends on the comparison made. For instance, a full 3D simulation might be 

expensive as compared to a primary function calculation in a 1D simulation, but inexpensive 

compared to actual experiments. Additionally, various sources of data may be used to generate 

both high-fidelity and low-fidelity data sets, and this can vary from case to case. These sources are 

often classified based on various factors, including the following: 

Dimensionality (3D vs. 2D): 

• High-fidelity data in three-dimensional space provides a more detailed 

representation of the system, capturing complexities in all directions. 

• Low-fidelity data in two-dimensional space may simplify the representation, 

neglecting variations in the third dimension for computational efficiency. 

Analysis Resolution (Refined vs. Coarse): 

• High-fidelity data with a refined analysis resolution contains more data points per 

unit dimension, offering a detailed view of the system. 

• Low-fidelity data with a coarse analysis resolution reduces the number of data 

points per unit dimension, providing a less generalized or simplified representation. 

Type of Study (Simulations vs. Experiments): 

• High-fidelity data from simulations involve detailed mathematical models and 

algorithms that simulate the behavior of the system under various conditions. 
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• Low-fidelity data from experiments involve real-world observations, which may 

have limitations in terms of precision and control compared to simulations. 

State of Flow (Transient vs. Steady): 

• High-fidelity data may include information about transient states, capturing 

changes in the system over time. 

• Low-fidelity data may focus on steady-state conditions, simplifying the analysis by 

assuming that the system has reached a stable condition. 

Degree of Solution Convergence (Converged vs. Semi-converged): 

• High-fidelity data with a fully converged solution implies that the computational 

model has reached a stable and accurate solution. 

• Low-fidelity data with a semi-converged solution may represent a less accurate or 

stable state, possibly due to computational constraints or simplifications. 

1.4. Deterministic methods vs. non-deterministic methods 

Deterministic models assume that the parameters of the surrogate model are known with certainty. 

They use predefined basis functions and aim to minimize the differences between the surrogate 

model's predictions and actual data. They are a good choice when one is confident about the 

model's form and parameters. In contrast, non-deterministic models capture uncertainty. They can 

either assume uncertainty in the underlying function itself or in the parameters of the surrogate 

model. They use data or samples to estimate the model or its uncertain parameters. Non-

deterministic models are preferred when dealing with uncertain or complex modeling situations 

where flexibility and higher accuracy are crucial. The choice between the two category of methods 

depends on the specific problem and the level of uncertainty present in the system.  

1.5. Basis function regression and Kriging methods 

In the vast landscape of multifidelity surrogate modeling, where researchers navigate through 

various techniques to model complex systems, two methods have captured widespread attention: 

“Kriging” and “Basic function regression,” with the latter referring to a broader class of regression 

techniques where the relationship between variables is modeled using basic functions or basis 

functions, which are functions used to represent the relationship between variables. These 
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functions can be linear, quadratic, cubic polynomials, or even more complex. Through an initial 

exploration of existing literature, it became evident that these two approaches serve as the 

backbone of multifidelity surrogate modeling, finding extensive use across different fields as 

shown in Figure 1.1. To delve deeper into their significance, this literature review specifically 

focuses on Kriging and Basis function regression approaches to unravel their unique strengths and 

limitations.  

 

Figure 1.1 Popularity of different multifidelity models based on 157 papers surveyed by 

Fernández-Godino et al. [2023] 

Some multifidelity models (MFs) can be created without the need for an MFSM. These types of 

MFs are referred to as multifidelity hierarchical models, and they fall into the category labeled as 

“none” in Figure 1.1. For instance, in the work of Choi et al. [2008], a hierarchical MFM approach 

is proposed for optimization. In this approach, HF models are selectively used to correct the 

deficiencies of LF models without the explicit construction of an MFs or the integration of multiple 

fidelities. This means that they are using different fidelity models strategically without creating an 

overarching model that combines them. For example, in the work of Kalivarapu and Winer [2008], 

an MF is used for interactive modeling of advective and diffusive contaminant transport without 

the construction of an MFSM. Giunta et al. [1995] and Zahir et al. [2013] are cited as other 

examples where this approach is followed, avoiding the need for an MFSM. These cases show that 

there are various ways to utilize multiple fidelity levels in modeling, and not all of them require 

the creation of an explicit overarching surrogate model. The group labeled as “others” comprises 

artificial neural networks, moving least squares, support vector machines, radial basis 

interpolation, and proper orthogonal decomposition, all of which have a usage rate below 1%. 
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1.5.1. Basis function regression 

In engineering applications, single-fidelity surrogate models have long been regarded as the 

conventional choice. These models, such as polynomial response surface (PRS) and radial basis 

functions (RBF), have gained popularity over the years Myers et al. [2016], Gutmann [2001], Sun 

et al. [2011]. Interest in response surface-based MFSMs has been growing significantly. In an effort 

to reduce prediction errors of HF samples, Zhang et al. [2018] introduced a revised heuristic 

MFSM called linear regression multifidelity surrogate (LR-MFS), which is based on linear 

regression, focused on minimizing prediction errors in high-fidelity samples through optimization 

techniques. The approach involves approximating system behavior at a high-fidelity level by 

employing a linear combination of low-fidelity predictions alongside a polynomial-based 

discrepancy function. This algorithm involves integrating the low-fidelity model as a fundamental 

basis function within a multifidelity model, utilizing the scale factor as a regression coefficient. 

This integration forms the design matrix for least-square estimation, comprising both the low-

fidelity model and the discrepancy function. The process further involves simultaneous extraction 

of the scale factor and coefficients of the basis functions through linear regression, ensuring a 

unique fitting process. Notably, the approach, termed linear regression multifidelity surrogate (LR-

MFS), not only facilitates efficient parameter estimation but also holds promise for broader 

applicability in other regression models. The adaptability of LR-MFS lies in its capacity for 

straightforward substitution of the design matrix. Song et al. [2019] proposed another MFSM that 

utilizes polynomial regression and allows for the adjustment of judgment factors within different 

design spaces to enhance prediction accuracy. This work introduces an innovative approach aimed 

at reducing the number of evaluations required for the high-fidelity model within the optimization 

process. The primary objectives include accelerating optimization speed while enhancing the 

accuracy of the optimal solution. The proposed method focuses on a robust and computationally 

efficient multi-fidelity local surrogate-model optimization strategy. Leveraging the principles of 

response surface approximation, this method capitalizes on multifidelity coarse models and 

employs polynomial interpolation to create a series of localized surrogate models. Throughout the 

optimization process, the methodology involves iterative modeling and optimization within local 

regions. A critical aspect involves the introduction of a judgment factor, providing crucial 

information for updating the size of the local regions. An iterative refinement process is executed, 

culminating in the enhancement of the final local surrogate model using space mapping techniques. 
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This refined model facilitates the attainment of an optimal design with notably high accuracy. 

Rumpfkeil et al. [2019] presented an MFSM that employs the sparse polynomial chaos expansion 

approach as a cost-effective alternative to computationally intensive engineering analyses. 

Additionally, Cheng et al. [2019] developed an MFSM by combining sparse polynomial chaos 

expansion with recursive Gaussian process, enabling accurate response prediction for dynamic 

systems. 

1.5.2. Kriging and Co-Kriging 

Kriging, a powerful geostatistical interpolation technique, enables the estimation of unobserved 

spatial data points by considering the spatial correlation between known points. This method, first 

introduced by Matheron [1963] and further developed by Cressie [1988], relies on the assumption 

of spatial dependence to generate predictions and quantify uncertainties. 

Kennedy and O'Hagan [2000] introduced a novel MFS model by employing a Bayesian approach 

along with Gaussian process techniques. Building upon this work, Forrester et al. [2007] expanded 

the widely-used Kriging model to create a two-level variant called the Co-Kriging model. This 

was achieved through the construction of a correlation matrix that incorporates both high-fidelity 

and low-fidelity information. The Kriging and Co-Kriging algorithms will be discussed in Chapter 

2 based on this paper. Furthermore, Xiao et al. [2018] utilized orthogonal decomposition methods 

to generate multilevel multifidelity datasets and further extended the framework of Forrester et al. 

[2007] by introducing multiple levels into the Co-Kriging model.  

The exploration of MFMs in this thesis has predominantly focused on two fidelities. However, it 

is crucial to recognize that a number of studies, including Huang et al. [2006], Forrester et al. 

[2007], Qian et al. [2008], Le Gratiet [2013], and Goh et al. [2013], have successfully shown the 

possibility of constructing MFMs with more than just two fidelities. In addition to the various 

adaptations and modifications of the Co-Kriging model, its applications in different industries such 

as aerospace, automobile, marine, and intelligent manufacturing have garnered significant 

attention. These recent developments have showcased the potential benefits of utilizing Co-

Kriging models in these fields. For instance, a study conducted by Yong et al. [2019] demonstrated 

the successful implementation of the Co-Kriging model in optimizing the geometry of gas turbines. 

This approach resulted in substantial cost savings of 43% compared to using a single HF Kriging 

method. Similarly, Shi et al. [2020] applied the Co-Kriging model in designing all-electric 
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geostationary-orbit satellite systems. The intricate task of designing all-electric geostationary orbit 

(GEO) satellite systems presents a complex challenge in multidisciplinary optimization (MDO), 

heavily reliant on resource-intensive simulations. That study delves into the MDO issue of these 

satellites, employing multifidelity models. It formulates an MDO problem involving six 

interconnected disciplines, aiming to minimize the overall satellite system mass while adhering to 

various engineering limitations. To alleviate computational burdens in the multidisciplinary 

analysis (MDA) process, they relied on transfer dynamics models of varying fidelity and finite 

element analysis (FEA) models for GEO and structural disciplines, respectively. Their solution 

method using multi-fidelity models and an adaptive Co-Kriging-based optimization framework  

integrates data from high- and low-fidelity MDA processes, constructing a moderately 

computationally efficient Co-Kriging metamodel for optimization purposes. Additionally, an 

approach for refining Co-Kriging metamodels through a multi-objective adaptive infill sampling 

method is introduced. This method generates infill sample points based on expected improvement 

and probability of feasibility functions. Results from optimization trials demonstrated the 

framework's capability to significantly reduce total satellite system mass within a constrained 

computational budget. This highlights the effectiveness and applicability of employing 

multifidelity modeling and adaptive Co-Kriging-based optimization for the design of all-electric 

GEO satellite systems. The utilization of this model led to a notable reduction in total system mass 

while working within limited computational resources. These examples highlight how Co-Kriging 

models can be effectively employed to enhance efficiency and achieve favorable outcomes across 

various sectors. As researchers continue to explore new possibilities for applying this 

methodology, we can expect further advancements and improvements in diverse industrial settings. 

1.6. Thesis outline 

The general outline of the research conducted is shown in Figure 1.2. Chapter 2 delves into the 

intricate details of Kriging, Co-Kriging, and LR-MFS, elucidating their mathematical formulations 

step by step. Additionally, this research introduces a novel approach named "Co-Kriging-LR-MFS 

Ensemble Modeling" that integrates K-means Clustering methodology, combining the strengths of 

these two established methods to achieve enhanced accuracy. 

Moving to Chapter 3, several case studies involving one and two-dimensional functions such as 

the Laplace’s equation and the Peaks function are used as example problems. The outcomes of 
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different approaches are used to inform the subsequent introduction of the ensemble model, 

showcasing its results. Comparative analysis based on Root Mean Square Error (RMSE) highlight 

the ensemble approach's superiority, consistently yielding lower RMSE values. This pattern 

underscored the consistent enhancement in overall accuracy by leveraging the combined strength 

of multiple models over a single model. 

 

 

 

 

Figure 1.2 Summary of techniques investigated in this research. 
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CHAPTER 2 

SURROGATE MODELING METHODS 

 

2.1. Kriging  

In Kriging, the objective is to model a response function as a stochastic process as noted in 

Appendix A. This means that given any set of input data points, the model produces a distribution 

encompassing potential functions that could accurately represent the response values at the data 

points.  

Regarding spatial data analysis, Kriging is an application of Gaussian process regression where 

the input points are associated with specific spatial locations. In other words, Kriging can be seen 

as a special case of Gaussian process regression, specifically applied in the context of spatial 

interpolation, where the focus is on estimating values at unobserved locations within a spatial 

domain.  

Kriging leverages the covariance structure between data points to make predictions at unobserved 

locations. It takes into account both observed data and the spatial correlation existing among these 

data points. For more information regarding the spatial correlation, refer to Appendix B. 

Considering the correlation among the training data points helps avoid duplication of information 

and prevents the duplication of the same data's effect, ensuring a more efficient and accurate 

analysis. 

Typically, the Kriging correlation is modeled using either a covariance or a variogram function. 

The utilization of Gaussian processes allows Kriging to not only provide point estimates at 

unobserved locations but also quantify uncertainties associated with these estimates. 

Consequently, Kriging is as an influential tool for spatial prediction and interpolation across 

various domains such as geostatistics, environmental science, and spatial statistics.   

The general or universal Kriging model, consisting of two key components, is expressed as 

𝑦(𝒙) = 𝑓(𝒙) + 𝑍(𝒙)  (2.1) 
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where 𝑓(𝒙) is the global trend function, often replaced by a constant term 𝜇 as representing a mean 

base term, and a stationary Gaussian process, 𝑍(𝒙) that quantifies the localized deviation from the 

global trend model or the level of uncertainty associated with the model. 

The Gaussian process term is assumed to have a zero mean and a covariance matrix given as  

𝑐𝑜𝑣[𝑍(𝒙(𝑗)), 𝑍(𝒙(𝑖))] =  𝜎2𝜓 (2.2) 

where 𝜎2 is the variance and 𝜓 = 𝑐𝑜𝑟𝑟[𝑦(𝒙(𝑗)), 𝑦(𝒙(𝑖))] is the symmetric correlation matrix (with 

1’s along the diagonal) that characterizes the correlation between different points in the input space 

(i.e., the training set). The spatial correlation quantifies how the function values at different input 

points are correlated, with the correlation function, defining each term in the symmetric correlation 

matrix, given as 

 

𝜓𝑖𝑗 = exp (− ∑ 𝜃𝑘 ‖𝒙𝑘
(𝑗)

− 𝒙𝑘
(𝑖)

‖
𝑝𝑘

𝑚

𝑘=1

) 
(2.3) 

where vector 𝒙 = [𝒙1, 𝒙2, … , 𝒙𝑚]𝑇, with 𝜃𝑘 (0 ≤ 𝜃𝑘) and 𝑝𝑘 (1 ≤ 𝑝𝑘 ≤ 2) representing the hyper 

parameters associated with the kth component of vector 𝒙. The correlation function in Eq. (2.3) is 

shown in terms of the general exponential kernel function; other common kernel functions are 

given in Table 2.1.   

In Kriging, the choice of hyper parameters within the kernel function can significantly impact the 

final prediction by influencing the model's flexibility, smoothness, and ability to capture the 

underlying spatial structure or correlation in the data. These hyper parameters are crucial in 

determining the behavior of the covariance and the kernel function, which, in turn, affects 

predictions in Kriging. Common kernel functions include the Radial Basis Function (RBF) or 

Gaussian kernel, the linear kernel, and others, as illustrated in Table 2.1, where 𝒙 and 𝒙̃  represent 

two arbitrary data points in a multidimensional space.  
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Table 2.1 Common kernel functions for Kriging [Burges, 1998] 

Model Kernel function Formula Optimization 

parameters 

1 Dot product 𝐾(𝒙, 𝒙̃) = (𝒙 ⋅ 𝒙̃) + 𝐶  𝐶 

2 RBF or Gaussian 𝐾(𝒙, 𝒙̃) = exp(−𝜽‖𝒙 − 𝒙̃‖2) + 𝐶 𝜽, 𝐶 

 

3 General Exponential 𝐾(𝒙, 𝒙̃) = exp(−𝜽‖𝒙 − 𝒙̃‖𝒑) +  𝐶 𝜽, 𝒑, 𝐶 

 

4 Sigmoid 𝐾(𝒙, 𝒙̃) = tanh(𝛾(𝒙 ⋅ 𝒙̃) + 𝑟) + 𝐶 𝛾, 𝑟, 𝐶 

 

5 Polynomial 𝐾(𝒙, 𝒙̃) = (𝛾(𝒙 ⋅ 𝒙̃) + 𝑟)𝒅 + 𝐶  𝛾, 𝑟, 𝒅, 𝐶 

 

 

Specifically, in the General Exponential kernel, which is widely used in Kriging, the hyper 

parameters 𝜽 and 𝒑 control the width and smoothness of the function, respectively. As shown in 

Figure 2.1(a), when adjusting the parameter 𝒑 (0.1 ≤ 𝒑 ≤ 2) in the general exponential kernel 

with 𝜽 = 1, a larger value results in a smoother distribution and making the curve more spread 

out. Conversely, a smaller 𝒑 value makes the distribution sharper, accentuating the peaks and 

making the curve more concentrated. On the other hand, varying the parameter 𝜽 (0.1 ≤ 𝜽 ≤ 10) 

with 𝒑 = 2 in the kernel function influences the width of the distribution: a larger θ widens the 

distribution plot, making it more spread out, while a smaller θ narrows the plot, as illustrated in 

Figure 2.1(b). 

 

Figure 2.1 Impact of changing the values of hyper parameters (a) p and (b) θ on the general 

exponential kernel function. [Forrester et al., 2008] 
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In Kriging, the correlation vector, characterizing the correlation between the prediction point 𝒙̃ 

and each training point 𝒙(𝑖), is given as 

𝜓(𝑖) = 𝑐𝑜𝑟𝑟[𝑦(𝒙), 𝑦(𝒙(𝑖))] = exp (− ∑ 𝜃𝑘‖𝒙̃𝑘 − 𝒙𝑘
(𝑖)

‖
𝑝𝑘

)

𝑚

𝑘=1

 (2.4) 

where 𝑦(𝒙̃) represents the unknown response at the prediction point 𝒙̃ with its expected value, 

given the vector of known responses at 𝒙(1), 𝒙(2), … , 𝒙(𝑛), expressed as 

𝑦̂(𝒙̃) =  𝐸 (𝑦(𝒙̃)|𝑦(𝒙(1)), 𝑦(𝒙(2)), … , 𝑦(𝒙(𝑛))) (2.5) 

Introducing the mean squared error (MSE) as 

𝑀𝑆𝐸 =  𝐸(𝑦̂(𝒙) − 𝑦(𝒙̃))
2
 (2.6) 

Minimizing MSE in Eq. (2.6) gives 

𝑦̂(𝒙̃) =  𝜇̂ +  ∑ 𝑏(𝑖)𝜓(𝑖)

𝑛

𝑖=1

 

 

(2.7) 

where 𝜇̂ is mean base term, 𝑏(𝑖) is the ith term of the 𝑛 × 1 vector 𝒃 = 𝜓−1(𝒚 − 𝑭𝜇̂), 𝜓 is the 

𝑛 × 𝑛 correlation matrix with the 𝑖, 𝑗 elements given by Eq. (2.3) in terms of the unknown hyper 

parameters 𝜃𝑘 and 𝑝𝑘, 𝒚 is the 𝑛 × 1 vector of responses at the training points,  𝑭(𝒙) represents 

the regression basis function vector associated with the 𝑛 sampled sites 𝒙, assumed to be 

represented by an 𝑛 × 1 vector of 1’s in this research, and 𝜓(𝑖) is the correlation vector given by 

Eq. (2.4), which also depends on 𝜃𝑘 and 𝑝𝑘. The ^ terms in Eq. (2.7) represent the maximum 

likelihood estimates. 

The prevailing approach for determining the unknown hyper parameters in the Kriging surrogate 

involves maximizing the likelihood function given as 

𝐿(𝜇, 𝜎2) =  
1

√2𝜋𝜎2𝑛
√|𝜓|

𝑒𝑥𝑝 [−
(𝒚 − 𝑭𝜇)𝑇𝜓−1(𝒚 − 𝑭𝜇)

2𝜎2
] 

 

(2.8) 

The likelihood is maximal when its gradient consisting of its partial derivatives with respect 

to 𝜇 and 𝜎2 are set to zero, which gives 
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𝜇̂ = (𝑭𝑇𝜓−1𝑭)−1𝑭𝑇𝜓−1𝒚 

 

(2.9) 

𝜎̂2 =  
(𝒚 − 𝑭𝜇̂)𝑇𝜓−1(𝒚 − 𝑭𝜇̂)

𝑛
 

 

(2.10) 

In practical applications, it is common to utilize the natural logarithm of the likelihood function 

given as 

ln(𝐿(𝜃𝑘, 𝑝̂𝑘)) =  −
1

2
[ln(𝜎̂2) + ln|𝜓|] 

(2.11) 

 

The determination of the optimal values for the maximum likelihood estimates of the hyper 

parameters 𝜃𝑘, 𝑝̂𝑘, 𝑘 = 1,2, … , 𝑚 is achieved by solving a nonlinear optimization problem that 

aims to maximize the natural log of the likelihood function. 

max   ln (𝐿(𝜃𝑘 , 𝑝̂𝑘))  

 

s. t.      𝜃𝑘 > 0,   1 ≤ 𝑝̂𝑘 ≤ 2, 𝑘 = 1, … , 𝑚 

 

(2.12) 

Once the optimal values of the hyper parameters are calculated, the predictive Kriging model is 

completely defined. 

2.2. Co-Kriging  

The extension of the Kriging model for systems with different levels of fidelity is called Co-

Kriging and was first developed in geostatistics by Chilès and Delfiner [1999]. Also, Kennedy and 

O'Hagan [2000] proposed a Bayesian approach based on Co-Kriging to combine low- and high-

fidelity models. This approach allows for the integration of multiple models of different levels of 

accuracy or fidelity. One key feature of their Co-Kriging method is the use of an autoregressive 

model to couple the different fidelity levels. In the context of Co-Kriging and multifidelity 

modeling, an autoregressive model refers to a statistical model where each fidelity level's output 

variable is influenced by the output of the previous fidelity level. This means that the lower-fidelity 

model helps inform and improve the higher-fidelity model, and the two are connected in a way 

that accounts for their correlations. The autoregressive structure allows for the effective use of 
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information from both low-fidelity and high-fidelity models, leveraging the strengths of each to 

make more accurate predictions or estimates.  

Here, we explore the idea of merging two independent datasets, one being highly accurate but 

expensive (denoted as 𝒚ℎ at points 𝑿ℎ), while the other set is less accurate yet more affordable 

(referred to as 𝒚𝑙 at points 𝑿𝑙). By concatenating these distinct datasets as  

a comprehensive collection of data can be formed for further analysis and insights.  

It is worth mentioning that in the context of Co-Kriging, the low-fidelity values at high-fidelity 

locations are needed. This can be approached in two ways, either by selecting high fidelity 

locations, such as 𝑿ℎ ⊂ 𝑿𝑙 , or by using low fidelity data to create a Kriging estimation and then 

using the predictive model to obtain the values at high fidelity locations. 

The mathematical algorithm used here is that presented by Forrester et al. [2007]. Similar to the 

Kriging technique, in Co-Kriging, the value at a specific location within the set X is considered as 

an observation of a Gaussian random variable. In this model, we assume that 

𝑐𝑜𝑣[𝑦ℎ(𝒙(𝑖)), 𝒚𝑙(𝒙)ǀ𝑦𝑙(𝒙(𝑖))] = 0, ∀𝒙 ≠ 𝒙(𝑖). In other words, if the value of the high-fidelity 

function 𝑦ℎ (assumed to be the true function value) at location 𝒙(𝑖) is known, no additional 

information can be gained about its value from the LF model 𝑦𝑙.  By employing the auto-regressive 

model, the expensive model is approximated as  

𝑍ℎ(𝒙) = 𝜌𝑍𝑙(𝒙) + 𝑍𝑑(𝒙) 

 

(2.14) 

where 𝜌 is a scaling factor and 𝑍𝑑(𝒙) is a Gaussian process that captures the difference 

between 𝜌𝑍𝑙(𝒙) and 𝑍ℎ(𝒙). Because of using two sets of data, three separate covariance matrices 

need to be calculated as 

𝑐𝑜𝑣[𝒚𝑙(𝑿𝑙), 𝒚𝑙(𝑿𝑙)] = 𝑐𝑜𝑣[𝑍𝑙(𝑿𝒍), 𝑍𝑙(𝑿𝒍)] =  𝜎𝑙
2𝜓𝑙(𝑿𝒍, 𝑿𝒍) 

 

(2.15) 

𝑐𝑜𝑣 [𝒚ℎ(𝑿ℎ), 𝒚𝑙(𝑿𝑙)] = 𝑐𝑜𝑣[𝜌𝑍𝑙(𝑿𝑙)  +  𝑍𝑑(𝑿ℎ), 𝑍𝑙(𝑿ℎ)] =  𝜌𝜎𝑙
2𝜓𝑙(𝑿𝑙, 𝑿ℎ) (2.16) 

𝑿 = (
𝑿𝑙

𝑿ℎ
) = (𝒙𝑙

(1)
, … , 𝒙𝑙

(𝑛𝑙)
, 𝒙ℎ

(1)
, … , 𝒙ℎ

(𝑛ℎ)
)𝑇 

 

(2.13) 
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𝑐𝑜𝑣[𝒚ℎ(𝑿ℎ), 𝒚ℎ(𝑿ℎ)] = 𝑐𝑜𝑣[𝜌𝑍𝑙(𝑿ℎ) +  𝑍𝑑(𝑿ℎ), 𝜌𝑍𝑙(𝑿ℎ) +  𝑍𝑑(𝑿ℎ)] 

                                   =  𝜌2𝑐𝑜𝑣[𝑍𝑙(𝑿ℎ), 𝑍𝑙(𝑿ℎ)] + 𝑐𝑜𝑣[𝑍𝑑(𝑿ℎ), 𝑍𝑑(𝑿ℎ)] 

                                   =   𝜌2𝜎𝑙
2𝜓𝑙(𝑿ℎ, 𝑿ℎ) + 𝜎𝑑

2𝜓𝑑(𝑿ℎ, 𝑿ℎ) 

 

(2.17) 

As shown by Forrester et al. [2007], the complete correlation matrix is written as 

𝐶 =  [
𝜎𝑙

2𝜓𝑙(𝑿𝑙, 𝑿𝑙)  𝜌𝜎𝑙
2𝜓𝑙(𝑿𝑙 , 𝑿ℎ)

 𝜌𝜎𝑙
2𝜓𝑙(𝑿ℎ,, 𝑿𝑙) 𝜌2𝜎𝑙

2𝜓𝑙(𝑿ℎ, 𝑿ℎ) +  𝜎𝑑
2𝜓𝑑(𝑿ℎ, 𝑿ℎ)

] 

 

(2.18) 

where the correlation matrix 𝜓𝑙 is a function of unknown hyper parameters 𝜽𝑙 and 𝒑𝑙 whereas 𝜓𝒅 

is a function of unknown hyper parameters 𝜽𝑑 and 𝒑𝑑 with 𝜌 as the last unknown parameter. The 

same process as in Kriging is followed in Co-Kriging for optimizing the hyper parameters. The 

natural log of the likelihood equation for low-fidelity data is given as 

𝑙𝑛(𝐿) =  − 
𝑛𝑙

2
𝑙𝑛(𝜎𝑙

2) − 
1

2
𝑙𝑛(|𝜓𝑙(𝑿𝑙 , 𝑿𝑙)|) −  

(𝒚𝑙 −  𝑭𝜇𝑙)𝑇𝜓𝑙(𝑿𝑙, 𝑿𝑙)−1(𝒚𝑙 − 𝑭𝜇𝑙)

2𝜎𝑙
2  

 

(2.19) 

When we take the partial derivatives of 𝑙𝑛(𝐿) with respect to 𝜇𝑙 and 𝜎𝑙
2, and set them equal to zero, 

we obtain the Maximum Likelihood Estimates (MLEs) of these parameters as 

𝜇̂𝑙 = (𝑭𝑇𝜓𝑙(𝑿𝑙, 𝑿𝑙)−1𝑭)−1𝑭𝑇𝜓𝑙(𝑿𝑙, 𝑿𝑙)−1𝒚𝑙 

 

(2.20) 

𝜎̂𝑙
2 =  

(𝒚𝑙 − 𝑭𝜇̂𝑙)
𝑇𝜓𝑙(𝑿𝑙, 𝑿𝑙)

−𝟏(𝒚𝑙 − 𝑭𝜇̂𝑙)

𝑛𝑙
 

 

(2.21) 

where 𝑛𝑙 is the number of low-fidelity data. In order to construct the Co-Kriging metamodel for 

the LF model, it is necessary to obtain the MLEs of the hyper parameters 𝜽̂𝑙 and 𝒑̂𝑙. This can be 

achieved by maximizing Eq. (2.19). 

ln(𝐿(𝜃𝑙 , 𝑝̂𝑙)) = −
𝑛𝑙

2
ln(𝜎̂𝑙

2) −
1

2
𝑙𝑛(|𝜓𝑙(𝑿𝑙, 𝑿𝑙)|) 

 

(2.22) 
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The hyper parameters ρ, and 𝜃𝑑  and 𝑝𝑑  are estimated using MLE in order to build the Co-Kriging 

surrogate model. This metamodel captures the discrepancy between the high- and low-fidelity 

models, denoted as 

𝒅 = 𝒚ℎ − 𝜌𝒚𝑙(𝑿ℎ)  

 

(2.23) 

The natural log of the likelihood equation for HF data is given as 

𝑙𝑛(𝐿) =  − 
𝑛𝑙

2
𝑙𝑛(𝜎𝑑

2) − 
1

2
𝑙𝑛(|𝜓𝑑(𝑿ℎ, 𝑿ℎ)|)

−  
(𝒅 −  𝑭𝜇𝑑)𝑇𝜓𝑑(𝑿ℎ, 𝑿ℎ)−𝟏(𝒅 − 𝑭𝜇𝑑)

2𝜎𝑑
2  

 

(2.24) 

MLEs of 𝜇̂𝑑 and 𝜎̂𝑑
2
 are obtained as 

𝜇̂𝑑 = (𝑭𝑇𝜓𝑑(𝑿ℎ, 𝑿ℎ)−𝟏𝑭)−1𝑭𝑇𝜓𝑑(𝑿ℎ, 𝑿ℎ)−𝟏𝒅 

 

(2.25) 

𝜎̂𝑑
2 =  

(𝒅 − 𝑭𝜇̂𝑑)𝑇𝜓𝑑(𝑿ℎ, 𝑿ℎ)−𝟏(𝒅 − 𝑭𝜇̂𝑑)

𝑛ℎ
 

 

(2.26) 

where 𝑛ℎ is the number of high-fidelity data, with 𝜃ℎ, 𝑝̂ℎ and ρ found by maximizing 

ln(𝐿(𝜃𝑑 , 𝑝̂𝑑)) = −
𝑛ℎ

2
ln(𝜎̂𝑑

2) −
1

2
𝑙𝑛(|𝜓𝑑(𝑿ℎ, 𝑿ℎ)|) 

 

(2.27) 

To optimize Eqs. (2.29) and (2.34), it is necessary to employ a numerical approach like genetic 

algorithm (GA), which ensures global search capabilities. This method allows for the 

maximization of the mentioned equations through an efficient and effective process. The Co-

Kriging prediction of the HF model is given by Eq. (2.28).  

𝒚 = (
𝒚𝑙

𝒚ℎ
) = (𝑦𝑙

(1)
, … , 𝑦𝑙

(𝑛𝑙)
, 𝑦ℎ

(1)
, … , 𝑦ℎ

(𝑛ℎ)
)𝑇 (2.28) 

 

𝑦̂(𝒙̃) = 𝜇̂ +  𝒄𝑇𝐶−1(𝒚 − 𝑭𝜇̂) 

 

(2.29) 
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𝒄 =  (
𝜌̂𝜎̂𝑙(𝑿𝑙 , 𝒙̃)

𝜌̂2𝜎̂𝑙
2𝜓𝑙(𝑿ℎ, 𝒙) + 𝜎̂𝑑

2𝜓𝑑(𝑿ℎ, 𝒙̃)
) 

 

(2.30) 

𝜇̂ = (𝑭𝑇𝐶−1𝑭)−1 𝑭𝑇𝐶−1𝒚 

 

(2.31) 

2.4. Linear regression multifidelity surrogate  

LR-MFS modeling is an innovative approach explored by Zhang et al. [2018]. LR-MFS has been 

formulated using the fundamental Eq. (2.32). However, in this particular algorithm, the disparity 

function can be replaced by a matrix, which is depicted as a polynomial response surface 

approximation as shown in Eq. (2.33). 

𝑦̂ℎ(𝒙) =  𝜌𝑦𝑙(𝒙) + 𝛿(𝒙) 

 

(2.32) 

 

𝛿(𝒙) = ∑ 𝜉𝑗(𝒙)𝑏𝑗

𝑝

𝑗=1

 

 

(2.33) 

where  𝜉𝑗(𝒙) represents the monomial basis, 𝑏𝑗 is the corresponding unknown coefficient, and 𝑝 

is the degree of polynomial. This implies that it is possible to estimate the discrepancy matrix 

through a polynomial function. If a higher-degree polynomial is used, the approximation of the 

entire system improves, however, the computational cost increases as well. In the case of a one-

dimensional problem which will be further elaborated on later, a second-degree polynomial 

suffices. However, for higher-dimensional cases, because the overall system is more complex, a 

higher-degree polynomial may be needed Zhang et al. [2018]. 

Based on this framework, the error is defined as 

 

𝑒(𝑖) = 𝑦ℎ
(𝑖)

(𝒙ℎ
(𝑖)

) − 𝑦̂ℎ(𝒙ℎ
(𝑖)

) (2.34) 
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     =  𝑦ℎ
(𝑖)

− 𝜌𝑦𝑙(𝒙ℎ
(𝑖)

) −  ∑ 𝜉𝑗(𝒙ℎ
(𝑖)

)𝑏𝑗, 𝑖 = 1, … , 𝑛ℎ

𝑝

𝑗=1

 

 

Equation (2.34), written as a vector looks like this 

𝒆 = 𝒀 − 𝑿𝑩 

𝒆 = {
𝑒(1)

⋮
𝑒(𝑛ℎ)

} , Y = {
𝑦ℎ

(1)

⋮

𝑦ℎ
(𝑛ℎ)

}, 

X = [

𝑦𝑙(𝒙𝑙
(1)

) 𝝃𝟏(𝒙ℎ
(1)

) … 𝝃𝒑(𝒙ℎ
(1)

)

⋮ ⋮ ⋱ ⋮

𝑦𝑙(𝒙ℎ
(𝑛ℎ)

) 𝝃𝟏(𝒙ℎ
(𝒏ℎ)

) … 𝝃𝒑(𝒙ℎ
(𝑛ℎ)

)

], B = {

𝜌
𝑏1

⋮
𝑏𝑝

} 

 

 

(2.35) 

To determine the unknown coefficient vector B, we can employ the technique of minimizing the 

sum of squared errors. Within this framework, ρ serves as a scaling factor. As previously noted, 

when ρ is excessively high, it indicates a substantial disparity between low- and high-fidelity 

models. The unknown parameters in LR-MFS are obtained by using the standard regression least-

squares technique given as 

𝑩 = (𝑿𝑇𝑿)−1𝑿𝑇𝒀 

 

(2.36) 

2.5. Co-Kriging-LR-MFS ensemble model 

Sections 2.1 and 2.4 demonstrated that Co-Kriging is primarily focused on interpolation, while 

LR-MFS leans towards regression analysis. As a result, Co-Kriging excels at capturing local 

variations accurately, whereas LR-MFS is better suited for capturing broader global trends 

Rumpfkeil et al. [2022]. Interpolation involves the surrogate passing through all sample points, 

encompassing radial basis functions and Kriging. Conversely, the regression model can create a 

smoother model and alleviate the overfitting issue of the surrogate model. Typically, it doesn't 

necessitate the prediction of the sample point to be identical to the actual response. Typical 

regression surrogate models comprise the polynomial response surface, support vector regression, 

and moving least squares. Liu [2022] Moreover, extensive research has demonstrated that there is 
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no universal single-fidelity surrogate model that can outperform others in all scenarios. [Goel et 

al. 2007] Consequently, selecting an appropriate single-fidelity surrogate model beforehand poses 

a considerable challenge for practitioners. Thus, by merging the strengths of both Co-Kriging and 

LR-MFS it might be possible to create a more efficient MFSM technique.  

2.5.1. Co-Kriging and LR-MFS comparison 

The variability in the performance of Co-Kriging and LR-MFS across different regions can be 

attributed to a multitude of factors that are related to the data characteristics and the underlying 

system being modeled. By exploring various factors, we can gain a better understanding of this 

phenomenon. 

2.5.1.1. Data variability 

Co-Kriging is a statistical method that takes into account the spatial correlation between data 

points. If the data exhibit significant spatial variability or spatial autocorrelation, Co-Kriging can 

capture and exploit this information effectively. In regions with strong spatial correlations, Co-

Kriging is likely to perform better. 

2.5.1.2. Linear relationships 

Linear regression assumes that the relationship between input variables and the response variable 

is linear. If the underlying system exhibits predominantly linear behavior in certain regions, the 

linear modeling approach is more appropriate and can capture the relationships accurately. 

2.5.1.3. Nonlinear effects 

Some regions of the modeling space may exhibit nonlinear behavior or interactions that cannot be 

effectively captured by a linear model. In such cases, Co-Kriging, which can capture nonlinear 

spatial correlations, may perform better. 

2.5.1.4. Data density 

The density of data points in different regions can significantly impact the model's performance. 

[Rahman et al. 2013] If there are more data points in regions where Co-Kriging performs well, the 

model may have more information to make accurate predictions. In contrast, if data in some 

regions are sparse, where linear modeling is better, the LR-MFS can perform better due to a simpler 

model structure. 
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2.5.1.5. Model assumptions 

Co-Kriging and linear regression make different assumptions about the data and the underlying 

system. For example, Co-Kriging assumes that the data have a stationary covariance structure, 

while linear regression assumes a linear relationship. These assumptions may be more valid in 

certain regions of the problem space. 

2.5.1.6. Noise and uncertainty 

The presence of noise or uncertainty in the data can also impact the choice of modeling approach. 

Co-Kriging can help to reduce the effects of noise in regions with strong spatial correlation, while 

LR-MFS may struggle to handle noisy data. 

Table 2.2 provides a comprehensive overview of the key differences between Co-Kriging and LR-

MFS methodologies. In the case where the surrogate model has stochastic features, such as Co-

Kriging, it will undergo multiple iterations to ensure accuracy. The resulting average root mean 

square error (RMSE) and its corresponding standard deviation will then be documented. 

Conversely, for a deterministic surrogate model like LR-MFS, only one iteration is necessary to 

obtain reliable results.  

Table 2.2 Comparison of Co-Kriging and LR-MFS models  

Criteria Co-Kriging LR-MFS 

Computational 

cost 

Expensive Cheap 

Low fidelity data Use all low-fidelity data at all locations 

(may not necessarily coincide with high-

fidelity data locations) with 𝑿ℎ ⊂ 𝑿𝑙 

condition 

Only use low fidelity data at 

high fidelity locations 

Relation Can handle nonlinear spatial correlations Better at finding linear 

relations 

Data density Better for dense regions Better for sparse regions 

Algorithm type Involving optimization algorithm and 

probability 

No probability 

 

2.5.2. Co-Kriging-LR-MFS algorithm 

Based on the reasons mentioned earlier, we hypothesize that the combination of Co-Kriging and 

the LR-MFS approach would lead to a better model in terms of accuracy.  



22 

 

We first divide the available high-fidelity data into two groups. The first group is used for training 

the Co-Kriging and LR-MFS models. For the LR-MFS, we use low-fidelity data at the points that 

are co-located at the high-fidelity data points. In Co-Kriging, the low-fidelity points are at different 

locations, thus, providing additional information to the system. The second group of data is used 

to evaluate the error in the results of the two algorithms, verifying which algorithm performs better 

in a specific region. For this purpose, we employ the K-means clustering technique, [Na 2010] to 

divide the data space into specific regions with assigned boundaries. In Section 2.5.3., we will 

discuss the details of this algorithm. 

In the following step, we calculate the mean absolute error between the responses predicted by 

each algorithm and the true value of responses in each region. If the majority of points in a specific 

region have a lower error in one algorithm, we choose that algorithm as the predictive model for 

that region. This process is repeated for each region to find the appropriate predictive model. 

In the end, we have an ensemble approach that can choose the surrogate model in each region of 

the data space based on the calculated error in that region. This approach helps save computational 

time, considering that the Co-Kriging approach is a computationally expensive algorithm, and we 

make use of the majority of available data for assigning model to each region. Although the LR-

MFS model is fast, it cannot capture nonlinear trends and needs information from the Co-Kriging 

model to improve its performance. Thus, the final result is a fast algorithm with higher accuracy, 

leveraging the advantages of both models. 

2.5.3. K-means clustering 

K-means clustering is a widely utilized algorithm in the field of unsupervised Machine Learning. 

Its purpose is to cluster data points based on their similarities or proximities, effectively grouping 

them into distinct clusters. The main objective of K-means clustering is to divide a dataset into 

non-overlapping clusters, with the number of desired clusters determined by the user-defined 

parameter K. The process of K-means clustering involves several steps as described below.  

2.5.3.1. Centroids selection 

First, a set of K initial centroids is selected to represent the cluster centers. The choice of these 

initial centroids can impact the outcome of the algorithm, and there are different approaches for 

their initialization, such as random selection or more advanced techniques. 
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2.5.3.2. Clustering based on distance 

Next, each data point in the dataset is assigned to the nearest centroid based on a distance metric, 

typically Euclidean distance. Euclidean distance is commonly used as a distance metric to measure 

the similarity or dissimilarity between two data points in a multi-dimensional space. This 

assignment step places each data point in a cluster based on its distance to the associated centroid. 

2.5.3.3. Updating centroids based on mean data of each cluster 

Afterwards, the centroids are updated by calculating the mean (average) position of all the data 

points assigned to each cluster. By moving the centroids towards the center of their respective 

clusters, they better represent their members. 

2.5.3.4. Repeating assignment and update 

The assignment and update steps are repeated iteratively until certain convergence criteria are met. 

Convergence can be defined by reaching a maximum number of iterations or when there is minimal 

change in the positions of cluster centroids in consecutive iterations. Other stopping conditions 

may also be employed. Once convergence is achieved, we obtain final centroids that serve as 

representatives for each cluster. Additionally, every data point becomes associated with the cluster 

corresponding to its nearest centroid within this resulting configuration. 

2.6. Predictive model evaluation 

Different metrics can be used to evaluate the performance of regression models, and the choice of 

metric depends on the specific problem and goals of the analysis. Table 2.3 shows some common 

error metrics and their applications. The RMSE evaluation metric is used in this thesis for 

determining the accuracy of different models. 
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Table 2.3 Error metrics with advantages and disadvantages 

Mean 

Absolute 

Error 

(MAE) 

MAE = 
∑ |𝑦𝑖−𝑦̂𝑖|𝑛

𝑖=1

𝑛
 

𝑦𝑖 : 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Advantages: 

• Easy to understand and interpret. 

• Resistant to outliers since it uses the absolute 

differences between predicted and actual 

values. 

• Produces a metric in the same units as the target 

variable, which is easy to interpret. 

Disadvantages: 

• All errors are treated equally; it does not 

penalize large errors more than small errors. 

Root 

Mean 

Squared 

Error 

(RMSE) 

RMSE = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

𝑦𝑖 : 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Advantages: 

• Gives higher weight to larger errors, making it 

more sensitive to outliers. 

• It considers the overall or average error across 

the entire dataset, providing a comprehensive 

measure of the model's performance. 

Disadvantages: 

• Sensitive to outliers, which can distort the 

evaluation if outliers are present. 

• Square root makes the interpretation less 

intuitive compared to MAE. 
Relative 

Mean 

Error 

(RME) 

RME = 
1

𝑛
∑

|𝑦𝑖−𝑦̂𝑖|

|𝑦𝑖|
𝑛
𝑖=1 × 100 

𝑦𝑖 : 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Advantages: 

• Expresses the error as a percentage of the actual 

values, making it more interpretable and easier 

to compare across different datasets. 

• Emphasizes the relative size of the errors. 

Disadvantages: 

• It can become problematic when actual values 

are close to zero, leading to division by small 

numbers or zero. 
Mean 

Squared 

Log 

Error 

(MSLE) 

MSLE= 

1

𝑛
∑(log(𝑦𝑖 + 1) − log(𝑦̂𝑖 + 1))2

𝑛

𝑖=0

 

 

𝑦𝑖 : 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Advantages: 

• Treats small differences between small actual 

and predicted values same as big differences 

between large actual and predicted values. 

Disadvantages: 

• Penalizes underestimates more than the 

overestimates. 
R2 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

𝑦𝑖 : 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

𝑦̅: mean value of true responses 
 

Advantages: 

• R² is easy to interpret. It provides a value 

between 0 and 1, where 0 indicates that the 

model does not explain any of the variance in 

the dependent variable, and 1 indicates that the 

model explains all of the variance. 

Disadvantages: 

• Inadequate for nonlinear models [Spiess et al. 

2010] 
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CHAPTER 3 

RESULTS AND DISCUSSION OF EXAMPLE PROBLEMS 

 

This chapter presents the results obtained from applying the Co-Kriging model, Linear Regression 

Multifidelity Surrogate (LR-MFS) model, and the innovative Co-Kriging-LR-MFS ensemble 

model to various test cases. The chapter begins by analyzing the performance of these models in a 

one-dimensional case, namely the Forrester function. 

Following this initial evaluation, the focus shifts to more complex scenarios in two dimensions. 

The first case involves the application of these models to solve the Laplace equation, while the 

second example involves the Peaks function. For both 2D cases, the Co-Kriging, LR-MFS, and 

the newly introduced Co-Kriging-LR-MFS ensemble model are implemented and thoroughly 

compared based on several performance metrics. 

In the Data Analysis section, we will investigate the effect of the number of training data on the 

final system prediction. 

3.1. Example problem one: Forrester function 

3.1.1. Co-Kriging model 

To validate the code for the Kriging and Co-Kriging approaches, we utilized Equations 3.1 and 3.2 

from the Forrester et al. [2007] as sources of HF and LF data sets, respectively, and given as 

𝑓ℎ(𝑥) = (6𝑥 − 2)2 sin(12𝑥 − 4) 

 

(3.1) 

𝑓𝑙(𝑥) = 0.5𝑓ℎ(𝑥) + 10(𝑥 − 0.5) − 5 

 

(3.2) 

The HF data locations are denoted as: 

𝒙ℎ = {0, 0.4, 0.6, 1}𝑇 

while the LF data locations are represented by: 

𝒙𝑙 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}𝑇 

To verify the developed code against the original article, the results are shown in Figure 3.1. 

Observing Figure 3.1, when employing Kriging solely based on high-fidelity locations, an 
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interpolative prediction is obtained through those points, and displays a rather large error in 

comparison to the curve for 𝑓ℎ(𝑥). However, by incorporating LF data as an additional source and 

applying Co-Kriging the prediction is enhanced, resulting in an RMSE of 0.0588. 

 

 

Figure 3.1 Kriging and Co-Kriging predictions on Forrester function's equations using (a) 

generated codes and (b) [Forrester et al., 2007] 

3.1.2. LR-MFS model 

Figure 3.2 illustrates the utilization of the same dataset for the LR-MFS model. One disadvantage 

of the LR-MFS model is that it only allows the use of low-fidelity data points in high-fidelity 

locations. Consequently, we cannot utilize all of the available low-fidelity data points, but only 

those present at the high-fidelity locations. Therefore, when employing the same high-fidelity and 

low-fidelity data sources while encountering this limitation, it becomes evident that the LR-MFS 

struggles to produce accurate predictions, resulting in a significantly large RMSE of 4.536. In 

contrast, Co-Kriging outperforms LR-MFS remarkably in this scenario by leveraging the 

capability to use low-fidelity data in various locations beyond those at high-fidelity locations. 
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Figure 3.2 LR-MFS prediction on Forrester function's equations.  

3.2. Example problem two: Laplace’s equation  

Various physical phenomena (e.g., 2D steady-state heat conduction, the static deflection of a 

membrane, and electrostatic potential) give rise to Laplace's equation. In the realm of heat 

conduction, Laplace's equation emerges when analyzing two-dimensional systems in a state of 

thermal equilibrium. This equation governs the distribution of temperature within these systems, 

providing valuable insights into how heat is transferred and dissipated. The static deflection of a 

membrane also falls under the purview of Laplace's equation. When examining thin membranes 

subjected to external forces or pressures, this equation describes their deformed shapes. 

Understanding these deformations is crucial for various applications involving structures like 

drumheads or stretched fabrics. Moreover, Laplace's equation finds relevance in studying 

electrostatic potential distributions. It arises when investigating electric fields generated by 

stationary charges in empty space. By solving this equation, one can determine the electric 

potential at any point surrounding these charges, enabling precise calculations and predictions 

regarding electrical interactions. In this example problem, the analytical solution for the Laplace’s 

equation is treated as the high-fidelity source of data, and a numerical solution is considered as the 

low-fidelity source of data. 

3.2.1. High and low fidelity data sources 

3.2.1.1. High fidelity: Analytical solution of 2D Laplace’s equation 

Laplace’s equation in Cartesian coordinates can be written as  
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∇2𝑢(𝑥, 𝑦) =
𝜕2𝑢(𝑥, 𝑦)

𝜕𝑥2
+  

𝜕2𝑢(𝑥, 𝑦)

𝜕𝑦2
= 0 

 

(3.3) 

where 𝑢(𝑥, 𝑦) represents the independent variable, e.g., electrostatic potential. 

Assuming 𝑢(𝑥, 𝑦) can be factorized as a product of two independent one-dimensional functions 

in the form 

𝑢(𝑥, 𝑦) = 𝜐(𝑥)𝜔(𝑦) 

 

(3.4) 

Eq. (3.1) can then be written as 

𝜐𝑥𝑥𝜔 + 𝜐𝜔𝑦𝑦= 0  

 

(3.5) 

where 𝜐𝑥𝑥 = 𝜕2𝜐(𝑥) 𝜕𝑥2⁄  and 𝑤𝑦𝑦 = 𝜕2𝑤(𝑦) 𝜕𝑦2⁄ . Through separation of variables, Eq. (3.3) 

can be expressed as 

𝜐𝑥𝑥

𝜐
=  − 

𝜔𝑦𝑦

𝜔
= 𝜆 

(3.6) 

Now we have two independents differential equations 

{
𝜐𝑥𝑥 −  𝜆𝜐 =  0
𝜔𝑦𝑦 +  𝜆𝜔 = 0

 

 

(3.7) 

The solutions for different conditions are summarized in Table 3.1 for negative, zero, and positive 

values of 𝜆. 

Table 3.1 General solutions for Laplace’s equation. 

𝜆 𝜐(𝑥) 𝜔(𝑦) 𝑢(𝑥, 𝑦)
=  𝜐(𝑥)𝜔(𝑦) 

𝛼2 > 0 𝑐𝑜𝑠(𝛼𝑥), 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠ℎ(𝛼𝑦), 𝑠𝑖𝑛ℎ(𝛼𝑦) 𝑐𝑜𝑠(𝛼𝑥) 𝑐𝑜𝑠ℎ(𝛼𝑦), 
𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛ℎ(𝛼𝑦), 
𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛ℎ(𝛼𝑦), 
𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠ℎ (𝛼𝑦) 

 

0 x, 1 1, y 1, x, y, xy 

𝛼2 < 0 𝑐𝑜𝑠ℎ(𝛼𝑥), 𝑠𝑖𝑛ℎ(𝛼𝑥) 𝑐𝑜𝑠(𝛼𝑦), 𝑠𝑖𝑛(𝛼𝑦) 𝑐𝑜𝑠ℎ(𝛼𝑥) 𝑠𝑖𝑛(𝛼𝑦), 
𝑠𝑖𝑛ℎ(𝛼𝑥)𝑠𝑖𝑛(𝛼𝑦), 
𝑐𝑜𝑠ℎ(𝛼𝑥)𝑐𝑜𝑠(𝛼𝑦), 
𝑠𝑖𝑛ℎ(𝛼𝑥) 𝑐𝑜𝑠 (𝛼𝑦) 
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For a specific solution, the two-dimensional domain and the associated boundary conditions need 

to be identified. For a rectangular domain, one possible set of boundary conditions is shown in 

Figure 3.3, where a is equal to 𝜋 and b equal to 
𝜋

3
. Also, 20 grid points are used in x and y direction 

for discretization purposes.  

 

 

Figure 3.3 An example of the solution domain and boundary conditions of Laplace’s equation. 

By applying the boundary conditions in Figure 3.3, we find 

𝜐(𝑥) = {
𝐴𝑐𝑜𝑠(𝛼𝑥) + 𝐵𝑠𝑖𝑛(𝛼𝑥)                  𝜆 < 0

𝐶𝑥 + 𝐷                                                𝜆 = 0 
𝐸𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝐹𝑠𝑖𝑛ℎ(𝛼𝑥)                 𝜆 > 0     

 

(3.8) 

  

𝜐(0) = 0 ⟶ 𝐴 = 𝐷 = 𝐸 = 0 

 

(3.9) 

𝜐(𝑥) =
sin(𝛼𝑥)

sin(𝛼𝑎)
⟶ 𝐶 = 𝐹 = 0 and 𝐵 =

1

sin(𝛼𝑎)
 

(3.10) 

 

Based on the boundary conditions we conclude that 𝜐(𝑥) =  
𝑠𝑖𝑛(𝛼𝑥)

𝑠𝑖𝑛(𝛼𝑎)
 is a valid solution. We need 

to apply the other boundary conditions to find the valid solutions for 𝜔(𝑦); based on the last part, 

this is the only acceptable solution for 𝜔(𝑦): 
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𝜔(𝑦) = 𝐴𝑐𝑜𝑠ℎ(𝛼𝑦) + 𝐵𝑠𝑖𝑛ℎ(𝛼𝑦) 

 

(3.11) 

𝜔(0) = 0 ⟶ 𝐴 = 0 𝑎𝑛𝑑 𝐵 =  
1

sinh (𝛼𝑏)
 

 

(3.12) 

This is the overall analytical solution for Laplace’s equation with assigned boundary conditions:  

𝑢(𝑥, 𝑦) =  𝜐(𝑥)𝜔(𝑦) =  
sin(𝛼𝑥)

sin(𝛼𝑎)

sinh(𝛼𝑦)

sinh(𝛼𝑏)
 

 

(3.13) 

3.2.1.2. Low fidelity: Numerical solution of 2D Laplace’s equation 

The domain in Figure 3.3 is discretized as shown in Figure 3.4. The second partial derivatives in 

Eq. (3.1) can be estimated by using a central finite difference scheme on red dot locations as 

𝜕2𝑢

𝜕𝑥2
≈  

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
 

 

(3.14) 

𝜕2𝑢

𝜕𝑦2
≈  

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

(∆𝑦)2
 

 

(3.15) 

where ∆𝑥 and ∆𝑦 are the finite distances in x and y directions, respectively. 

 

Figure 3.4 The solution domain discretization for Laplace’s equation.  

 

If we substitute the above derivatives into the main equation, we have 
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𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
+  

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

(∆𝑦)2
= 0 

(3.16) 

Based on above equation, the value of function 𝑢(𝑥, 𝑦) at the discretized location 𝑖, 𝑗 can be 

approximated as 

𝑢𝑖,𝑗 =
(∆𝑥)2(𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗) + (∆𝑦)2(𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1)

2((∆𝑥)2 + (∆𝑦)2)
 

 

(3.17) 

Figure 3.5 (a) and (b) show the analytical and numerical solutions for the entire domain, 

respectively. However, since the boundary condition varies at the top of the domain (i.e., 𝑦 = 𝑏), 

the most significant information resides in this section. The left and bottom domains maintain a 

constant value of 0. Consequently, based on this information, we have omitted the bottom section 

of the domain and focused solely on considering nodal values ranging from 0.471 to 
𝜋

3
 for this 

problem. As a result, the final domain is depicted in Figure 3.6. 

 

Figure 3.5 (a) Analytical solution of Laplace’s equation in whole domain. (b) Semi-converged 

numerical solution of Laplace’s equation in whole domain. 
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Figure 3.6 (a) Analytical solution of Laplace’s equation (high-fidelity data source). (b) Semi-

converged numerical solution of Laplace’s equation (low-fidelity data source). 

As described in section 1.3, one source for LF data is based on the degree of solution convergence. 

In this example problem, the analytical solution to the Laplace’s equation is used as the HF data 

source and the semi-converged numerical solution is used as the LF data source, as shown in Figure 

3.5, This numerical solution needs 100 iterations to converge; however, the solution with 15 

iterations is used as a LF data source. 

3.2.2. Co-Kriging model 

The rectangular domain in Figure 3.4 is used for identifying 20 locations for collecting data using 

the Latin Hypercube Sampling (LHS) approach. LHS is a stratified sampling method that divides 

the sample space into equally probable intervals. In each interval, one and only one sample point 

is selected. The key feature of LHS is that it ensures a more even and representative coverage of 

the input parameter space compared to simple random sampling. This feature can be especially 

advantageous in simulations and experiments where a thorough exploration of the input space is 

essential. The same 20 locations are used for obtaining responses (observations) from the high- 

and low-fidelity solutions. 

3.2.3. LR-MFS model 

The same 20 data points used in the Co-Kriging model were also used for training the LR-MFS 

model. Eq. 2.28 implies that it is possible to estimate the discrepancy matrix through a polynomial 

function. For this case the 4th degree polynomial has the lowest RMSE error.  
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3.2.4. Co-Kriging-LR-MFS ensemble methods 

In the third approach, we combined the two models to create an ensemble model, aiming to 

leverage the strengths of both approaches. We utilized 60 data points, generated by LHS method 

in design domain, to assess the absolute error for each point, enabling the identification of the 

model with superior performance in specific regions. By considering the majority of points with 

lower error, we selected a model with lower absolute error in those particular regions. Figure 3.7 

illustrates a region clustering using the K-means approach, as discussed in Section 2.5.3. The 

points for each region are identified with a unique color. The magenta triangle shows the center of 

each cluster. Table 3.2 shows the selected method in each region for the Laplace case study. 

 

 

Figure 3.7 Sixteen different regions for Laplace case study generated by K-means clustering 

where the magenta triangles represent the regions’ centers. The color bar shows cluster number 

based on assigned color. 
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Table 3.2 Best model in each region for Laplace case study. 

Region 

number 

Model 

1 Co-Kriging 

2 LR-MFS 

3 LR-MFS 

4 LR-MFS 

5 Co-Kriging 

6 LR-MFS 

7 LR-MFS 

8 Co-Kriging 

9 LR-MFS 

10 LR-MFS 

11 Co-Kriging 

12 LR-MFS 

13 Co-Kriging 

14 LR-MFS 

15 LR-MFS 

16 Co-Kriging 

 

3.2.5. Results 

Figure 3.8(c) illustrates the final results based on the Co-Kriging model which was discussed in 

Section 2.3. The overall RMSE of 0.12 for this model is relatively high compared to the LR-MFS. 

However, in some local locations, the error is lower compared to the LR-MFS. One reason for the 

high RMSE in comparison to the LR-MFS is that the high- and low-fidelity models exhibit 

completely linear relationships. Therefore, the LR-MFS is better at capturing these relationships. 

Figure 3.8(d) shows the prediction based on LR-MFS. As mentioned earlier, in LR-MFS, it is 

necessary to map a polynomial. However, the degree of the polynomial must be determined 

through trial and error based on the data. For example, in this case, the minimum RMSE is achieved 

with n = 4. Also, it is obvious that, the RMSE of 0.067 is considerably lower than that of the Co-

Kriging model. Figure 3.8(b) displays the results of the Co-Kriging-LR-MFS ensemble model. 

The RMSE decreased to 0.0494, which is lower than the best predictive model, LR-MFS. This 

result indicates that although the Co-Kriging model has a much higher RMSE compared to the 

LR-MFS model, it still outperforms in certain local regions, contributing to an overall 

improvement in the performance of the LR-MFS model.  
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Figure 3.8 (a) Analytical solution of Laplace equation. (b) Co-Kriging-Linear model prediction. 

(c) Co-Kriging model prediction.  (d) Linear model prediction. 

3.3. Example problem three: Peaks function 

3.3.1. High and low fidelity data sources  

The "peaks" function is widely employed in the field of mathematics and numerical optimization 

as a standard test function to assess the effectiveness of different optimization algorithms. It serves 

as a reference point for evaluating the performance of various techniques utilized in solving 

optimization problems. The "peaks" function, being two-dimensional in nature, produces a surface 

plot characterized by an arrangement of peaks and valleys, which is why it's called the "peaks" 

function. The standard "peaks" function, typically denoted as 𝑓ℎ(𝑥1, 𝑥2), is defined as follows and 

is utilized as a high-fidelity data source for this case study, 𝑥1 and 𝑥2 varies between −3 to 3: 
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𝑓ℎ(𝑥1, 𝑥2) = 3(1 − 𝑥1)2𝑒−(𝑥1
2)−(𝑥2+1)2

− 10 (
𝑥

5
− 𝑥1

3 − 𝑥2
5) 𝑒−𝑥1

2−𝑥2
2

−
1

3
𝑒−(𝑥1+1)2−𝑥2 

(3.18) 

In order to ensure a data source with reduced fidelity, certain terms have been excluded from the 

general form of the equation. Additionally, the power of the variable 𝑥1 is changed from 3 to 2, 

resulting in a non-linear relation between the two sources of fidelity, which is defined as follows: 

𝑓𝑙(𝑥1, 𝑥2) = −10 (
𝑥

5
− 𝑥1

2 − 𝑥2
5) 𝑒−𝑥1

2−𝑥2
2
 (3.19) 

 

 

Figure 3.9 Peaks function (a) high-fidelity data source, (b) low- fidelity data source. 

3.3.2. Co-Kriging methods 

25 high and low-fidelity samples were used at the same locations for training the Co-Kriging 

model.  

3.3.3. LR-MFS methods 

The same 25 data points used in LR-MFS at identical locations were employed for training the Co-

Kriging model. In this case, the minimum RMSE is achieved with a 3-degree polynomial.  

3.3.4. Co-Kriging-linear ensemble methods 

In the third approach, we combined the two models to create an ensemble model, aiming to 

leverage the strengths of both approaches. Figure 3.10 shows the clustering of 80 data points based 

on the K-means algorithm. As we can see, there are 9 regions, each indicated with its identical 

center point. We calculated the mean absolute error in each region and assigned the model with 

better performance based on the majority of points with lower error to the specific region. Table 
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3.3 shows the selective method in each region. For example, in region 1, the LR-MFS has better 

performance; however, in region 2, the Co-Kriging method is better. 

 

 

Figure 3.10 Nine different regions for peaks function case study generated by K-means 

clustering where the magenta triangles represent the regions centers. The color bar shows cluster 

number based on assigned color.  

 

Table 3.3 Best model in each region for peaks function case study. 

Region 

number 

Model 

1 LR-MFS 

2 Co-Kriging 

3 LR-MFS 

4 LR-MFS 

5 Co-Kriging 

6 Co-Kriging 

7 LR-MFS 

8 LR-MFS 

9 Co-Kriging 
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3.3.5. Results 

Figure 3.9(a) and (b) show the 3D prediction models of Co-Kriging and LR-MFS, respectively. 

The results show that Co-Kriging demonstrates good performance in certain regions. For example, 

it excels in the region marked with a yellow star in Figure 3.9(a). On the other hand, the LR-MFS 

exhibits superior performance at the global maximum location, marked with a blue star in Figure 

3.9(b). As we can see in Figure 3.11, the results show that the ensemble model has an RMSE of 

0.765, which is a lower error compared to both the Co-Kriging and LR-MFS. In other word, we 

combined the two models to create an ensemble model, aiming to leverage the strengths of both 

approaches. However, we observe that in some regions, for example, near the boundary, the LR-

MFS is more accurate; One way to decrease these types of errors is to shrink the regions by having 

more clusters, enabling the capture of a more accurate predictive model in each region. In the end, 

this leads to a better overall model with a lower RMSE. 

 

Figure 3.11 Peaks function prediction by (a) Co-Kriging model and (b) LR-MFS. The yellow star 

marks the region where Co-Kriging outperforms Linear model. The blue star marks the region 

where LR-MFS is better than Co-Kriging model. 
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 Figure 3.12 (a) Peaks function. (b) Co-Kriging-Linear model prediction. (c) Co-Kriging 

model prediction.  (d) Linear model prediction. 

3.4. Data analytics 

In this section, data analysis has been conducted to gain a better perspective on determining the 

sufficient amount of data. For instance, the second case study, the Peaks function, was selected. 

3.4.1. One dimensional data analysis 

To further investigate data points for the Co-Kriging algorithm, Eqs. 3.20 and 3.21 were utilized 

as HF and LF data sources, respectively. 

 

𝑦𝑓ℎ(𝑥) = 𝑐𝑜𝑠(3.5𝜋𝑥)𝑒𝑥𝑝(−1.4𝑥) 

 

(3.20) 

𝑓𝑙(𝑥) = 𝑐𝑜𝑠(3.5𝜋𝑥)𝑒𝑥𝑝(−1.4𝑥) + 0.75𝑥2 

 

(3.21) 
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The locations and quantity of LF data 𝑋𝑙 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1} remained 

consistent across all these cases. However, in the initial study, three HF points were used, each in 

different locations. Table 3.4 demonstrates that the ultimate RMSE of the predictive model, relying 

on the Co-Kriging algorithm, significantly hinges on the training dataset. In case one, we obtained 

an RMSE of 0.43. Conversely, in case four, utilizing the same LF dataset but different HF datasets, 

we achieved an RMSE of 0.186. Remarkably, the latter RMSE is substantially lower than that of 

the first case. 

Table 3.4 one-dimensional case with different HF locations using 3 data points 

 

 

 

 

Table 3.5 displays the RMSE obtained using four high-fidelity data points situated at various 

locations. The data points 𝑋𝑙 = {0, 0.5, 1} remain consistent across all cases, while the fourth data 

point is positioned differently. Each scenario resulted in a distinct RMSE value. It can be inferred 

that the placement of the fourth point significantly impacts the overall RMSE. 

Table 3.5 one-dimension case with different high-fidelity locations using 4 data points 

Case number Xh RMSE 

Case 1 {0,0.25,0.5,1} 0.014 

Case 2 {0,0.1,0.5,1} 0.013 

Case 3 {0,0.5,0.6,1} 0.026 

 

3.4.2. 2D-dimensional Data analysis 

3.4.2.1. Data analysis for Kriging algorithm 

In the case study, we used 20 data points from both high and low fidelity locations. As we 

progressed in this section, the number of data points increased in both high and low fidelity areas. 

Figure 3.12 (a) demonstrates that as we added more data, the RMSE decreased as expected. 

Case number Xh RMSE 

Case 1 {0,0.5,1} 0.435 

Case 2 {0.18,0.37,0.62} 0.222 

Case 3 {0.25,0.5,0.75} 0.193 

Case 4 {0.26,0.55,0.77} 0.186 
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However, when we reached 30 data points, the RMSE was higher compared to having 25 data 

points. This proves that more data doesn't always assist in constructing a better predictive model. 

Sometimes, the additional data might act as noise, not contributing any useful information to 

decrease the RMSE. With 50 and 60 data points, the RMSE values were 0.509 and 0.4118 

respectively, showing a decreasing trend, which makes sense. Generally, more data leads to lower 

RMSE. However, as we increased the number of data points to 70, although the RMSE decreased 

to 0.308, the predictive model's performance on test data became nonsensical, It also causes some 

local minima in the boundaries, which are not aligned with the ground truth function, as seen in 

Figure 3.13 (b).  

In conclusion, the optimal number of data points to achieve the minimum RMSE using the Co-

Kriging algorithm appears to be 60. This balance allows for improved accuracy without overfitting 

the model to the training data. 

 

Figure 3.13 (a) Variation of RMSE with Number of Data Points for Co-Kriging Algorithm. (b) 

Predictive model using 70 data points  

3.4.2.2. Data analysis for LR-MFS algorithm 

This section presents the data analysis conducted for the LR-MFS. Figure 3.14(a) illustrates that 

as the number of data points increases to 25 and 30, the RMSE decreases. However, beyond 30 

data points, the RMSE begins to rise. When we visualize the results of the predictive model in 

Figure 3.14(b), it becomes evident that the model exhibits signs of overfitting and fails to capture 

the underlying trend. Consequently, the optimal number of data points for this case study using the 

LR-MFS appears to be 30.  

(b) 
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Figure 3.14 (a) Variation of RMSE with Number of Data Points for LR-MFS Algorithm. (b) 

Predictive model using 40 data points 

3.4.2.3. Co-Kriging-LR-MFS Ensemble modeling in optimum data points 

In sections 3.4.2.1 and 3.4.2.2, it was concluded that the optimal number of data points for the Co-

Kriging and LR-MFS is 60 and 30 points, respectively. This section focuses on constructing the 

Co-Kriging- LR-MFS ensemble model, utilizing the optimal number of data points determined for 

both Co-Kriging and LR-MFS algorithms. Figure 3.15(a) and (b) illustrates a notable decrease in 

RMSE from 0.4118 to 0.266 when employing the Co-Kriging- LR-MFS ensemble modeling 

approach. This demonstrates that while utilizing Co-Kriging with 60 data points for training 

resulted in an RMSE decrease to 0.4118, the LR-MFS with an RMSE of 1.0497 still contributes 

valuable information to the system. Integrating this LR-MFS enhances the performance of the 

ensemble model, leading to a decrease in RMSE and an overall improvement in the system's 

predictive capabilities. 
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Figure 3.15 (a) Peaks function. (b) Co-Kriging-Linear model prediction. (c) Co-Kriging model 

prediction.  (d) Linear model prediction.  
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CHAPTER 4 

CONCLUSION 

 

This thesis research focused on the implementation and exploration of the Co-Kriging model and 

the Linear Regression Multifidelity Surrogate (LR-MFS) model, both renowned algorithms in 

multifidelity systems. Additionally, an ensemble model was introduced by combining these two 

approaches using K-means clustering, a novel and unique approach within this domain. Beyond a 

literature review that delved into prior research, the groundwork for the study was established by 

exploring the intricate mathematical underpinnings of Kriging, Co-Kriging, and LR-MFS. the 

performance of Co-Kriging and LR-MFS approaches were examined in one-dimensional and two-

dimensional cases, specifically investigating the results obtained from the Co-Kriging-LR-MFS 

ensemble model. This innovative model has the strengths of both approaches, showing promising 

potential. 

The research demonstrated that the selection between Co-Kriging and linear models is dependent 

on the specific characteristics of the system. For instance, in cases like the Laplace’s example, 

where the relationships between high- and low-fidelity data follow a linear pattern, the linear 

model exhibited exceptional performance. Conversely, Co-Kriging stood out due to its utilization 

of interpolation and Gaussian processes, making it adept at capturing nonlinear relations and local 

trends. By integrating these two methodologies through ensemble modeling, the synergistic effects 

led to a significant reduction in RMSE. Moreover, considering these disparities are region-specific, 

employing K-means clustering proved effective in identifying the optimal model for each region. 

Notably, the new approach offered several advantages: 

• Utilizing low-fidelity data from various locations alongside high-fidelity data, which is an 

advantage of the Co-Kriging method. 

• Ability to capture both linear and nonlinear trends in the function. 

• Efficiency in dealing with high-order datasets, optimizing computational time by utilizing 

data points for model evaluation rather than training, which typically demands substantial 

computational resources. 
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An opportunity for further exploration involves refining the K-means clustering aspect. 

Developing algorithms or codes that can automatically adjust the initial regions could significantly 

improve the overall performance of the Co-Kriging- LR-MFS ensemble modeling approach. Since 

the selection of the model in each region markedly impacts the model's overall performance, 

optimizing the regioning process could enable more efficient utilization of this methodology, and 

could lead to using this algorithm for higher-dimensional problems easily. 
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APPENDICES 

 

Appendix A: Stochastic process explanation 

A random process, also referred to as a stochastic process, is a mathematical concept utilized for 

modeling and explaining the progression of variables that are subject to randomness over time or 

space. It serves as a fundamental tool in probability theory and statistics and finds applications 

across various disciplines such as finance, physics, engineering, among others. Stochastic 

processes can be broadly classified into two categories: discrete-time and continuous-time 

processes. Let's delve into an overview of these stochastic processes. 

A.1. Discrete-Time Stochastic Process 

In discrete-time processes, random variables are observed at specific points in time or space rather 

than continuously. These observations are typically denoted as {𝑥1, 𝑥2, 𝑥3,  ...}, where each 𝑥𝑡 

represents a distinct random variable. For instance, consider a simple example involving coin flips 

where each 𝑥𝑡 signifies the outcome (heads or tails) at time t. 

A.2. Continuous-Time Stochastic Process 

Contrarily, continuous-time processes involve observing random variables over an uninterrupted 

interval of time or space. These observations are commonly represented as {x(t): t ≥ 0}, with x(t) 

representing the value of the random variable at time t. To illustrate this point further, let's examine 

the movement of stock prices where x(t) denotes the price of a particular stock at time t. 

A.3. Stochastic process properties 

A.3.1. State Space 

Stochastic processes operate within what is known as a state space - encompassing all possible 

values that a given random variable can assume. The state space may adopt either a discrete or 

continuous nature or even incorporate elements from both realms. 

A.3.2. Trajectories or Paths 

The term trajectory or path refers to the specific realization of a stochastic process; it entails the 

sequence of values assumed by the associated random variables over time or space. Trajectories 

can be perceived as sample paths drawn from the underlying stochastic process. 
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A.3.3. Markov Property 

Many stochastic processes exhibit what is termed as the Markov property - indicating that future 

behavior solely relies on the present state and not the entire historical context. This property 

simplifies both modeling and analysis procedures for such processes. 

A.3.4. Stationarity 

Certain stochastic processes possess stationarity, which implies that their statistical properties (e.g., 

mean, variance, correlation) remain constant across time. This characteristic facilitates analysis by 

enabling a focus on the invariant statistical properties inherent to the process. 

 

Appendix B: Spatial Correlation explanation 

Spatial correlation, also known as spatial autocorrelation, is a statistical concept used to describe 

the degree to which data points or observations in a geographical or spatial context are related to 

or dependent on one another based on their spatial locations. It is particularly relevant in fields 

such as geography, geostatistics, ecology, environmental science, and geosciences. Spatial 

correlation refers to the idea that nearby locations tend to have similar values or exhibit similar 

characteristics, while locations that are farther apart may be less similar or even unrelated. 

B.1. Three forms of Spatial Correlation 

B.1.1. Positive Spatial Correlation 

This occurs when nearby observations are more similar than what would be expected by random 

chance. In other words, locations close to each other tend to have similar values. For example, in 

a temperature dataset, if neighboring weather stations record similar temperatures, it indicates 

positive spatial correlation. 

B.1.2. Negative Spatial Correlation 

Negative spatial correlation, or spatial anticorrelation, occurs when nearby observations are less 

similar than expected by random chance. In such cases, locations close to each other tend to have 

dissimilar values. An example might be, soil nutrient levels, where neighboring soil samples have 

contrasting nutrient concentrations. 
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B.1.3. No Spatial Correlation 

In some cases, there may be no discernible spatial correlation, and observations are spatially 

independent. This means that the values at one location do not depend on the values at nearby 

locations. In practice, this is relatively rare, and some level of spatial correlation is often observed. 

B.2. Spatial Correlation importance 

B.2.1. Predictive model improvement 

It helps in spatial data analysis, geostatistics, and spatial modeling, allowing for the development 

of predictive models that consider the spatial structure of the data. 

B.2.2. Environmental Applications 

It can provide insights into underlying spatial processes or environmental factors. For example, it 

can reveal patterns in climate, geology, land use, or other spatially related phenomena. 

B.2.3. Kriging Algorithm 

It has practical applications in fields such as spatial interpolation (e.g., Kriging), where it is used 

to estimate values at unsampled locations based on the values of nearby observations. 

Analyzing and quantifying spatial correlation typically involves statistical techniques and tools, 

such as variograms, correlograms, semi-variograms, and spatial autocorrelation measures. These 

methods help researchers assess the strength and direction of spatial relationships, which is crucial 

in spatial data analysis and modeling. 
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