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This thesis explores the utilization of game theory and nonsmooth functions to enhance

the accuracy of epidemiological simulations. Traditional sensitivity analysis encounters

difficulties when dealing with nondifferentiable points in nonsmooth functions. However, by

incorporating recent advancements in nonsmooth analysis, sensitivity analysis techniques

have been adapted to accommodate these complex functions. In pursuit of more accurate

simulations, evolutionary game theory, primarily the replicator equation, is introduced,

modeling individuals’ decision making processes when observing others’ choices. The SEIR

model is explored in depth, and additional complexities are incorporated, leading to the

creation of an expanded SEIR model, the Be-SEIMR model.
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CHAPTER 1

INTRODUCTION

Disease has wielded a profound influence on the course of human history. In antiquity,

it often assumed the role of a divine force, revered as a deity by certain cultures or dreaded

as a harbinger of pestilence, carried by the arrows of gods. As the world transitioned into

the Renaissance era, the devastating impact of disease became painfully evident. The Black

Death, a merciless scourge that claimed the lives of at least a third of Europe’s population,

stands as a somber testament to this era’s vulnerability [23]. Similarly, the introduction of

smallpox to the Americas decimated millions of indigenous people, altering the course of

civilizations, sometimes eradicating these civilizations entirely [13]. Amidst the horrors of

the Black Death, humanity’s initial response was to ward off the perceived threat of

miasma, or "bad air", through the use of aromatic substances enclosed in the infamous

plague masks. During this period, hospitals served as grim waiting rooms for impending

death, devoid of the treatment environments we recognize today [24]. The tide eventually

turned as scientific understanding advanced. Miasma theory gave way to the revolutionary

germ theory, unveiling an invisible realm teeming with microscopic viruses, bacteria, and

fungi as the true culprits behind these afflictions. This pivotal shift marked the inception

of a new era in disease-fighting, one characterized by relentless innovation and adaptation.

Advancements in our understanding have propelled us to a stage where we possess the

capability to foresee the trajectory of disease within a population, employing intricate

mathematical models. This journey commenced in 1760 when the pioneer of mathematical

epidemiology, Daniel Bernoulli, conceptualized the first model [28]. The trajectory of

progress continued with subsequent contributions from luminaries like Kermack and

McKendrick, who further expanded the boundaries of this field, leading to monumental

advancements [30]. These scholars made the crucial insight that an epidemic outbreak can

be predicted based on a certain ratio of parameters in the mathematical model [21].
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Emerging into the early 20th century, the advent of compartmental models marked a

pivotal juncture, igniting an exponential surge in their application [28]. These models have

emerged as indispensable tools, wielding their predictive power across an array of diseases,

encompassing afflictions ranging from measles and chickenpox to pertussis, smallpox,

rabies, and sexually transmitted diseases, among a myriad others [20].

In March 2020, the world bore witness to a major event as Coronavirus 2019 (Covid-19)

swiftly transformed into a pandemic of unparalleled magnitude in the modern era. Prior to

the discovery of a vaccine capable of halting the virus’s spread, populations had to solely

rely on plethora of disease mitigation strategies, each aiming to curb the spread of sickness.

Across the globe, a multitude of mathematical models emerged, each rooted in its distinct

set of assumptions, all aimed at illuminating the optimal course of action in the face of this

viral adversary. Recent times have witnessed endeavors to systematize the construction of

mathematical epidemic models [14], an endeavor undertaken with the intention of fostering

the swift generation of models while concurrently mitigating the risk of compromising

quality, reducing the total time it would take to create a model while keeping them

accurate.

The central objective of this thesis revolves around the development of innovative

mathematical epidemic models, integrating the realms of game theory and nonsmooth

ordinary differential equation (ODE) theory. Our focus is sharply honed on infusing the

model with the human decision making processes. This pivotal aspect enables us to

accommodate the dynamic interplay between conventional behavior and disease aversion

strategies within individuals. While Covid-19 stands as the cornerstone that motivated this

thesis, our intent is to construct a versatile modeling framework capable of analyzing other

diseases.

This thesis adds two major components to standard epidemic models: limited

intervention resources and behavioral dynamics. Wang et al. [45, 43] introduce

nondifferentiable, or nonsmooth, minimum functions to address the challenges posed by

2



constrained hospital and vaccine resources. By embracing these principles, Wang’s

contributions unveil an understanding of limited hospital capacities and constrained

vaccine distribution, crucial aspects that mirror real world dynamics with finite resources.

To introduce a heightened level of realism, we integrate human decision-making into

epidemic modeling. This endeavor can take the form of segmenting populations into

distinct groups, each characterized by varying probabilities of making specific decisions.

Noteworthy examples that delve into this include works by Cai et al. [10], Ye et al. [46],

and Vardavas et al. [40]. Furthermore, the spectrum widens as we examine scenarios where

external influences prompt individuals towards certain choices. This dimension is explored

in the studies by Bootsma and Ferguson [7], as well as Bentley et al. [5]. In this thesis, a

pivotal tool in capturing the dynamics of imitation is the replicator equation, introduced as

"evolutionary dynamics", by Hofbauer and Sigmund [22]. The essence of the replicator

equation is rooted in the notion of individuals or groups copying the behaviors of other

successful groups. This mechanism draws inspiration from observations wherein a group

assesses the outcomes of another group’s choices and, based on the results, individuals

migrate between behaviors, emulating the more successful strategy. The replicator equation

orchestrates a consensus or flocking behavior, mirroring the employment of ODEs akin to

the compartmental models ubiquitous in epidemiology. Behavioral dynamics have been

considered in epidemic modeling, such as by Bauch in [3] and Bauch and Bhattacharyya in

[4].. These studies delineate the dynamics of individuals oscillating between their regular

lifestyles and disease-avoidance behaviors. In this vein, the works of Poletti [35] and

Schecter [37] investigated a similar approach to epidemic modeling. Notably, Poletti’s

framework lays the foundation for the subsequent replicator equation featured in this thesis.

At the heart of mathematical epidemiology lies the well-known Kermack-McKendrick

model, often referred to as the SIR model. This model serves as the fundamental

framework on which we build, aiming to capture a wider range of situations than the SIR

model originally accounted for. This expanded framework introduces new aspects tailored
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to the dynamics of Covid-19. For instance, we consider an incubation period, where

individuals are affected by the virus but are not yet contagious, a concept supported by

findings in [47]. Within this model, we also introduce a distinct compartment for

hospitalizations, acknowledging the significant impact the virus has on some individuals

[17]. Additionally, we incorporate a quarantine compartment to represent individuals who

actively avoid potential contagion [29]. We further divide the group of infected individuals

into two categories: symptomatic and asymptomatic [16]. We integrate compartments for

vaccinations, a crucial strategy that contributes to reducing infection and mortality rates,

as discussed in [8] and [27]. To introduce a dynamic layer of imitation dynamics, we draw

from Poletti’s work [35], which we adapt with the use of nonsmooth functions. In

summary, this thesis amalgamates various insights to create a robust and flexible

framework. Rooted in the SIR model, we enhance it by incorporating extensive variables,

imitation dynamics, and intervention constraints.

With the new model in place, we perform a comprehensive analysis of this expanded

model, with several key objectives in mind. Firstly, we use real world data to investigate

the dynamics of our model. Secondly, our focus shifts towards analyzing the model’s

intrinsic dynamics. We calculate the basic reproductive number, a metric that uniquely

quantifies a disease’s infectiousness, for a submodel in which imitation dynamics are turned

off. In this submodel, disease avoidance strategies will not be utilized It reveals the extent

to which an infection would propagate within a fully susceptible population if a single

infected individual were introduced. This critical value provides a lens through which we

can grasp the inherent contagiousness of the disease. Although this model is rooted in

Covid-19, we aimed to build a flexible framework that extends its applicability to other

diseases. To this end, we compare our submodel basic reproductive number with those

calculated for various other diseases, as documented in Earn et al. [33]. This comparative

analysis will shed light on the relative contagiousness of different diseases and provide

valuable insights. Lastly, a sensitivity analysis is conducted. This comprehensive
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examination encompasses a majority of parameters, allowing us to discern the system’s

sensitivity to each parameter’s variation. This undertaking provides insights into how the

model responds to changes in different parameters, elucidating the robustness and fragility

of the system.

As previously mentioned, our intention involves incorporating nonsmooth,

nondifferentiable minimum and mid functions into our model. Classical sensitivity analysis

relies on smooth functions, but given our context, this requirement presents challenges.

While smoothing functions can approximate nonsmooth functions, they come paired with

error functions that may lead to inaccuracies, particularly in the intricate landscape of our

model. In addressing these complexities, we turn to Clarke’s set-valued generalized

derivative theory [11]. This theory operates with locally Lipschitz continuous functions

instead of necessitating continuously differentiable functions. Elements of the Clarke

derivative provide local first derivative information, proving especially useful within

nonsmooth scenarios. The Clarke derivative encompasses useful calculus properties like the

mean value theorem and the inverse function theorem. However, the calculus rules, such as

the product rule, only hold as inclusions in most cases, and the computation of the

elements can be challenging. Recent advancements in nonsmooth analysis have brought

solutions to these challenges. Lexicographic derivatives, pioneered by Nestorov [31], bear

strong resemblance to Clarke Jacobian elements. Moreover, lexicographical directional

derivatives [2, 26] offer a systematic and accurate approach for computing lexicographical

derivatives. These innovations have paved the way for nonsmooth ODE systems [25] to

uncover generalized sensitivity functions suitable for locally Lipschitz continuous

functions—a significantly expansive domain. This inclusion of locally Lipschitz continuous

functions accounts for C1, piecewise differentiable, and convex functions. Leveraging

lexicographical sensitivity theory, we are poised to analyze our expanded epidemic model,

even in instances where points of nondifferentiability arise.

The thesis will be organized into the following structured chapters:
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• Chapter 2 will lay the groundwork by providing essential background information. It

will delve into crucial concepts such as generalized derivative theory, nonsmooth ODE

theory, game theory, and the SEIR model. These concepts serve as the building

blocks for the subsequent chapters.

• Chapter 3 will constitute a pivotal section wherein the expanded SIR model takes

shape. The additional components introduced, including the incubation period,

hospitalization and quarantine compartments, different categories of infection, and

vaccination compartments, will be detailed. This chapter aims to provide a

comprehensive understanding of how these elements interact and shape the model’s

dynamics.

• Chapter 4 will focus on the rigorous analysis of the model. It will encompass the

computation of the basic reproductive number—an indicator of the disease’s

infectivity— for the SEIMR submodel along with a comprehensive sensitivity

analysis. These analyses will offer insights into the model’s behavior, its

responsiveness to various parameters, and its practical implications.

• Chapter 5 will bring the thesis to a close, summarizing the findings and insights

derived from the preceding chapters. Concluding remarks will be made, highlighting

the significance of the study’s outcomes. Furthermore, potential avenues for future

research directions will be suggested, aiming to spark further exploration and

refinement of the developed model.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Preliminaries and Notation

For this section we will be considering an open set E ⊆ Rn and a function f : E → Rm

unless stated otherwise. We also let

x = (x1, · · · , xn) =



x1

x2
...

xn


and given a function, f ,

f(x) =


f1(x)

...

fm(x)

 =


f1(x1, . . . , xn)

...

fm(x1, . . . , xn)

 .
Definition 2.1.1. (Lipschitz Continuity). A function f is called Lipschitz continuous on E

if there exists some constant L > 0 such that for all x, y ∈ E,

∥f(x)− f(y)∥ ≤ L∥x− y∥.

The function f is said to be locally Lipschitz on E if for each xi ∈ E there is an

ϵ-neighborhood, Nϵ(xi) ⊆ E and a constant Li such that for all x, y ∈ Nϵ(xi),

∥f(x)− f(y)∥ ≤ Li∥x− y∥.

If f is C1 on E, then f is locally Lipschitz on E.

Example 2.1.2. Let f : R → R be defied as f(x) = |3x+ 2|. Then we have that by the

reverse triangle inequality

|f(x)− f(y)| = ||3x− 2| − |3y − 2|| ≤ |3x− 2− (3y − 2)| = |3x− 3y| = 3|x− y|.
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Therefore for L = 3 our condition holds and f must be Lipshitz.

If a function f is locally Lipschitz on E, then f is also absolutely continuous.

Definition 2.1.3. (Absolute Continuity). Let E ⊆ R be a connected set. A function

f : E → Rn is called absolutely continuous on E if for any compact subinterval Y ⊂ E, and

every ϵ > 0 there exists δ > 0 such that for each finite sequence of pairwise disjoint

subintervals {[ai, bi] : i = 1, . . . , q, q ∈ N} of Y satisfying
∑q

i=1(bi − ai) < δ then

q∑
i=1

|f(bi)− f(ai)| < ϵ.

Definition 2.1.4. (Partial Derivative). Given a multivariable function, f : Rn → Rm, the

partial derivative of f with respect to xi is,

∂f

∂xi
(x) = lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
. (2.1)

When taking the partial derivative with respect to xi all other variables, xj j ̸= i, are

treated as constants.

Definition 2.1.5. (Directional Derivative). Let f be a continuous mapping. Then the

directional derivative of f at x in the direction d ∈ Rn is

f ′(x;d) = lim
α↓0

f(x+ αd)− f(x)
α

.

We say f is directionally differentiable at x if f ′(x;d) exists for all d ∈ Rn, further we say

that f is directionally differentiable on E if it is directionally differentiable for all x ∈ E.

Definition 2.1.6. (Gradient). Given a function, f : Rn → R, the gradient ∇f : Rn → Rn

defined at a point x∗ = (x∗1, . . . , x
∗
n) ∈ Rn is,

∇f(x∗) =


∂f
∂x1

(x∗)

...
∂f
∂xn

(x∗)

 . (2.2)
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If we have multiple functions, f1, . . . , fm, we can find a more complicated gradient

called the Jacobian.

Definition 2.1.7. (Jacobian Matrix). Given a function f : Rn → Rm, the Jacobian matrix

evaluated at x∗ is,

Jf(x∗) =


∂f1
∂x1

(x∗) · · · ∂f1
∂xn

(x∗)

... . . . ...
∂fn
∂x1

(x∗) · · · ∂fn
∂xn

(x∗)

 .
Definition 2.1.8. (Continuously Differentiable). For some function f , f is continuously

differentiable (C1) if the Jacobian matrix exists and is continuous on a neighborhood of x∗.

Definition 2.1.9. (C1) A function, f, is C1 on E if f is C1 for all x ∈ E.

If f is C1 then f ′(x; d) = Jf(x)d and f is locally Lipschitz on E.

Definition 2.1.10. (Convex). E is convex if for any x, y ∈ E, the line segment connecting

x and y is also fully contained in E, that is λ ∈ [0, 1],

λx+ (1− λ)y ∈ E

for all λ ∈ [0, 1]. A function f is called convex if its domain is a convex set and for all x, y

in the domain and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Many sets are not convex, but they can be converted into convex sets using the convex

hull.

Definition 2.1.11. (Convex Hull). The convex hull of E is Ec where Ec the smallest set

such that E ⊆ Ec and Ec is convex. If there is another convex set E ′
c such that E ⊆ E ′

c

then Ec ⊆ E ′
c. If E is a finite set then the convex hull is,

conv(E) = {
|E|∑
i=1

λixi |
|E|∑
i=1

λi = 1, xi ∈ E, λi ≥ 0,∀i = 1, 2, . . . , |E|}.

9



Definition 2.1.12. (Piecewise Differentiable [38]). A continuous function f is called

piecewise differentiable, PC1, at x ∈ E, if there exists a neighborhood N ⊆ E around x and

a finite collection of continuously differentiable, C1, functions on N , Ff = {f1, . . . , fk} for

some k ∈ N, fi : N → Rm for all i ∈ 1, . . . , k, and

f(y) ∈ {fi(y) | i ∈ [1, k] ∩ N,∀y ∈ N}.

f is said to be PC1 on E if f is PC1 for all x ∈ E.

Example 2.1.13. Let f : R2 → R be defined by f(x) = min(x2, y− 1). When x2 = y− 1, f

is nondifferentiable. Note that f is PC1 with neighborhood N = R2 and selection functions

f1 : (x, y) → x2 and f2 : (x, y) → y − 1.

2.2 Generalized Derivatives Theory

The following material is from Clarke [11], unless stated otherwise.

Definition 2.2.1. (B-Subdifferential). Given a locally Lipschitz continuous function f that

is differentiable at each point in E\Zf , with Zf having Lebesgue measure zero, the Bouligand

subdifferential, also referred to as the limiting subdifferential or limiting Jacobian, is,

∂Bf(x)

= {H ∈ Rm×n | lim
i→∞

Jf(x(i)) = H for some seq. {x(i)} s.t. lim
i→∞

x(i) = x, xi ∈ X\Zf ,∀i ∈ N}.

With the B-subifferential we can introduce Clarke’s generalized derivative.

Definition 2.2.2. (Clarke’s Generalized Derivative). The Clarke generalized derivative,

sometimes called Clarke’s Jacobian, of f at x is,

∂f(x) = conv(∂Bf(x)).

In other words, the Clarke generalized derivative is the convex hull of the Bouligand

subdifferential as defined in Definition 2.2.1. If f is C1 at x, then
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∂f(x) = ∂Bf(x) = {Jf(x)}, that is all the sets would be singletons, which would result in

the classical derivative, the Jacobian. The Clarke Jacobian is a generalized derivative that

not only can handle nonsmooth objects, such as the absolute value function and max/min

functions, but it is also equipped with helpful calculus properties such as the chain rule,

mean value theorem and inverse function theorem.

Example 2.2.3. For this example we will be looking at f(x) = |x|. We can see that the

limiting derivatives would be ∂Bf(0) = {1,−1}. If we were to take the convex hull of these

we would get the interval [−1, 1]. This means that the Clarke Jacobian is ∂f(0) = [−1, 1].

To recap, the Clarke Jacobian is used to describe the nearby derivative behavior of

functions at points of nondifferentiability. If f is C1 then f ′(x;d) = Jf(x)d. A C1 function

is a strong condition, as such, a more easily found condition, lexicographically smooth, can

typically be used in its place. However, it is difficult in general to calculate Clarke Jacobian

elements [2]. Motivated by this difficulty Khan and Barton [26] built the lexicographic

directional derivative, bared on lexicographic differentiation [31].

Definition 2.2.4. (Lexicographically Smooth Functions [31]). Let f be a locally Lipschitz

continuous function. Then f is lexicographically smooth, or L-smooth, at x ∈ E if it is

directionally differentiable at x and if for any k ∈ N and M = [m1 · · · mk] ∈ Rn×k,

f
(0)
x,M : Rn → Rm : d → f ′(x;d),

f
(1)
x,M : Rn → Rm : d → [f

(0)
x,M]′(m1;d),

f
(2)
x,M : Rn → Rm : d → [f

(1)
x,M]′(m2;d),

...

f
(k)
x,M : Rn → Rm : d → [f

(k−1)
x,M ]′(mk;d),

are well defined. We call the sequence above the homogenization sequence. The function f

is called L-smooth on X if it is L-smooth at each point x ∈ E.
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If a function is C1, PC1, convex it is L-smooth, and if a function is an integral or

composition of C1, PC1 or convex functions then it is also L-smooth [31]. We call M the

directions matrix. Each column of the directions matrix corresponds to a direction around

the point and each step in the homogenization process changes the direction in which we

probe. At a nondifferentiable point, we probe the nearby area to find derivative

information to better understand what is going on when we cannot differentiate. If the

columns of M span the space then we get the following [31].

Proposition 2.2.5. ([31]) Let f be an L-smooth function and M ∈ Rn×k have full row

rank. Then the final differentiation of the homogenization sequence, f (k)x,M, in definition

2.2.4 is linear.

Example 2.2.6. Let f : R2 → R to be f(x1, x2) = x21 + x22. We will also let the directions

matrix be

M =

[
m1 m2

]
=

m1 m2

m3 m4

 .
Taking the first directional derivative in the direction d = (d1, d2) at x∗ = (x∗1, x

∗
2) = (1, 1),

we would end up with:

f
(0)
x∗,M(d1, d2) = f ′(x∗; (d1, d2))

= lim
α↓0

f(x∗ + αd)− f(x∗)

α

= lim
α↓0

(x∗1 + αd1)
2 + (x∗2 + αd2)

2 − (x∗21 + x∗22 )

α

= lim
α↓0

x∗21 + 2αx∗1d1 + α2 + d21 + x∗22 + 2αx2d2 + α2d2 − x∗21 − x∗22
α

= lim
α↓0

2x∗1d1 + αd21 + 2x∗2d2 + αd2

= 2x∗1d1 + 2x∗2d2

= 2d1 + 2d2.
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Therefore f
(0)
x∗,M(d1, d2) = 2d1 + 2d2. Since f is C1 we can also solve this with:

f
(0)
x∗,M(d1, d2) = f ′(x∗; d1, d2) = Jf(x∗)

d1
d2

 =

[
2x∗1 2x∗2

]d1
d2

 = 2d1 + 2d2.

For the next step we find f
(1)
x∗,M, which from our definition is

f
(1)
x∗,M(d1, d2) = [f

(0)
x∗,M]′(m1;d)

= lim
α↓0

fx∗,M(m1 + αd)− fx∗,M(m1)

α

= lim
α↓0

2(m1 + αd1) + 2(m2 + αd2)− (2m1 + 2m2)

α

= lim
α↓0

2m1 + 2αd1 + 2m2 + 2αd2 − 2m1 − 2m2

α

= lim
α↓0

2αd1 + 2αd2
α

= lim
α↓0

2d1 + 2d2

= 2d1 + 2d2.

Repeating this process reveals that f(2)x∗,M(d1, d2) = 2d1 + 2d2. Note that M does not play a

role here because f is C1.

With the concept of L-smooth in place we can now find lexicographical derivatives.

Definition 2.2.7. (Lexicographical Derivative [31]). Let f be an L-smooth function and

M ∈ Rn×k be a full row rank matrix. Then the lexicographical derivative, L-derivative, of f

at x is

JLf(x;M) = Jf
(k)
x;M(0n) ∈ Rm×n.

The choice 0n can be swapped out with any v ∈ Rn, since Jf (k)x;M has constant entries.

We can note that the mapping f
(k)
x;M is influenced by the choice of M. As such, different

acceptable choices of M can result in different L-derivatives.

Definition 2.2.8. (Lexicographic Subdifferential [31]). Let f be an L-smooth function, then

the lexicographic subdifferential, L-subdifferential, of f at x is given by

∂Lf(x) = {JLf(x;M) : k ∈ N,M ∈ Rn×k,M has full row rank},
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and represents the set of all possible L-derivatives.

When evaluated at a point of nondifferentiabilty, the L-subdifferential is a nonempty

and non-singleton set. Elements of the L-subdifferential are related to the elements of the

Clarke Jacobian.

Proposition 2.2.9. ([31, 25]).Let E ⊆ Rn and let f : E → Rm be L-smooth. Then

L-derivatives of f are identical to Clarke Jacobian elements with matrix-vector products

such as

{A1v : A1 ∈ ∂Lf(x),d ∈ Rn} ⊆ {A2v : A2 ∈ ∂f(x),d ∈ Rn}.

If f is PC1, then we have that

∂Lf(x) ⊆ ∂Bf(x) ⊆ ∂f(x).

A useful tool to find L-derivatives is the lexicographical directional derivative.

Definition 2.2.10. (Lexicographic Directional Derivative [26]). Let f be an L-smooth

function and let M = [m1 · · · mk] ∈ Rn×k. Then the lexicographical directional

derivative, LD-derivative, of f at x in the directions given by M is

f ′(x;M) = [f
(0)
x,M(m1) f

(1)
x,M(m2) · · · f

(k−1)
x,M (mk)].

Oftentimes, k = m = n and M = I, where I is the identity matrix, but it is not

required. When k = 1, M would be a single column vector and

f ′(x,M) = f
(0)
x,M(m1) = f ′(x;m1).

Therefore if k = 1, then the LD-derivative gives the classical directional derivative.

Theorem 2.2.11. (Connection between L-derivatives and LD-derivatives[26]) Let f be an

L-smooth function and M = [m1 · · · mk] ∈ Rn×k be a full row rank matrix. Then

f ′(x;M) = JLf(x;M)M
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or equally,

JLf(x;M) = f ′(x;M)M−1. (2.3)

where M is the right inverse.

The above theorem implies the importance of the LD-derivative, since a related

L-derivative can be easily calculated using an LD-derivative as long as the directions matrix

is full row rank. As such M is often chosen to be I and even further, since in this case,

M = M−1 implies that the LD-derivative is also an L-derivative. If all the requirements in

Theorem 2.2.11 are satisfied and f is C1, then Theorem 2.2.11 gives the special case of

f ′(x;M) = Jf(x;M)M.

Example 2.2.12. For this example we will be looking at the function

g : R2 → R : (x1, x2) → |x1 + x2|.

The function g has the set of nondifferentiability,

Zg = {(x1, x2) : x1 = −x2}

and essentially active selection functions

Eg(x) ⊆ {x1 + x2,−(x1 + x2)} = {g1(x), g2(x)}.

Since this function is PC1, we can find the Bouligand subdifferential and the Clarke

Jacobian. We have that the Jacobians of the essentially active functions are

Jg1(x) = [1 1] and Jg2(x) = [−1,−1] therefore ∂Bg(x) = {[1 1], [−1 − 1]}. From here

we can find the convex hull of ∂Bg(x) to find that the Clarke Jacobian is

{[a 1− a] | a ∈ [−1, 1]}. Let x0 = (1,−1) ∈ Zg and let the full row rank directions matrix

be M = I2. We will find an L-derivative of g by first finding an LD-derivative as suggested

in definition 2.2.11. First we find the two recursive directional derivatives of g. For the
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first directional derivative of g at x0 we have

f
(0)
x0,M(d1, d2) = lim

α↓0

g(x0 + α(d1, d2))− g(x0)

α

= lim
α↓0

|(1 + αd2) + (−1 + αd1)| − |1− 1|
α

= lim
α↓0

|α(d1 + d2)|
α

= lim
α↓0

α|d1 + d2|
α

= lim
α↓0

|d1 + d2|

= |d1 + d2|.

In the direction (1, 0) as given by the first column of the directions matrix M, we have that

f
(0)
x0,M(m1) = |1 + 0| = 1.

The next directional derivative is found recursively giving us,

f(1)x0,M(d1, d2) = [f
(0)
x0,M]′(m1; (d1, d2)

= lim
α↓0

|(1 + αd1) + (0 + αd2)| − |1 + 0|
α

= lim
α↓0

|1 + αd1 + αd2| − 1

α
.

Since α ↓ 0, the number 1 is the dominating term in |1 + αd1 + αd2| and a positive result

would be found as the limit is taken. Therefore,

f(1)x0,M(d1, d2) = lim
α↓0

1 + αd1 + αd2 − 1

α
= d1 + d2.

With the above and given the second column of M, we have that,

f(1)x0,M(m2) = 1.

With both directional derivatives found we can make the LD-derivative of f at x0 in the

directions given by M to be

f ′(x0;M) = [f(0)x0,M(m1) f(1)x0,M(m2)] = [1 1].
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Then from the LD-derivative, can use the inverse of M = I to make an L-derivative

JLf(x0;M) = [1 1]I−1 = [1 1].

Since L-derivatives are all Clarke jacobian elements, as seen in proposition 2.2.9, this

means we can use L-derivatives and LD-derivatives to find information on nonsmooth

functions. In order to find nonsmooth derivatives we must first understand lexicographical

ordering.

Definition 2.2.13. (Lexicographic Ordering). Let a, b ∈ Rk be vectors. Then a is

lexicographically less than b, written a ≺ b, if ai < bi for the first index

i ∈ {1, 2, . . . , i, . . . , k} such that ai ̸= bi. We say a is lexicographically greater than b,

written a ≻ b, if ai > bi for the first index i ∈ {1, 2, . . . , i, . . . , k} such that ai ̸= bi. If

equality is possible, ≽ and ≼ can be used.

A helpful way to think of lexicographical ordering is to compare it to alphabetical

ordering. Given the two words grove and gross, we know gross comes before grove in the

dictionary because we compare the first letter that is different, in this case s and v, and it

does not matter that, after that comparison, e in grove comes before the second s in gross.

Similarly given two vectors, [1 − 2 6] and [1 − 2 4] we look at the first numbers that

are different between them. Since 6 > 4 we can conclude

[1 − 2 6] ≻ [1 − 2 4].

For a couple more examples we can see that

[1 − 2 6] ≺ [1 4 − 2]

[2 4 6] ≻ [1 6 97].

With the notion of lexicographical ordering we can now introduce the functions lmax

and lmin; for more details see Khan and Barton [26]. Much like max and min these
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functions output either the lexicographical greatest or lexicographical least input. For

example,

lmax([1 − 2 6], [1 4 − 2]) = [1 4 − 2]

lmin([2 4 6], [1 6 97]) = [1 6 97].

We can also take the lmax and lmin of matrices. With matrices, lmax and lmin compare

each row of the matrix and output the lexicographical max or lexicographical min from

each matrix. As an example,

lmax


 2 3

−1 2

 ,
 1 −1

−1 4


 =

 2 3

−1 4

 .
We can also introduce the functions slmax and slmin, or the shifted lexicographical max

and the shifted lexicographical min. These take the form of a left shift of the lmax and

lmin functions. Using some previous examples,

slmin([2 4 6], [1 6 97]) = [6 97]

slmax


 2 3

−1 2

 ,
 1 −1

−1 4


 =

3
4

 .
The LD-derivative of a minimum, or maximum, function composed with C1 functions

along matrices (M,N) ∈ R2n×k [2] is

[min ◦(f ,g)]′(x,y; (M,N)) = slmin([f(x,y) Jxf(x,y)M + Jyf(x,y)N],

[g(x,y) Jxg(x,y)M + Jyg(x,y)N]).

The function fsign is important in the calculation of an LD-derivative of absolute value,

and outputs the sign of the first nonzero entry. If all entries are zero, then it outputs zero.
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For example,

fsign(0,−1, 4) = −1

fsign(2,−6,−7) = 1

fsign(0, 0, 0, 4) = 1

fsign(0, 0) = 0.

The LD-derivative of the absolute value function with a directions matrix

M = [m1 . . . mk] ∈ R1×k is

abs′(x;M) = fsign(x,m1,1, . . . ,m1,k)M.

2.3 ODE Theory

Unless stated otherwise, these definitions and theorems below are adapted from Perko

[34]. In this section, we use the notation ẋ = dx
dt

.

In this part we consider the following ODE system

ẋ = f(t,x), (2.4)

x(t0) = x0.

Where x = (x1, . . . , xn) is the state variable vector, t is the independent variable and

f : Et × Ex → Rn with open sets Et ⊆ R and Ex ⊆ Rn, and initial values t0 ∈ Et and

x0 ∈ Ex.

Definition 2.3.1. (Solution of an Initial Value Problem). A solution to the initial value

problem (IVP) of the form (2.4), on the connected interval T ⊆ Et is some function x(t)

such that,

i. x(t) is differentiable on T ,

ii. x(t) ∈ Ex for each t ∈ T ,
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iii. x(t0) = x0 with t0 ∈ T , and

iv. ẋ(t) = f(t, x(t)) for each t ∈ T .

An IVP has a unique solution if f is sufficiently regular.

Theorem 2.3.2. (Fundamental Existence-Uniqueness). Let x0 ∈ Ex and let f be locally

Lipshitz on Et × Ex. Then there exists an ϵ > 0 such that the IVP (2.4) has a unique

solution x(t) on the interval [t0 − ϵ, t0 + ϵ].

In many cases where an IVP has a solution, it can be incredibly difficult to find

analytically using standard methods. As such we also can figure out the long-term

behavior of DEs by analyzing equilibria.

Definition 2.3.3. (Equilibria). A point x∗ ∈ E is called an equilibrium point, or a critical

point, of ẋ = f(x) if f(x∗) = 0.

Not only do equilibria tell us when an ODE is unchanging we can also use equilibria to

find out the behavior of initial values around them.

Definition 2.3.4. (Stability [34]). Given the equation ẋ = f(x), the equilibrium, x∗ is

• stable, if for each ϵ > 0, there exists a δ > 0 such that

∥x0 − x∗∥ < δ =⇒ ∥x(t)− x∗∥ < ϵ for all t ≥ 0

• asymptotically stable if the equilibrium is stable and there exists δ such that

∥x0 − x∗∥ < δ =⇒ limt→∞ x(t) = x∗

• unstable otherwise.

For the definition of stable, we must acknowledge the potential case of finite time blow

up. If this were to occur we can rescale time with some τ = αt, allowing for global

solutions and avoiding finite time blowup. Nonlinear equations are generally difficult to

analyze when trying to figure out the nearby behavior, while linear equations are simple.
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In order to utilize this simplicity we can linearize nonlinear equations around equilibria and

find accurate nearby information.

Definition 2.3.5. (Linearization). The linearization of (2.4) at an equilibrium x∗ is the

linear system, ẋ = Jf(x∗)x.

The further away a solution is from the point of linearization the more inaccurate the

information is, however in the local neighborhood the information is accurate. After

linearization, we can find the behavior of nearby initial values.

Definition 2.3.6. (Hyperbolic Equilibrium). An equilibrium point x∗ is called a hyperbolic

equilibrium point of (2.4) if none of the eigenvalues of Jf(x∗) have zero real part.

Definition 2.3.7. An equilibrium point x∗

• is called a sink if all of the eigenvalues of Jf(x∗) have negative real part.

• is called a source if all the eigenvalues of Jf(x∗) have positive real part.

• is called a saddle if it is a hyperbolic equilibrium point and if Jf(x∗) has at least one

positive and one negative eigenvalue.

If the equilibrium point, x∗, results in a sink, then x∗ is asymptotically stable. If x∗ is a

source or a saddle then x∗ is unstable.

We will now define a parametric initial value problem as

ẋ(t,p) = f(t,p,x(t,p)), (2.5)

x(t0,p) = f0(p)

where x = (x1, . . . , xn) is the vector of state variables and p = (p1, . . . , pm) is the vector of

parameters. We also suppose that f : Et × Ep × Ex → Rn, with Et, Ep, Ex open, and

f0 : Em → Ex, with Et open, where Et ⊆ R, Ep ⊆ Rq and Ex ⊆ Rn.
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Definition 2.3.8. (Sensitivity Functions). Let x(t,p) be a solution of the parametric IVP

(2.5) on the interval [t0, t1] and for p in the neighborhood of p∗ ∈ Ep, the

forward-parametric sensitivity functions are

Sx(t) =
∂x
∂p

(t,p∗) ∈ Rn×q,

where p∗ ∈ Ep are some chosen parameters of importance.

Sensitivity functions help figure out the importance of parameters in an IVP. If a

system has two parameters p1 and p2, these sensitivity equations inform us which

parameters, when perturbed slightly, cause a more drastic change to the solution of the

system. With how helpful these equations are, once again we would like to easily check

whether they are possible to find or not.

Theorem 2.3.9. Suppose f : Et × Ep × Ex → Rn and f0 : Ep → Ex are C1, let t1 > t0 and

suppose there exists a unique solution of the IVP, x∗(t) = x(t,p∗), on [t0, t1] ⊆ Et and for

p = p∗. Then the solution x(t,p) is C1 with respect to p near p = p∗, i.e., the sensitivity

functions in Definition 2.3.8 exist. Moreover, the sensitivity functions are the unique

solution of the sensitivity system

Ṡx = Jpf(t,p∗, x∗(t)) + Jxf(t,p∗, x∗(t))Sx,

Sx(t0) = Jf0(p∗)

on the time span [t0, t1], where Jpf and Jxf are partial Jacobians with respect to p and x

respectively.

Example 2.3.10. For this example we look at the non-linear parametric IVP,

ẋ(t,p) = x(t,p)p1

x(0,p) = p2

with parameters p = (p1, p2). Once again, since this equation is separable we can find the

closed form solution

x(t, p) =
1−p1

√
p1−p12 − p1t+ t.
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Therefore we can calculate the sensitivity function by differentiating the closed form

solutions by p1 and p2. This will give us,

∂x

∂p
(t,p) =

(−p1t+ p1−p12 + t)
1

1−p1 (
ln(−p1t+p

1−p1
2 +t)

(1−p1)2 +
−p1−p1

2 ln(p2)−t
(1−p1)(−p1t+p

1−p1
2 +t)

)

(−p1t+p
1−p1
2 +t)

1
1−p1

−1

p
p1
2


T

Then once we choose our reference parameters of p∗ = (2, 1) we have that

∂x

∂p
(t,p∗) =

[
t+ (t− 1) ln( 1

1−t)

(−t+ 1)2
1

(−t+ 1)2

]
.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

time [t]

0.5

1

1.5

2

2.5

3

3.5

x
(t

,p
)

Figure 2.1: Solutions of the system with different values of p∗. p∗ = (1, .5) in yellow,

p∗ = (2, 1) in red and p∗ = (3, 1) in blue.

Once again with different choices in parameter p∗, long term behavior of solutions

change. In order to calculate the sensitivity equations we first define f(p, x) = xp1 and

f0(p) = p∗2. Then we have that

Jpf(p, x∗) = [x∗p
∗
1 ln(x∗) 0]

Jxf(p, x∗) = [p∗1x
∗p∗1−1]

Jf0(p∗) = [0 1].
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Then by substituting into the sensitivity system we have

Ṡx = [x∗p
∗
1 ln(x∗) 0] + [p∗1x

∗p∗1−1]Sx

Sx(0) = [0 1].

We then split up the vector-valued IVP into

Ṡp1x = x∗p
∗
1 ln(x∗) + p∗1x

∗p∗1−1Sp1x , S
p1
x (0) = 0,

Ṡp2x = p∗1x
∗p∗1−1Sp2x , S

p2
x (0) = 1.

Further we can plug in our closed form solution 1−p∗1

√
p
∗1−p∗1
2 − p∗1t+ t for x∗ resulting in

Ṡp1x =
1−p∗1

√
p
∗1−p∗1
2 − p∗1t+ t

p∗1

ln(
1−p∗1

√
p
∗1−p∗1
2 − p∗1t+ t) + p∗1

1−p∗1

√
p
∗1−p∗1
2 − p∗1t+ t

p∗1−1

Sp1x ,

Sp1x (0) = 0,

Ṡp2x = p∗1
1−p∗1

√
p
∗1−p∗1
2 − p∗1t+ t

p∗1−1

Sp2x ,

Sp2x (0) = 1.

Then once we plug in reference parameter p∗ = (2, 1) then we find that

Ṡp1x = (
1

−t+ 1
)2 ln(

1

−t+ 1
) + (

2

−t+ 1
)Sp1x

Sp1x (0) = 0,

Ṡp2x = (
2

−t+ 1
)Sp2x

Sp2x (0) = 1.

These can be independently solved to get

Sp1x (t) =
t+ (t− 1)ln( 1

1−t)

(−t+ 1)2

Sp2x (t) =
1

(−t+ 1)2

which matches up with the sensitivity functions we found earlier.
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Once again utilizing L-derivatives we can also find sensitivity information of parameters

of nonsmooth functions. We will be following a similar evolution as before, where at first

we introduced L-derivatives then LD-derivatives, however we will be looking at

lexicographical sensitivity functions and then lexicographical directional sensitivity

functions. First we must define L-smooth dependence of parameters.

Theorem 2.3.11. (L-Smooth Dependence on Parameters [25]). Given the IVP (2.5)

suppose that f : Et × Ep × Ex → Rn and f0 : Ep → Ex are L-smooth on their domains.

Then there exists ϵ, δ > 0 such that the IVP has a unique solution x(t,p) on [t0, tf ], with

t0 + δ = tf , for each fixed p ∈ Nϵ(p∗), and x(t,p) is L-smooth with respect to p on Nϵ(p∗)

for each fixed t ∈ [t0, t0 + δ].

With L-smooth dependence on parameters, we can now introduce the lexicographic

sensitivity functions.

Definition 2.3.12. (Lexicographic Sensitivity Functions). Given the IVP (2.5), the

lexicographic sensitivity functions associated with a solution at chosen reference parameters,

p∗ ∈ Ep, x∗ = x(t,p∗) of the IVP, are

Sx(t) = JL[x(t, ·)](p∗;M) ∈ Rn×q,

for some M ∈ Rn×k with full row rank.

Lexicographical directional sensitivity function are easier to calculate and can be

converted into the lexicographical sensitivity functions.

Definition 2.3.13. (Lexicographical Directional Sensitivity Functions). Given the IVP

(2.5), the LD-sensitivity functions associated with a solution x(t,p) of the PIVP, if they

exist, are

X(t) = [x(t, ·)]′(p∗;M) ∈ Rn×k

with p∗ ∈ Ep as chosen reference parameters.
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Similarly to before, finding the LD-sensitivity functions require certain criteria to exist.

So we define not only their existence criteria but also their calculation.

Theorem 2.3.14. (Existence and Calculation of the LD-Sensitivity Functions [25]).

Suppose that f : Et × Ep × Ex → Rm and f0 : Ep → Ex are L-smooth on their domains and

given tf > t0, there exists a unique solution of the IVP (2.5) on [t0, tf ] ⊂ Dt. Then the

solution x(t,p) is L-smooth with respect to p near p = p∗. That is, for any matrix

M ∈ Rn×k, the LD-sensitivity functions in definition 2.3.13 exist, are absolutely continuous

and are the unique solution of the LD-sensitivity system

Ẋ(t) = [ft]
′(p∗, x(t,p∗); (M,X(t))),

X(t0) = f ′0(p
∗;M),

on the time interval [t0, tf ] where ft : (p, x) → f(t,p, x).

Even though calculating LD-sensitivity functions is easier, we still get more information

from the L-sensitivity functions. We can easily convert between the two using the below.

Theorem 2.3.15. (Existence and Calculation of the L-Sensitivity Functions). Suppose

that f : Et × Ep × Ex → Rm and f0 : Ep → Ex are L-smooth on their domains and given

tf > t0 and that M ∈ Rn×k is full row rank. Then the results of Theorem 2.3.11 hold, both

the L-sensitivity and LD-sensitivity functions exist, and for some fixed t on the time

interval [t0, tf ], the L-sensitivity functions can be calculated as

Sx(t) = X(t)M−1 ∈ Rn×q.

where M−1 is the right inverse of M.

Remark 2.3.16. If f and f0 are C1 on their domains and M = I then we have that

Sx(t) = JL[x(t, ·)](p∗; I) = X(t)I−1 = [x(t, ·)]′(p∗; I) =
∂x

∂p
(t, p∗).

Therefore the result is the classical, smooth, sensitivity equations.
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Example 2.3.17. Let

ẋ(t,p) = min(p1 − 1, x2(t,p))

x(0,p) = |p2|

with reference parameters p∗ = (1, 0).
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t
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-100

-50

0

50

100

150

200

250

Figure 2.2: Solutions of the system with different values of p1. We have p2 = 1 for all and

p1 = −2 in black, p1 = 1 in cyan and p1 = 5 in red.
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Figure 2.3: Solutions of the system with different values of p2. We have p1 = 2 for all and

p2 = −2 in black, p2 = 1 in cyan and p2 = 5 in red.
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Since we have the reference parameter we can solve for x∗. At the reference parameters

we have that

ẋ(t,p∗) = min(0, x2(t,p∗))

x(0,p∗) = 0.

Since x2(t,p∗) ≥ 0, min(0, x2(t,p∗)) = 0 giving us

ẋ(t,p∗) = 0

x(0,p) = 0

which can be easily solved to find x∗ = 0. To build the sensitivity system we introduce

directions matrix

M =

M1

M2

 =

m1,1 m1,2

m2,1 m2,2


and L-sensitivity matrix Sx = [Sp1x Sp2x ]. Then following along with definition 2.3.13, we

choose u(p, x) = p1 − 1 and v(p, x) = x2. Then we have that

Ẋ = slmin([u(p∗, x∗) Jp1u(p
∗, x∗)M1 + Jp2u(p

∗, x∗)M2 + Jxu(p∗, x∗)X],

[v(p∗, x∗) Jp1v(p
∗, x∗)M1 + Jp2v(p

∗, x∗)M2 + Jxv(p∗, x∗)X])

= slmin([p∗
1 − 1 1[m1,1 m1,2] + 0[m2,1 m2,2] + 0[X1 X2],

[x∗2 0[m1,1 m1,2] + 0[m2,1 m2,2] + 2x∗[Sp1x Sp2x ]])

= slmin([p∗
1 − 1 [m1,1 m1,2]], [x

∗2 [X1 X2]])

= slmin([p∗
1 − 1 m1,1 m1,2], [x

∗2 2x∗X1 2x∗X2]).

Then at the chosen reference parameters p∗ = (1, 0),

Ẋ = slmin([0 m1,1 m1,2], [0 0 0]).
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Then for the initial conditions we have that

X(0) = fsign(p∗
2, Jp(p2)M)Jp(p2)M

= fsign(p∗
2, [0 1]M)[0 1]M

= fsign(p∗
2,M2)M2.

Once again at p∗ = (1, 0),

X(0) = fsign(0,M2)M2

Therefore we have at p∗,

Ẋ = slmin([−1 m1,1 m1,2], [0 0 0])

X(0) = fsign(0,M2)M2.

If we choose M = I, we get that

Ẋ = slmin([−1 1 0], [1 0 0]) = [1 0]

and

X(0) = fsign(0,M2)M2 = fsign(0, 0, 1)[0 1] = [0 1].

This gives us

Ẋ = [1 0]

X(0) = [0 1]

which can be solved to get

X1(t) = t

X2(t) = 1.

To convert these from LD-sensitivity equations to L-sensitivity equations we need to

multiply by the inverse of the directions matrix. In our case we would have that

Sx(t) = X(t)M−1 = [t 1]M−1 = [t 1]I−1 = [t 1]I = [t 1].

29



If we choose M = −I,

Ẋ = slmin([−1 − 1 0], [1 0 0]) = [−1 0]

and

X(0) = fsign(0,M2)M2 = fsign(0, 0,−1)[0 − 1] = −[0 − 1] = [0 1].

This gives us

Ẋ = [−1 0]

X(0) = [0 1]

which can be solved to get

X1(t) = −t

X2(t) = 1.

Then to find the LD-sensitivity function,

Sx(t) = X(t)M−1 = [−t 1]M−1 = [−t 1](−I−1) = [−t 1](−I) = [t − 1].

2.4 Evolutionary Game Theory

Game theory is the study of mathematical models that try to depict rational decision

making. Traditionally, as first seen in Neumann’s On the Theory of Games and Strategies

[41], game theory was primarily used to study individuals playing various strategic games

giving their best attempt to win or get the best reward. Since then, the field of study has

expanded beyond traditional games of strategy and can be used to analyze human decision

making processes applied to many mathematical fields. Evolutionary game theory expands

game theory even further by allowing players to adapt based on the other players around

them. In the field of mathematical epidemiology, evolutionary game theory is a way to

incorporate human decision making and risk assessment into the model. Unless specified
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otherwise all definitions are adapted from Evolutionary Games and Population Dynamics

[22]. Below we introduce some terminology that will be used often in this section

• A game is a collection of circumstances that has results depending on the actions of

two or more decision-makers [32].

• A player is a strategic decision-maker within the context of the game [32].

• An action is an available choice for a player. An action can also be called a move or a

strategy given certain circumstances [32].

Definition 2.4.1. (Payoff Matrix [18]). A payoff matrix for a two player game is a

bi-matrix that shows the outcomes of both players, given their choices of action. A

bi-matrix is a matrix where each cell contains two values, where the first value corresponds

to the outcome of player 1 and the second value is the outcome for player 2.

For a two player game, a payoff bi-matrix M ∈ Rn×m would mean that player A would

have n unique actions while player B has m unique actions. Any entry mi,j ∈M would be

an element of R2, representing the payoffs of both players given player A chose action i and

player B chose action j. We denote (mi,j)1 to be the payoff for player A while (mi,j)2

would be the payoff for player B. This can be expanded to n players, by increasing the

dimension of the bi-matrix to n-dimensional and allowing the individual entries of the

matrix to be elements of Rn.

Example 2.4.2. Below is the payoff matrix for a game of Rock paper scissors between two

players.

Rock Paper Scissors

Rock (0, 0) (0, 1) (1, 0)

Paper (1, 0) (0, 0) (0, 1)

Scissors (0, 1) (1, 0) (0, 0)
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In this game we can see mi,j ∈ R2 because there are two players. An element m1,2 means

that player A chose strategy 1, rock, while player B chose strategy 2, paper. This choice of

strategies resulted in 0 points for A and 1 point for B. We can also see in this example that

since the players have the same strategy options, this results in a square matrix.

Definition 2.4.3. Given n+ 1 vertices, s0, . . . , sn, such that s1 − s0, . . . , sn − s0 are

linearly independent, the simplex, Sn, is determined by

Sn = {θ0s0 + · · ·+ θksk |
n∑
i=0

θi = 1 and θi ≥ 0 for all i.

The n-simplex, Sn, is a closed and bounded subset of Rn. Sn contains all vectors with

non-negative entries that sum to one. In other words, given an n-dimensional space, the

n-simplex, Sn, is an n-dimensional polytope, a geometric objects with flat sides, which is

the convex hull of the n+ 1 chosen vertices.

Example 2.4.4. Some examples of simplexes are as follows:

• In 1 dimension the simplex is the line segment {x | x ∈ [0, 1]}.

• In 2 dimensions the simplex is a triangle {(x, y) | x+ y ≤ 1, x, y ∈ [0, 1]}.

• In 3 dimensions the simplex is a tetrahedron {(x, y, z) | x+ y + z ≤ 1, x, y, z ∈ [0, 1]}.

Definition 2.4.5. (Pure Strategy). Given a set of actions, {x1, · · · , xn}, a pure strategy is

when a player only chooses a single action from the set to implement and never deviates.

In any given game there will be finitely many actions.

Since we define a pure strategy as a singular action, an action will be referred to as a

strategy and a set of actions will be called a strategy set. We will use the terms strategy

and strategy set from this point onward, unless action is needed to prevent confusion.

Example 2.4.6. In the case of rock paper scissors our set of actions is rock,paper,scissors.

Therefore there are three pure strategies, which are to always play rock, paper or scissors.

In the case listed in definition 2.4.1 where our strategy set is {x1, · · · , xn} , there are n

pure strategies which are to always use action xi for some 0 ≤ i ≤ n.
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Definition 2.4.7. (Mixed Strategy). Given a strategy set, {x1, · · · , xn}, a mixed strategy is

when a player picks multiple actions and assigns a probability of use to each

(p1, · · · , pn) ∈ [0, 1]n.

A pure strategy can be seen as a special case of the mixed strategies where pi = 1 for

some i and pj = 0 for j ̸= i. Mixed and pure strategies can also be seen as points on a

simplex, where the pure strategies correspond to the vertices, and mixed strategies

correspond to the edges and interior space. Any given mixed strategy p = (p1, · · · , pn)

corresponds to a point in the simplex Sn such that,

Sn = {p = (p1, · · · , pn) ∈ Rn|pi ≥ 0 and
∑

pi = 1}.

Definition 2.4.8. (Expected Value). Given an n1 × n2 payoff matrix M , and mixed

strategies p for player A and q for player B, then the expected value for player A is,

EA(p,q) =

n2∑
j=1

n1∑
i=1

(mi,j)1piqj. (2.6)

Recall we denote (mi,j)1 to be the payoff for player A while (mi,j)2 to be the payoff for

player B.

Example 2.4.9. Define the payoff matrix for two players A and B,

M =
(0,4) (8,-2) (2,2)

(-4,10) (3,0) (4,4)
(2.7)

with mixed strategy probabilities,

P = (.5, .5) (2.8)

Q = (.2, .3, .5). (2.9)

Then,

EA(P,Q) = 0(.5)(.2) + 8(.5)(.3) + 2(.5)(.5) +−4(.5)(.2) + 3(.5)(.3) + 4(.5)(.5) = 2.75

EB(P,Q) = 4(.5)(.2) +−2(.5)(.3) + 2(.5)(.5) + 10(.5)(.2) + 0(.5)(.3) + 4(.5)(.5) = 2.6.
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This means with the given mixed strategies we expect player A to average 2.75 points per

round and player B to average 2.6 points.

Definition 2.4.10. (Nash Equilibrium). Given a strategy set x = {x1, . . . , xn}, where xi is

a percentage of play, a Nash equilibrium is a collection of pure strategies x∗ = (xi, · · · , xj)

each corresponding to a player Pi. The Nash equilibrium has the property that no player Pi

can improve their expected value by choosing a strategy different from xk, k ̸= i, as long as

every other player Pj adheres to xj. Formally this means that

EPi
(x∗) ≥ EPi

(x′).

for all x∗, x′ ∈ x.

Before going into an example of a Nash equilibrium, when doing classical game theory,

we assume players are playing rationally. A player’s goal is to get the most payout or to

win the game, as such once a player chooses a strategy they will not change strategies

unless the game is changed or a better strategy is discovered.

Example 2.4.11. Consider the following payoff matrix,

b1 b2

a1 (2,2) (1,3)

a2 (3,1) (5,5)

(2.10)

From the perspective of player A, if player B chooses strategy b1, player A will want to

choose strategy a2. If player B chooses b2, then once again player A would choose a2. This

would mean player A has no incentive to choose strategy a1 and therefore would only choose

a2. From the perspective of player B, we can see b2 would be the optimal strategy. This

means that the Nash equilibrium is

x∗ = (a2, b2). (2.11)
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Definition 2.4.12. Given two players, A and B, each with mixed strategies, P ∗
A and P ∗

B, a

mixed Nash equilibrium is (P ∗
A, P

∗
B), such that if either player changes strategies to any

P ′
A ̸= P ∗

A and P ′
B ̸= P ∗

B,

EA(P
∗
A, P

′
B) ≤ EA(P

∗
A, P

∗
B), (2.12)

EA(P
′
A, P

∗
B) ≤ EA(P

∗
A, P

∗
B), (2.13)

EB(P
∗
A, P

′
B) ≤ EB(P

∗
A, P

∗
B), (2.14)

EB(P
′
A, P

∗
B) ≤ EB(P

∗
A, P

∗
B). (2.15)

Example 2.4.13. Looking back at the payoff matrix for Rock paper scissors as seen in

Example 2.4.2 the mixed Nash equilibrium would be (P ∗
A, P

∗
B), where

P ∗
A = P ∗

B = (1/3, 1/3, 1/3).

Definition 2.4.14. (Fitness). Given a population of competing individuals of type Ii,

where a type corresponds to a mixed strategy, in a population of composition Q,

Q = (p1I1, p2I2, . . . pnIn) (2.16)

where pi is the frequency of Ii, pi ≥ 0 for all i and

n∑
i=1

pi = 1, (2.17)

then the fitness of type Ii is

W (Ii, Q) =
n∑
j=1

xjEIi(Ii, Ij). (2.18)

Definition 2.4.15. (Evolutionarily Stable). A population consisting of P-types, individuals

using strategy p, will be evolutionarily stable if, whenever a population of L-types, using

strategy l is introduced, the P-types have higher fitness than the L-types. This means that

for all P ̸= L,

W (L,Q) < W (P,Q). (2.19)
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A mixed strategy p is said to be evolutionarily stable if, whenever all members of the

population use it, no other mixed strategies l, when introduced, can survive. This means

that proportion of those using l will eventually drop to zero until those using p take up the

entire population.

The replicator equation is a differential equation that allows for a fitness function to be

considered in the distribution of mixed strategies. Instead of fixing a certain proportion of

the population to a given strategy, it allows for players to replicate and switch to different

strategies. Traditionally the replicator equation is written as,

ẋi = xi[fi(x)− ϕ(x)], (2.20)

where xi is the proportion of the population using strategy i, x = (x1, · · · , xn) is the vector

of strategies being used by the population, fi is the fitness of the strategy i users and ϕ(x)

is average population fitness and can be written,

ϕ(x) =
n∑
j=1

xjfj(x). (2.21)

Example 2.4.16. Consider two types of players, A and B, using mixed strategies PA and

PB. Also assume that across the entire population, 0 ≤ k ≤ 1 is the proportion of the

population in A and (1− k) is the proportion of B. Finally assume that W (A,Q) = wa and

W (B,Q) = wb. Then,

x = (k, 1− k), (2.22)

ϕ(x) = k(wa) + (1− k)(wb) = kwa + wb − kwb. (2.23)

Then the replicator equations take on the following forms:

ẋ1 = k[wa − (kwa + wb − kwb)] = k(1− k)(wa + wb),

ẋ2 = (1− k)[wb − (kwa + wb − kwb)] = −k(1− k)(wa + wb).

Observe that, ẋ1 = −ẋ2. When dealing with two group populations this will always be the

case because of symmetry. See Figures 2.4 and 2.5 for simulations of the replicator

equation over a span of 200 days.
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Figure 2.4: Here we have k = 0.1, wa = 1/3 and wb = 0.3146. Since wa > wb we can see that

the population starts to migrate to x1, but as more people join x1 the rate at which people

are joining slows down. After 200 days, x1 has yet to take over the entire population.
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Figure 2.5: Here we have k = 0.9, wa = 0.1 and wb = 0.9. This time wb > wa, however

the difference in wa and wb is much more significant than the previous graph. As such the

population is shifting to x2 at a faster rate. At day 10 the entire population is x2.
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2.5 Mathematical Epidemiology

This section is adapted from Brauer [9]. In mathematically modeling an infectious

disease, a popular approach is to split the population into different compartments. A

standard epidemic model is the SEIRS model,

Susceptible → Exposed → Infected → Recovered → Susceptible,

given by the following ODEs:

Ṡ = µ(S + E + I +R)− βSI + ζR− µS (2.24)

Ė = βSI − σE − µE

İ = σE − γI − µI

Ṙ = γI − ζR− µR

where the state variables S,E, I, R correspond to the proportion of the population who are

susceptible, exposed, infected and recovered. There are also parameters β, σ, γ, ζ and µ,

where β is the average rate of contacts sufficient for infection, σ is the mean incubation

rate, γ is the mean infectious rate, ζ is the mean waning immunity rate and µ is the

natural death and birth rate. We assume that the birth and death rates are equal to allow

for a constant population, as such µ(S + E + I +R) is added back into the susceptible

compartment. Each state variable translates to a proportion of the population where,

S(t) + E(t) + I(t) +R(t) = 1.

If we want to see an exact population value, instead of a proportion, we can multiply each

equation by our total population N . Keeping the state values as a proportion also helps

simplify the susceptible compartment into

Ṡ = µ− βSI + ζR− µS.

Example 2.5.1. The details that make up the standard SEIRS model can be made clearer

with examples with parameter values in whatever units are chosen. For instance, ζ
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represents the reciprocal of the average amount of time it takes for individuals to lose

immunity. This means that recovered individuals leave the recovered class at a rate of ζ per

unit time. If we want to look at SEIRS in terms of days, and want the waning natural

immunity period to be 30 days, then

30 =
1

ζ
=⇒ ζ =

1

30
≈ 0.033.

Let us say that we want to keep the units in days. We will say that we want there to be two

sufficient contacts for infection a day, a five day incubation period, an eight day infectious

period, a waning immunity period of 30 days and an average lifespan of 80 years. This will

give us

β = 2

σ = 1/5 = 0.2

γ = 1/8 = 0.125

ζ = 1/30 ≈ 0.033

µ = 1/(80(365)) = 1/29200.

Once we plug these into our model we will have that

Ṡ = 1/29200− 2SI + 0.033R− (1/29200)S

Ė = 2SI − 0.2E − (1/29200)E

İ = 0.2E − 0.125I − (1/29200)I

Ṙ = 0.125I − 0.033R− (1/29200)R.

These sorts of ODE models can be impossible to solve analytically. In order to solve them

we must solve them numerically, by simulating them, and analyze them qualitatively. If we

assume that 90% is susceptible and 10% is exposed at the start of modeling we will have a

model
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Figure 2.6: Simulation of the SEIR model.

As we can see in Figure 2.6, the susceptible population drops quickly with a high value

of β and becomes exposed and infected. However the sick population starts to lower and due

to such a long immunity period cannot return to the peak. After the SEIR model has been

simulated, we can use the information to create other graphs to get a glimpse of different

helpful information. For example below in Figure 2.7, is a bar graph of the daily change of

the infected category.
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Figure 2.7: Net change of the infected population in population percentage per day.

As we can see the new daily infections spike in the first seven days, but after that they

start losing individuals faster than they can get more.

In a system of ODEs, equilibria are very important in figuring out behavior of solutions.

In mathematical epidemiology, two equilibria that are of interest are the endemic

equilibrium and the disease free equilibrium. The endemic equilibrium is when a disease is

always present in the population, or when E(t) > 0 or I(t) > 0 for all t. In order to find the

endemic equilibrium for SEIRS we must first set all ODE’s equal to zero and then solve for

S,E,I and R. First we set all equations equal to zero and assume all parameters are nonzero:

0 = µ− βSI + ζR− µS (2.25)

0 = βSI − σE − µE (2.26)

0 = σE − γI − µI (2.27)

0 = γI − ζR− µR. (2.28)

From equation (2.27) we can solve for E in terms of I:

E =
γ + µ

σ
I, (2.29)
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and from equation (2.28) we solve I in terms of R:

I =
ζ + µ

γ
R. (2.30)

If we take equation (2.26) and substitute equation (2.29) for E we have that

0 = βSI − (σ + µ)(γ + µ)

σ
I = I(βS − (σ + µ)(γ + µ)

σ
).

If we were to choose for I = 0 we would find the DFE, so we will assume I ̸= 0 such that

0 = βS − (σ + µ)(γ + µ)

σ
=⇒ S =

(σ + µ)(γ + µ)

σ
. (2.31)

From here we substitute equation (2.31) into equation (2.25) for S:

0 = µ− (σ + µ)(γ + µ)

σ
βI + ζR− µ

(σ + µ)(γ + µ)

σ

=⇒ R =
µσ2γβ − µσγ(σ + µ)(γ + µ)

σβ(ζ + µ)(σ + µ)(γ + µ)− ζσ2γβ
. (2.32)

Now we can substitute equation (2.32) into equation (2.30) for R to get

I =
µσ2γβ(ζ + µ)− µσγ(σ + µ)(γ + µ)(ζ + µ)

σβγ(ζ + µ)(σ + µ)(γ + µ)− ζσ2γ2β
. (2.33)

Then we can substitute equation (2.33) into equation (2.29) for I to get

E =
µσ2γβ(ζ + µ)(γ + µ)− µσγ(σ + µ)(γ + µ)2(ζ + µ)

σ2βγ(ζ + µ)(σ + µ)(γ + µ)− ζσ3γ2β
.

Therefore we have that the endemic equilibrium is

x∗(S∗, E∗, I∗, R∗) = (S∗, E∗, I∗, R∗) =



S∗

E∗

I∗

R∗


=



(σ+µ)(γ+µ)
σ

µσ2γβ(ζ+µ)(γ+µ)−µσγ(σ+µ)(γ+µ)2(ζ+µ)
σ2βγ(ζ+µ)(σ+µ)(γ+µ)−ζσ3γ2β

µσ2γβ(ζ+µ)−µσγ(σ+µ)(γ+µ)(ζ+µ)
σβγ(ζ+µ)(σ+µ)(γ+µ)−ζσ2γ2β

µσ2γβ−µσγ(σ+µ)(γ+µ)
σβ(ζ+µ)(σ+µ)(γ+µ)−ζσ2γβ


.

The disease free equilibrium (DFE) is exactly as it sounds, when there is no disease, as

such we set any infective compartments equal to zero. In the case of SEIRS, we would set

E = I = 0 and see where the rest of the population settles. Anyone in the susceptible
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category would stay susceptible since there is no infective population to infect them, while

anybody in the recovered category will eventually flow back into the susceptible category.

This makes the DFE x∗ = (S∗, E∗, I∗, R∗) = (1, 0, 0, 0). More formally, we assume that

I = 0. Then we can plug I into equation (2.29):

E =
γ + µ

σ
(0) = 0.

We can also plug I into equation (2.30):

0 =
ζ + µ

γ
R =⇒ 0 = R.

Now we can plug R = I = E = 0 into equation (2.25):

0 = µ− βS(0) + ζ(0)− µS = µ− µS = µ(1− S).

Since µ ̸= 0, S = 1. Therefore the DFE is

x∗ = (S∗, E∗, I∗, R∗) = (1, 0, 0, 0).

Now that the idea of an endemic and disease free equilibrium have been discussed, one

might wonder if there is a way we can tell if our disease is going to move towards the

endemic equilibrium or the DFE. This brings us to the basic reproduction number.

Definition 2.5.2. (Basic Reproduction Number [9]). The basic reproduction number,

denoted R0, is the average number of secondary infections produced by one infected

individual, during their infectious period, when introduced to a wholly susceptible

population.

The basic reproduction number can be calculated from the eigenvalue of special

matrices associated with an epidemic model. Importantly, R0 specifically determines when

the DFE is going to be attractive and stable, or when it will be unstable. More specifically,

if R0 < 1 then the disease will die out (and the DFE is asymptotically stable) and if

R0 > 1 then there will be an epidemic (and the DFE is unstable).
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With variations of the epidemic model, R0 can take on many different forms. In order

to find R0 we will follow along with the process seen in van den Driessche and Watmough

[39]. Looking at the SEIRS model in equation (2.24), in order to solve for R0 we must first

reorder our epidemic model such that the infected terms come first, this changes the model

to

Ė = βSI − σE − µE

İ = σE − γI − µI

Ṡ = µ− βSI + ζR− µS

Ṙ = γI − ζR− µR.

Now we must find vectors F , V+ and V−, where F denotes the rates of new infections, V+

denotes the rate of transfer into the corresponding compartment and V− denotes the rate

of transfer out of the corresponding compartment. Both V+ and V− ignore any terms used

in F . For the above, we have that

F =



βSI

0

0

0


,V+ =



0

σE

µ+ ζR

γI


,V− =



(σ + µ)E

(γ + µ)I

µS

(ζ + µ)R


.

We also have that

V = V− − V+ =



(σ + µ)E

(γ + µ)I − σE

µS − µ− ζR

(ζ + µ)R− γI


.
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Now we must take the Jacobian of F and V at the disease free equilibrium,

x∗ = (E, I, S,R) = (0, 0, 1, 0). This gives us the Jacobians

JF(x∗) =



0 βS βI 0

0 0 0 0

0 0 0 0

0 0 0 0


=



0 β 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,JV(x∗) =



σ + µ 0 0 0

−σ γ + µ 0 0

0 0 µ −ζ

0 −γ 0 ζ + µ


.

To progress further we must find F , V and V −1 where F is the top left k × k matrix of F

and V is the top left k × k matrix of V . We determine k as the number of infected

compartments. For SEIRS, we have E and I as the infected terms so k = 2. Therefore,

F =

0 β

0 0

 , V =

σ + µ 0

−σ γ + µ

 , V −1 =
1

(σ + µ)(γ + µ)

γ + µ 0

σ σ + µ

 .
Now we can also find

FV −1 =

 βσ
(σ+µ)(γ+µ)

β
γ+µ

0 0

 .
The final step is to find R0 with the formula

R0 = ρ(FV −1)

where ρ(FV −1) denotes the spectral radius of a matrix FV −1, the max of the absolute

values of the eigenvalues. In our case since FV −1 is upper triangular we can see we have

only one nonzero eigenvalue and therefore

ρ(FV −1) = R0 =
βσ

(σ + µ)(γ + µ)
. (2.34)

45



0 10 20 30 40 50 60 70 80 90 100

t [Days]

0

0.2

0.4

0.6

0.8

1

S

R

0 10 20 30 40 50 60 70 80 90 100

t [Days]

0

0.2

0.4

0.6

0.8

1

E

I

Figure 2.8: R0 = 1.3617 with β = 0.5, σ = 0.5, γ = 0.35, µ = 0.01 and ζ = 0.5.
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Figure 2.9: R0 = 0.8036 with β = 0.5, σ = 0.5, γ = 0.6, µ = 0.01 and ζ = 0.5.

As we can see from figure 2.8, when R0 > 1 the infected compartments asymptote to

nonzero values while in figure 2.9 when R0 < 1, all compartments go to zero except for the

susceptible compartment which converges to one. We also note that sometimes when
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R0 > 1, the disease can still die out. The R0 only captures local behavior at the DFE and

can say that it has unstable behavior. An example of when the R0 > 1 but the disease still

dies out is when the average waning immunity is prolonged, and the virus spreads rapidly

with a short incubation and infectious period. In such a scenario, the virus can exhaust its

pool of susceptible individuals, eventually causing the number of infected cases to drop to

zero. As we have done in other sections, we will be doing a sensitivity analysis with the

basic SEIR model,

Ṡ = µ− βSI + ζR− µS =: f1(p,x)

Ė = βSI − σE − µE =: f2(p,x)

İ = σE − γI − µI =: f3(p,x)

Ṙ = γI − ζR− µR =: f4(p,x).

For this model we will assume the reference parameter is

p∗ = (β∗, σ∗, γ∗, ζ∗, S∗
0 , E

∗
0)

and we will assume µ, I0 and R0 are constant. We also will define

x = (S,E, I, R),

f = (f1, f2, f3, f4),

f0 = (f10 , f20 , f30 , f40),

where f0(p) = (S0, E0, 0, 0).
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Now we can calculate

Jpf(p,x) =



−SI 0 0 R 0 0

SI −E 0 0 0 0

0 E −I 0 0 0

0 0 I −R 0 0



Jxf(p,x) =



−βI − µ 0 −βS ζ

βI −σ − µ βS 0

0 σ −γ − µ 0

0 0 γ −ζ − µ



Jf0(p) =



0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


.

In this case,

Sx =



SS

SE

SI

SR


=



SβS SσS SγS SζS SS0
S SE0

S

SβE SσE SγE SζE SS0
E SE0

E

SβI SσI SγI SζI SS0
I SE0

I

SβR SσR SγR SζR SS0
R SE0

R


.

From here we plug these into the sensitivity system as

ṠS(t) =
[
−S∗I∗ 0 0 R∗ 0 0

]
+

[
−β∗I∗ − µ 0 −β∗S∗ ζ∗

]
Sx(t)

ṠE(t) =
[
S∗I∗ −E∗ 0 0 0 0

]
+

[
β∗I∗ −σ∗ − µ β∗S∗ 0

]
Sx(t)

ṠI(t) =
[
0 E∗ −I∗ 0 0 0

]
+

[
0 σ∗ −γ∗ − µ 0

]
Sx(t)

ṠR(t) =
[
0 0 I∗ −R∗ 0 0

]
+

[
0 0 γ∗ −ζ∗ − µ

]
Sx(t)
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where S∗, E∗, I∗ and R∗ represent the state variables using the reference parameters. We

also have initial conditions,

SS(0) =
[
0 0 0 0 1 0

]
SE(0) =

[
0 0 0 0 0 1

]
SI(0) =

[
0 0 0 0 0 0

]
SR(0) =

[
0 0 0 0 0 0

]
or, in component form, we first have SS,

ṠβS(t) = −S∗(t)I∗(t)− (β∗I∗(t) + µ)SβS(t) + (−β∗S∗(t))SβI (t) + ζ∗SβR(t), SβS(0) = 0,

ṠσS(t) = −(β∗I∗(t) + µ)SσS(t) + (−β∗S∗(t))SσI (t) + ζ∗SσR(t), SσS(0) = 0,

ṠγS(t) = −(β∗I∗(t) + µ)SγS(t) + (−β∗S∗(t))SγI (t) + ζ∗SγR(t), SγS(0) = 0,

ṠζS(t) = R∗(t)− (β∗I∗(t) + µ)SζS(t) + (−β∗S∗(t))SζI (t) + ζ∗SζR(t), SζS(0) = 0,

ṠS0
S (t) = −(β∗I∗(t) + µ)SS0

S (t) + (−β∗S∗(t))SS0
I (t) + ζ∗SS0

R (t), SS0
S (0) = 1,

ṠE0
S (t) = −(β∗I∗(t) + µ)SE0

S (t) + (−β∗S∗(t))SE0
I (t) + ζ∗SE0

R (t), SE0
S (0) = 0,

then, for SE,

ṠβE(t) = S∗(t)I∗(t) + β∗I∗(t)SβS − (σ∗ + µ)SβE + β∗S∗(t)SβI , SβE(0) = 0,

ṠσE(t) = −E∗(t) + β∗I∗(t)SσS − (σ∗ + µ)SσE + β∗S∗(t)SσI , SσE(0) = 0,

ṠγE(t) = β∗I∗(t)SγS − (σ∗ + µ)SγE + β∗S∗(t)SγI , SγE(0) = 0,

ṠζE(t) = β∗I∗(t)SζS − (σ∗ + µ)SζE + β∗S∗(t)SζI , SζE(0) = 0,

ṠS0
E (t) = β∗I∗(t)SS0

S − (σ∗ + µ)SS0
E + β∗S∗(t)SS0

I , SS0
E (0) = 0,

ṠS0
E (t) = β∗I∗(t)SI0S − (σ∗ + µ)SI0E + β∗S∗(t)SI0I , SI0E (0) = 1,
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and for SI ,

ṠβI (t) = σ∗SβE − (γ∗ + µ)SβI , SβI (0) = 0,

ṠσI (t) = E∗(t) + σ∗SσE − (γ∗ + µ)SσI , SσI (0) = 0,

ṠγI (t) = −I∗(t) + σ∗SγE − (γ∗ + µ)SγI , SγI (0) = 0,

ṠζI (t) = σ∗SζE − (γ∗ + µ)SζI , SζI (0) = 0,

ṠS0
I (t) = σ∗SS0

E − (γ∗ + µ)SS0
I , SS0

I (0) = 0,

ṠE0
I (t) = σ∗SE0

E − (γ∗ + µ)SE0
I , SE0

I (0) = 0,

and finally, for SR,

ṠβR(t) = γ∗SβI − (ζ∗ + µ)SβR, SβR(0) = 0,

ṠσR(t) = γ∗SσI − (ζ∗ + µ)SσR, SσR(0) = 0,

ṠγR(t) = I∗(t) + γ∗SγI − (ζ∗ + µ)SγR, SγR(0) = 0,

ṠζR(t) = −R∗(t) + γ∗SζI − (ζ∗ + µ)SζR, SζR(0) = 0,

ṠS0
R (t) = γ∗SS0

I − (ζ∗ + µ)SS0
R , SS0

R (0) = 0,

ṠE0
R (t) = γ∗SE0

I − (ζ∗ + µ)SE0
R , SE0

R (0) = 0,

In Figure 2.11, we can see that for all state variables, ζ exhibits the most dynamic

curves. This would mean that ζ acts as the most influential parameter and when perturbed

would cause the most change. After that we can see that γ would be the next most

influential overall.
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Figure 2.10: Numerical solutions of the state variables with p∗ = (β∗, σ∗, γ∗, ζ∗, S0, E0) =

(5, 0.25, 0.1, 0.01, 0.8, 0.2) and µ = 0.005.
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Figure 2.11: Numerical solutions of sensitivity functions with p∗ = (β∗, σ∗, γ∗, ζ∗, S0, E0) =

(5, 0.25, 0.1, 0.01, 0.8, 0.2) and µ = 0.005.
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CHAPTER 3

BE-SEIMR MODEL FORMULATION

3.1 Base Model

In our expansion of the SEIR model, we want to incorporate when there are

asymptomatic individuals and will be splitting the infected compartment into two groups:

symptomatic, IS and asymptomatic IA. With this split we can still keep track of the total

amount of infected individuals with IS + IA = I. We also need to introduce a new

parameter Ξ, where Ξ is the ratio of individuals who become asymptomatic. This changes

the basic SEIR model in equation (2.24) to

Ṡ = µ− βS[IS + IA] + ζR− µS

Ė = βS[IS + IA]− ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − µIS

İA = ΞσE − γIA − µIA

Ṙ = γ[IS + IA]− ζR− µR,

where all state variables sum to one. In real world scenarios involving asymptomatic

individuals, it is possible for these individuals to become aware of their infection. However,

in our expanded SEIR model, we will make the assumption that asymptomatic individuals

remain entirely unaware of their disease until they transition into the recovered

compartment. In the SEIR model, we account for natural death, but we do not consider

death induced by the disease. To address this, we will introduce a new parameter δ to

account for disease induced mortality. Since asymptomatic individuals do not exhibit

symptoms, we will assume that they do not experience an increased mortality rate while
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sick. To balance the birth and death rates, we introduce the term Λ, defined as follows:

Λ = µ+ δIS.

With this modification, the susceptible and symptomatic infected compartments will be

updated as follows:

Ṡ = Λ − βS[IS + IA] + ζR− µS,

İS = (1− Ξ)σE − γIS − µIS − δIS .

These adjustments allow us to account for disease induced mortality and maintain a

balance between birth and death rates in the expanded SEIR model. In order to simulate

this model we will be looking at the following parameter values pulled from Acuña-Zegarra

et al. [1]:

Symbol Meaning Value

βn Average Contacts Sufficient for Infection 0.363282

σ Average Exposed Period 0.196078

γ Average Infected Period 0.167504

ζ Average Waning Immunity Period 0.00273973

Ξ Ratio of Asymptomatic Individuals 0.8787

µ Natural Death and Birth Rate 0.0000391389

δ Disease Death Rate 0.01017576

Table 3.1: Parameter values for Covid-19 from Acuña-Zegarra et al. [1].

For a comparison of the model with the present one, see Appendix C. A simulation of

the revised model is given in Figure 3.1. We can see that the disease quickly spreads, but

dies out over time due to the long immunity period.
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Figure 3.1: Here we used the parameters listed in the table above pulled from Acuña-Zegarra.

3.2 Adding a Behavioral Component

When faced with a highly severe or deadly disease, people often adapt their daily

routines to protect themselves. Some individuals choose to wear masks, limit public

outings, or engage in various disease avoidance practices. To account for these different

choices, we will introduce two distinct groups, based on people’s behavior: those with

normal behavior denoted as bn, and those with altered behavior denoted as ba. We assume

that individuals in the altered behavior group, ba, are actively taking measures to reduce

their risk of getting sick. In light of these groups, we will divide the susceptible population,

S, into two subcompartments: Sn for individuals with normal behavior and Sa for those

with altered behavior. This division is governed by the choices individuals make either

following normal routines or adopting precautionary measures. The sum of these two

subcompartments equals the total susceptible population, as expressed by the equation:

Sn + Sa = S. (3.1)
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Considering that altered behavior aims to minimize the likelihood of infection, we assume

that individuals in the ba group experience a reduced infection rate. To account for this

difference, we define βa as the infection rate for individuals with altered behavior ba, and

βn as the infection rate for those with normal behavior, bn. It is important to note that βa

is less than βn, which is equal to the overall infection rate, β.

βa < βn = β.

By introducing these subcompartments and distinct infection rates, we can better model

the impact of people’s behavior on disease transmission in our SEIR model. We will also

introduce the state variable:

x(t) =
Sn(t)

Sn(t) + Sa(t)
,

where x(t) represents the ratio of individuals who are susceptible and behaving normally to

the total susceptible population at time t. This ratio will allow us to implement the

behavioral assumptions into the model before adding the ability for individuals to switch

between the two behavioral options, bn and ba. Now, our expanded SEIR model becomes:

Ṡ = Λ− S[βnx+ βa(1− x)](IS + IA) + ζR− µS

Ė = S[βnx+ βa(1− x)](IS + IA) − ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − µIS − δIs

İA = ΞσE − γIA − µIA

Ṙ = γ[IS + IA]− ζR− µR.

Here, we use x(t) to determine how the susceptible population is divided between Sn and

Sa compartments. By incorporating this behavioral ratio, x(t), into the model, we are able

to represent the initial distribution of susceptible individuals based on their chosen

behavior. We now consider the individuals who are asymptomatic and unaware of their

sickness. Despite being able to spread the virus, they do not realize their condition and

would also go through the process of choosing between bn and ba behavioral options. Even
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though the infection rates for asymptomatic individuals do not change, their choice to

adopt altered behavior (ba) allows them to actively reduce their chances of spreading the

virus. To account for this risk reduction, we introduce the parameter κ, which represents

the extent of the reduction in their ability to transmit the virus when choosing ba. By

considering the parameter κ, we acknowledge that individuals who opt for altered behavior

not only protect themselves but also contribute to limiting the spread of the virus to

others. Similarly to the susceptible group, we can split the asymptomatic infected group

into two subgroups: IAn and IAa . This allows us to represent the following relationship:

IAn + IAa = IA,

where IA denotes the total number of asymptomatic infected individuals. To capture the

proportion of asymptomatic individuals behaving normally, we introduce the variable y(t)

defined as:

y(t) =
IAn(t)

IAn(t) + IAa(t)
.

In the expanded SEIR model, the compartments for susceptible individuals, S, and

asymptomatic infected individuals, IA, are composed of individuals who are

indistinguishable from each other in the population, since individuals in IA are

asymptomatic. To address this, we assume that the initial ratios of susceptible individuals

with normal behavior, x(0), and asymptomatic individuals behaving normally, y(0), are

equal. This common ratio ensures that both groups start with the same proportion of

individuals choosing normal behavior at the beginning of the simulation. However, it is

also essential to allow for flexibility in the model. While we assume equal initial ratios by

default, we can still consider scenarios where x(0) ̸= y(0) if necessary. This flexibility

permits us to explore different initial conditions and observe how variations in the

behavioral choices of susceptible and asymptomatic individuals impact the disease

dynamics over time. These additional considerations can be readily incorporated into the
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model:

Ṡ = Λ− [βnSx+ βaS(1− x)] [IS + IAy + κIA(1− y)] + ζR− µS

Ė = [βnSx+ βaS(1− x)] [IS + IAy + κIA(1− y)] − ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − µIS − δIs

İA = ΞσE − γIA − µIA

Ṙ = γ[IS + IA]− ζR− µR.

This lays the foundation for further exploration of individuals switching between normal

and altered behaviors, enriching the model with more dynamic scenarios. With the splits

for those choosing bn and ba in place, we can move forward with building the replicator

equations. Specifically, we will focus on the susceptible population and consider how

individuals choose their behavior with respect to infection rates. Following along with

Definition 2.4.16, we can build the replicator equation:

x1 = x

x2 = 1− x

f1 = −βnIS

f2 = −βaIS

giving us

ẋ = x[−βnIS − (−xβnIS − (1− x)βaIS)]

= −xβnIS − x(−xβnIS − (1− x)βaIS)

= −xβnIS + x2βnIS + x(1− x)βaIS

= −x(1− x)βnIS + x(1− x)βaIS

= x(1− x)(−βn + βa)IS,

where we only look at IS since the population cannot recognize asymptomatic individuals

as infected. With this version of the replicator equation, all individuals would naturally
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move towards choosing Sa since βa < βn. However, we need to provide a reason for

individuals to consider choosing bn instead. To achieve this, we introduce several

parameters:

• k: This parameter represents the cost of choosing ba, often associated with social

costs. These costs could involve reduced interaction with loved ones, travel

restrictions, and more.

• mn: The perceived risk of developing symptoms for individuals choosing bn.

• ma: The perceived risk of developing symptoms for individuals choosing ba.

We choose mn and ma in such a way that the perceived risk of developing symptoms is

greater for those choosing bn than for those choosing ba, i.e.,

ma < mn.

With these values in place, we can determine the payoff values for choosing bn and ba as

follows:

pn(t) = −mnIS(t),

pa(t) = −k −maIS(t).

These equations give us the payoffs associated with opting for bn and ba at time t,

respectively. Furthermore, we can express the difference in payoffs as:

∆P (t) = pn(t)− pa(t)

= −mnIS(t)− [−k −maIS(t)]

= −mnIS(t) + k +maIS(t)

= k + (ma −mn)IS(t).

By examining ∆P (t), we can determine which option is more favorable at any given time t.

Specifically:
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• If ∆P (t) > 0, then bn is the more favorable option.

• If ∆P (t) < 0, then ba is the more favorable option.

• If ∆P (t) = 0, then neither option is better than the other in terms of payoff.

Therefore, these values can fluctuate and after an individual chooses an initial strategy,

they may want to swap after seeing theirs is no longer superior. Under real world

circumstances, an individual can choose day by day, or week by week, whether or not they

want to partake in protective measures, however when they have made a decision for the

day, or week, we will be assuming they are stuck with their choice until the next day, or

week. In order to incorporate this, we introduce new parameters τ and α. We define τ as

the time unit of behavioral change, representing specific points in time when individuals

can alter their behavior and α serves as the converting constant between regular time, t,

and the behavioral change time unit with the following relationship:

α > 0,

t = ατ.

By introducing τ and α, we can focus our attention on the payoff values at specific time

points of behavioral change. Consequently, we narrow our lens to examine the payoff values

of the form:

pn(τ) = −mnIS(τ),

pa(τ) = −k −maIS(τ).

These equations provide us with the payoffs associated with choosing bn and ba at

particular moments of behavioral change, allowing us to analyze the influence of the

perceived risks of developing symptoms, mn and ma, and the cost of choosing ba, k, on the

decision-making process during these specific time intervals. With these in place we can
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add a second part to the replicator equation with

x1 =
Sn

Sn + Sa
= x(τ),

x2 =
Sa

Sn + Sa
= 1− Sn

Sn + Sa
= 1− x(τ),

f1 = −mnIS(τ),

f2 = −k −maIS(τ).

This results in the replicator equation:

dx

dτ
(τ) = x(τ)[−mnIS(τ)− [x(τ)(−mnIS(τ)) + (1− x(τ))(−k −maIS(τ))]]

= −mnx(τ)IS(τ)− x(τ)[x(τ)(−mnIS(τ)) + (1− x(τ))(−k −maIS(τ))]

= −mnx(τ)IS(τ) +mnx(τ)
2IS(τ)− x(τ)(1− x(τ))(−k −maIS(τ))

= x(τ)[−mnIS(τ) + x(τ)mnIS(τ)]− x(τ)(1− x(τ))(−k −maIS(τ))

= x(τ)(1− x(τ))(−mnI(τ))− x(τ)(1− x(τ))(−k −maIS(τ))

= x(τ)(1− x(τ))[−mnI(τ)− (−k −maIS(τ))]

= x(τ)(1− x(τ))[∆P (τ)]

= x(τ)(1− x(τ))[k + (ma −mn)IS(τ)].

We can change the time scale from τ to t by dividing by α and introducing the

proportionality constant ρ, since dx
dt

= dx
dτ

dτ
dt

= dx
dτ

1
α

to get

dx

dt
(t) =

ρ

α
x(t)(1− x(t))[k + (ma −mn)IS(t)].

This gives the replicator equation of

ẋ = x(1− x)(−βn + βa)IS +
ρ

α
x(1− x)[k + (ma −mn)IS].

Since asymptomatic individuals have the same choice and can actively change back and

forth, we can follow the exact same process but replacing x with y to get

ẏ = y(1− y)(−βn + βa)IS +
ρ

α
y(1− y)[k + (ma −mn)IS].
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To address the fact that susceptible individuals can observe and copy the behavior of

asymptomatic individuals, and vice versa, we need to modify the replicator equations

accordingly. Instead of using the separate variables x and y, which represent the

proportions of individuals choosing normal behavior in the susceptible and asymptomatic

compartments, respectively, we will introduce a new variable, z, which represents the

proportion of individuals choosing normal behavior across both groups. Introducing this

variable will allow for individuals to emulate anyone they perceive to be susceptible, even if

they may be an asymptomatic imposter. Therefore

z(t) =
Sn(t) + IAn(t)

Sn(t) + Sa(t) + IAn(t) + IAa(t)

=
Sn(t) + IAn(t)

S(t) + IA(t)

=
x(t)S(t) + y(t)IA(t)

S(t) + IA(t)
.

The modified replicator equations become:

ẋ = z(1− z)(−βn + βa)IS +
ρ

α
z(1− z)[k + (ma −mn)IS],

ẏ = z(1− z)(−βn + βa)IS +
ρ

α
z(1− z)[k + (ma −mn)IS].

The similarity of these two equations is justified because, although we categorize

individuals into two distinct groups, they perceive themselves as one collective. The

transition from bn to ba, and vice versa, remains the same for both groups, reflecting their

interconnectedness and shared decision-making process. Therefore, treating them with

identical equations appropriately captures their unified behavior despite being recorded as

separate subgroups. There is an important issue that requires addressing: when the

variables x and y do not match up, specifically when x0 ̸= y0, the elimination conditions,

z(1− z), no longer hold. In normal circumstances, if either bn or ba comprises the entire

population, it should be impossible to switch back, leading to ẋ = ẏ = 0. This condition

arises because the model is based on imitation dynamics, and if there is nobody to imitate,

switching should not be allowed. However, we still want to account for the possibility of

61



switching if semi-dominance occurs. We define semi-dominance when either the entire

susceptible population or the entire asymptomatic population has chosen a single behavior.

In the semi-dominance situation in which all asymptomatic individuals are behaving in an

altered manner, some may choose to imitate susceptible individuals who are behaving

normally, thus causing them to switch and removing the semi-dominance. In order to

address this scenario in the model, we need to introduce some additional restraints. These

restraints will be added to the susceptible equation and will take the form of

Ṡ = Λ−[βnSmid(0, x, 1)+βaSmid(0, (1−x), 1)][Is+IAmid(0, y, 1)+κIAmid(0, (1−y), 1)]+ζR−µS.

We have chosen to incorporate the mid function to ensure that the populations, when

input into the model, remain within biologically and realistically plausible ranges. While

adjusting ẋ and ẏ to simulate indistinguishable groups, a potential issue has become

apparent. If x0 ̸= y0 and a semi-dominance situation occurs, there is a possibility that the

replicator equation may generate unrealistic values, representing a population either

exceeding one hundred percent or falling below zero percent. An illustrative example of

such a scenario is when x0 = 1 and y0 = 0.5, and the strategy with higher fitness is to act

normally. In this case, our asymptomatic population, y, converges to one due to the

strategy with higher fitness favoring normal behavior. Ideally, we would want our

asymptomatic population to mimic the susceptible population, promoting a shift towards

normal behavior. However, as ẋ = ẏ, when y increases and approaches one, x also

increases. Given that x0 = 1, this would cause x to exceed one, resulting in a population

greater than one hundred percent. To address this potential flaw, when incorporating x

and y back into Ṡ, we use the mid function to constrain the values between zero and one.

For the remainder of the thesis, we will set x0 = y0 which avoids this issue. However, to

maintain flexibility in the model, we still allow for the possibility of x0 ̸= y0.

Since the infection term is quite long and muddles the equation let,

Ψ(S, IS, IA, x, y) = [βnSmid(0, x, 1)+βaSmid(0, (1−x), 1)][Is+IAmid(0, y, 1)+κIAmid(0, (1−y), 1)],
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making our model into

Ṡ = Λ− Ψ + ζR− µS

Ė = Ψ − ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − µIS − δIS

İA = ΞσE − γIA − µIA

Ṙ = γ[IS + IA]− ζR− µR

ẋ = z(1− z)(−βn + βa)IS +
ρ

α
z(1− z)[k + (ma −mn)IS]

ẏ = z(1− z)(−βn + βa)IS +
ρ

α
z(1− z)[k + (ma −mn)IS] .

By introducing the replicator equation, we have enabled susceptible and asymptomatic

infected individuals to make decisions that may help protect them from the virus. Now, let

us incorporate the ability for infected symptomatic individuals to make a choice as well.

Specifically, they can decide whether they want to quarantine or not. To do this, we will

introduce a new state variable and a new parameter. Let IQ represent the number of

individuals who are quarantined, and let ϕ be the percentage of individuals who have the

option to quarantine and choose to do so. Including these additions into the model will

allow us to track the population of individuals who voluntarily decide to quarantine

themselves, contributing to disease containment efforts. Since the individuals who choose

to quarantine will not be able to transmit the virus to others, they will not be part of the

infection term, Ψ. However, since they are still symptomatic and still perceivable by the

population, they should be considered in the replicator equation. This consideration leads

us to introduce a new variable, Υ, which represents the total population of symptomatic

individuals and is defined as follows:

Υ = IS + IQ.
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Since individuals in quarantine are symptomatic, they will also have a disease induced

death rate, δ, changing Λ to

Λ = µ+ δ(IS + IQ).

This changes our expanded SEIR model to

Ṡ = Λ−Ψ+ ζR− µS (3.2)

Ė = Ψ− ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − ϕIS − γIS − µIS − δIS

İA = ΞσE − γIA − µIA

İQ = ϕIS − γIQ − µIQ − δIQ

Ṙ = γ[IS + IA + IQ] − ζR− µR

ẋ = z(1− z)(−βn + βa) Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ]

ẏ = z(1− z)(−βn + βa) Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ].

To simulate this base model with behavioral components, we pull the parameter values

used in the previous subsection and introduce the parameters utilized for the game theory

and quarantine compartments. We can see the values and their sources in the table below:

Symbol Source

βa = βn(0.631) = 0.19397 Wang et al. [44]

κ = 0.631 Wang et al. [44]

ϕ = 0.262 Guillon and Kergall [19]

x(0) = y(0) = 0.43 Rab et al. [36]

Table 3.2: Behavior parameter values for Covid-19.

We will also be looking at the parameters α, mn, ma and k, but since they are unknown

values corresponding to the sentiment of individuals at different times of the disease we will

provide a few simulations with different scenarios.
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(a) Simulation of the state variables.

0 50 100 150 200

t = [Days]

0

500

1000

1500

2000

2500

3000

D
e

a
th

s

(b) Daily death toll.

Figure 3.2: Simulations of the model in equation (3.2) with parameters listed in the tables

above and α = 7 to signify a week before behavioral changes can occur, and mn = 0.8, ma =

0.3 and k = 0.7. For the death toll graph we assume an initial population of N = 26446435

[1].

It is important to provide an interpretation of mn, ma, and k, which represent the

behavioral effects on a scale. For example, when we specify k = 0.7, it signifies a social cost

of seven out of ten. In this context, a value of seven suggests a relatively significant social

cost, but it still allows for the possibility of a more severe scenario.
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(a) Simulation of the state variables.
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Figure 3.3: Simulation of the model in equation (3.2) with the same parameters as previously

in Figure 3.2a except with k = 0.1.

As illustrated, the population’s perception of the social cost associated with a virus can

exert a profound influence on the death toll. In Figure 3.2b, we observe a sharp spike in

daily deaths, peaking at around 2500, and summing to 159530 when the social cost is

perceived as a seven. However, in Figure 3.3b, the peak is significantly lower, reaching only

1100, and summing to 131920 when the social cost is perceived as a one out of ten. This

stark contrast underscores the remarkable impact that a shift in social perception can have

on outcomes. Notably, in the first simulation, more than half of the individuals who

succumbed to the virus might have survived solely through a shift in societal perception.

So far we have looked at game theory values, in which the population moves towards

normal behavior, next we will look at a scenario in which they move towards altered.
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Figure 3.4: Simulation of the model in equation (3.2) with the same parameters as previously

in Figure 3.2a except mn = 0.9, ma = 0.2 and k = 0.001.

In Figure 3.4a we make the assumption that a person exhibiting normal behavior has

immense perceived risk, someone using altered behavior is at low perceived risk and the

social cost of altered behavior is incredibly small. Once again we have a decrease in peak

daily death toll compared to Figures 3.2b and 3.3b. In Figure 3.4b we have a peak death

toll of only 500 with total deaths at 67691. We can also see in Figure 3.4a that the overall

infected population drops to a quarter of that in Figure 3.2a from individuals choosing to

participate in disease avoidance strategies.

3.3 Adding Medical Intervention Component

In addition to the choices individuals can make regarding avoidance practices, we want

to introduce medical intervention into the model. To account for this, we will add a new

state variable, IH , representing the population of individuals who require hospitalization.

We will also introduce a few more parameters to capture the relevant dynamics. First, we

introduce η as the ratio of individuals who become sick enough to require hospitalization.

It is essential to note that while we refer to this compartment as "hospitalized," it
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essentially represents a level of sickness that demands medical assistance. Next, we define

δh as the death rate for individuals in the hospitalized compartment, where it is assumed

that δ ≤ δh to represent the higher risk of mortality for those who are hospitalized.

Additionally, we assume that individuals in the hospital will receive constant care and

recover at a fixed rate, denoted as r [45]. This constant recovery rate is only active as long

as there are hospitalized individuals. Therefore, we can represent the recovery rate for the

hospitalized population, denoted h(IH), as follows:

h(IH) = min(rIh, rHc) =


rIH for IH ≤ Hc

rHc for IH > Hc

where Hc is a maximal value representing the capacity of hospitals to handle patients. By

incorporating the new state variable IH and these additional parameters, we can account

for the dynamics of hospitalization, recovery, and potentially increased mortality in the

model. This extension allows us to analyze the effects of varying levels of sickness and the

impact of hospital capacity on disease progression within the SEIR model framework, and

results in

Ṡ = Λ−Ψ+ ζR− µS

Ė = Ψ− ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − ϕIS − ηIS − γIS − µIS − δIS

İA = ΞσE − γIA − µIA

İH = ηIS − h(IH)− µIH − δhIH

İQ = ϕIS − γIQ − µIQ − δIQ

Ṙ = γ[IS + IA + IQ] + h(IH) − ζR− µR

ẋ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ],

ẏ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ],
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where Υ = IS + IH + IQ and Λ = µ+ δ(IS + IQ) + δhIH . As we consider the dynamics of

the expanded SEIR model, it becomes evident that vaccination can play a crucial role in

disease control and mitigation. While we have introduced a hospitalization compartment to

account for the severity of sickness and medical assistance required, we must also explore

the impact of vaccination on disease dynamics. Vaccines have proven to be powerful tools

in reducing infection rates, minimizing mortality, and potentially leading to disease

eradication. Let us now shift our focus to the incorporation of a vaccination compartment

and explore how vaccination strategies can shape the trajectory of the disease within the

model. To account for the impact of vaccination in the expanded SEIR model, we need to

introduce a vaccination compartment and incorporate several new parameters. Considering

this, we will add a new state variable, SV , representing the population of individuals who

have been vaccinated. Incorporating vaccination dynamics requires the introduction of

additional parameters: the average rate at which the vaccine wears off, θ, and the infection

rate for those who have received the vaccine, βv. It’s important to note that βv should

satisfy the condition 0 < βv < βa < βn = β. Next, we define Ω(S) to represent the

vaccination rate, where the vaccination strategy is proportional to the number of

susceptible individuals, S, as long as S ≤ Sc, where Sc is a critical value based on

maximum vaccine resources, and ω is a rate of vaccination [43]. This results in

Ω(S) = min(ωS, ωSc) =


ωS if S ≤ Sc

ωSc if S > Sc

With vaccination considered, the infection term for vaccinated individuals becomes more

complex. To handle this, and to follow the scheme for the non-vaccinated group, we

introduce the variable ψ to represent this term concisely:

ψ = βvSv[IS + IAmid(0, y, 1) + κIAmid(0, (1− y), 1)].

By incorporating the vaccination compartment, along with these additional parameters and

equations, we can analyze the effects of vaccination on disease dynamics within the
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expanded SEIR model. This extension allows us to study the potential impact of

vaccination strategies, vaccine coverage, and the wear-off rate on disease transmission and

control. This will give us,

Ṡ = Λ−Ψ+ ζR− Ω(S) + θSv − µS (3.3)

ṠV = Ω(S)− θSv − ψ − µSV

Ė = Ψ+ ψ − ΞσE − (1− Ξ)σE + ψ − µE

İS = (1− Ξ)σE − γIS − ηIS − ϕIS − µIS − δIS

İA = ΞσE − γIA − µIA

İH = ηIS − h(IH)− µIH − δhIH

İQ = ϕIS − γIQ − µIQ − δIQ

Ṙ = γ(IS + IA + IQ) + h(IH)− ζR− µR

ẋ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ]

ẏ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ].

An important aspect of the vaccine that we need to account for is its ability to reduce the

disease induced death rate. To represent this impact, we will introduce a parameter δv,

such that 0 ≤ δv ≤ δ ≤ δh < 1. This parameter quantifies the effectiveness of the vaccine in

reducing mortality. To incorporate the vaccine’s effect on mortality, we need to introduce

new state variables: EV , IV , IQV , IHV , and D. These variables will represent the

population of individuals in different states related to vaccination and disease progression.

As a result of the new state variables, some of the previous equations will need adjustments:

Υ = IS + IH + IHV + IQ + IQV + IV ,

Ψ = [βnSmid(0, x, 1) + βaSmid(0, (1− x), 1)][IS + IAmid(0, y, 1)

+ κIAmid(0, (1− y), 1) + IV ],

ψ = βvSv[IS + IAmid(0, y, 1) + κIAmid(0, (1− y), 1) + IV ].
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Furthermore, we want the birth rate to be equal to the death rate to maintain a constant

population. Hence, we define Λ as:

Λ = µ[S + Sv + E + Ev + IS + IA + IQ + IQV + IH + IHV + IV +R]

+ δ[IS + IQ] + δh[IH + χIHV ] + δv[IV + IQV ],

where χ represents a reduction in the death rate for individuals sick enough to be

hospitalized who also have the vaccine, resulting in χδh < δh.

Remark 3.3.1. Before proceeding with the finalized model, we discuss an alternative

methodology for dealing with differing death rates as a result of vaccination. In the above

discussion, we described our chosen approach by splitting the exposed and infected terms

into two nearly identical groups with only state variable changes and a death rate

modification. However, we need to highlight an alternative option and explain why it was

not selected for this model. Below, we present two SVIR models, each utilizing a different

method:

Ṡ = Λ− βSI − ωS + θV + ζR− µS (3.4)

V̇ = −βvV I + ωS − θV − µV

İ = βSI + βvV I − γI − µI − δI(1− V )− δvIV

Ṙ = γI − ζR− µR

Ṡ = Λ− βSI − ωS + θV + ζR− µS (3.5)

V̇ = −βvV I + ωS − θV − µV

İS = βSI − γIS − µIS − δIS

İV = βvV I − γIV − µIV − δvIV

Ṙ = γIS + γIV − ζR− µR.

In both sets of equations, Λ represents all the death terms being added back into the system.

Additionally, in the second set of equations (3.5), we define I = IS + IV . As we can
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observe, the first set of equations (3.4) has one fewer state variable and handles differing

infection death rates by making them proportional to the vaccinated population. However,

the choice between the two options was influenced by the situation in which a vaccine is

introduced in theof an epidemic. We assume in the initial stages of an epidemic, there is no

vaccine available. When a vaccine is introduced, there will already be infected individuals

present. The concern with using (3.4) arises when vaccinations are allowed. The death rate

term δvIV is activated immediately, even though not enough time has passed for the newly

vaccinated group to be infected. This issue becomes even more apparent when exposed terms

are added to the model. Upon considering this issue with (3.5), we find that once an

individual is vaccinated, they must be infected and in state IV before the term δv is

activated. Therefore, it was decided that (3.5), with its capability to handle this particular

real-world scenario more accurately, was the option selected for this model.
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This will give us our finalized expanded SEIR model,

Ṡ = Λ−Ψ+ ζR− Ω(S) + θSv − µS

ṠV = Ω(S)− θSv − ψ − µSv

Ė = Ψ− ΞσE − (1− Ξ)σE − µE

ĖV = ψ − ΞσEV − (1− Ξ)σEV − µEV

İS = (1− Ξ)σE − γIS − ηIS − ϕIS − µIS − δIS

İV = (1− Ξ)σEV − γIV − ηIV − ϕIV − µIV − δvIV

İA = Ξσ[E + EV ]− γIA − µIA

İH = ηIS − h(IH)− µIH − δhIH

İHV = ηIV − h(IHV )− µIHV − χδhIHV

İQ = ϕIS − γIQ − µIQ − δIQ

İQV = ϕIV − γIQV − µIQV − δvIQV

Ṙ = γ(IS + IA + IQ + IQV + IV ) + h(IH) + h(IHV )− ζR− µR

Ḋ = Λ

ẋ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ]

ẏ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ]

(3.6)
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with secondary equations,

Ω(S) = min(ωS, ωSc) =


ωS if S ≤ Sc

ωSc if S > Sc

h(IH) = min(rIH , rHc) =


rIH for IH ≤ Hc

rHc for IH > Hc

z(t) =
x(t)S(t) + y(t)IA(t)

S(t) + IA(t)

Ψ = [βnSmid(0, x, 1) + βaSmid(0, (1− x), 1)]

× [Is + IAmid(0, y, 1) + κIAmid(0, (1− y), 1) + IV ]

ψ = βvSv[IS + IAmid(0, y, 1) + κIAmid(0, (1− y), 1) + IV ].

Λ = µ[S + Sv + E + EV + IS + IV + IA + IQ + IQV + IH + IHV +R]

+ δ[IS + IQ] + δh[IH + χIHV ] + δv[IV + IQV ]

Υ = IS + IV + IH + IHV + IQ + IQV .
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Figure 3.5: Flow Diagram of Be-SEIMR

We will call the expanded SEIR model, the Be-SEIMR model. Where Be stands for

behavioral and M stands for medical intervention. In order to simulate the Be-SEIMR

model, we will split the simulations into two parts. First we only introduce the

hospitalization category, zeroing out any vaccination parameters, resulting in the following

table of parameters:
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Symbol Source

η = .00049 CDC [15]

r = γ = 0.167504

Hc = 0.00152 Block et al.[6]

δh = .2 Dorjee et al. [12]

Table 3.3: Hospitalization parameter values for Covid-19.
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(a) Be-SEIMR model simulations.

0 50 100 150 200

t = [Days]

0

500

1000

1500

2000

2500

3000

D
e
a
th

s

(b) Daily death toll with N = 26446435

Figure 3.6: Be-SEIMR simulations with mn = 0.8, ma = 0.3 and k = 0.7.
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Figure 3.7: Be-SEIMR simulations with mn = 0.9, ma = 0.2 and k = 0.001.
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Finally we introduce vaccination into the model. We have the following parameters and

their sources:

Symbol Source

βv = βn(1− .635) = 0.13259793 Braeye et al.[8]

θ = (1
6
)( 1

31
) = 0.0053763 CDC [15]

ω = 1698
331900000

= 0.000005116 CDC [15]

Sc =
2470

331900000
= 0.00007442 CDC [15]

χ = 1− 0.896 = 0.104 CDC [15]

δv = χ(δh) = 0.0208 CDC [15]

Table 3.4: Vaccination parameter values for Covid-19.
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Figure 3.8: Be-SEIMR model simulations with mn = 0.8, ma = 0.3 and k = 0.7.
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Figure 3.9: Be-SEIMR model simulations with mn = 0.9, ma = 0.2 and k = 0.001.
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CHAPTER 4

ANALYSIS OF THE BE-SEIMR MODEL

4.1 Stability Analysis: Calculation of the Basic Reproduction Number

Here we will focus on determining the basic reproduction number for the Be-SEIMR

model. A complication arises in determining the DFE for this model. Differing from the

SEIR model and the other intermediate models found in the appendix, in this case, even

when all infected compartments are set to zero, there remains the potential for individuals

to transition between compartments S and SV . The specific compartments in focus,

following the removal of all infected compartments, are as follows:

Ṡ = Λ− Ω(S) + θSV − µS

ṠV = Ω(S)− θSV − µSV

Ω(S) = min(ωS, ωSc)

Λ = µ(S + SV ).

In order to find when these equations are in equilibrium, we need to find S, SV such that

Ω(S)− (θ + µ)SV = 0

Λ− Ω(S) + θSV − µS = 0.

Since our total population is constant we can assume S + SV = 1 and therefore we only

have to solve when Ω(S)− (θ + µ)SV = 0 and then solve for S or SV using the simpler

equation S + SV = 1. We substitute SV = 1− S to give us the equation

Ω(S)− (θ + µ)(1− S) = 0 ⇒ Ω(S) + (θ + µ)S = µ+ θ.
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Given the piecewise nature of Ω(S), we initially consider the scenario where S ≤ Sc. In this

context, we proceed to solve the equation for S, yielding:

ωS + (θ + µ)S = µ+ θ ⇒ (ω + θ + µ)S = µ+ θ ⇒ S =
µ+ θ

ω + θ + µ

and therefore

1− S = SV =
ω

ω + θ + µ
.

So when µ+θ
ω+θ+µ

= S ≤ Sc we have a DFE of

x∗l = (E,Ev, IS, IV , IA, IH , IHV , IQ, IQV , S, SV , R, x, y)

=

(
0, 0, 0, 0, 0, 0, 0, 0, 0,

µ+ θ

ω + θ + µ
,

ω

ω + θ + µ
, 0, 1, 1

)
.

Subsequently, let us proceed to the second case, where S > Sc. In this situation, Ω(S)

takes on the value ωSc. With this understanding, we can now proceed to solve the equation

for V as follows:

ωSc − (θ + µ)SV = 0 ⇒ −(θ + µ)SV = −ωSc ⇒ SV =
ωSc
µ+ θ

and therefore

1− SV = S =
µ+ θ − ωSc

µ+ θ
.

Then our DFE for when µ+θ−ωSc

µ+θ
= S > Sc is

x∗g = (E,Ev, IS, IV , IA, IH , IHV , IQ, IQV , S, SV , R, x, y)

=

(
0, 0, 0, 0, 0, 0, 0, 0, 0,

µ+ θ − ωSc
µ+ θ

,
ωSc
µ+ θ

, 0, 1, 1

)
.

Before advancing further in the process of determining R0, it is crucial to establish that

these two cases are mutually exclusive and collectively exhaustive. In other words, there

should be no possibility of overlap between these cases, nor can they both be false

simultaneously. This ensures the consistency and validity of the subsequent analysis. We

need to show that the two equilibrium cases

µ+ θ

ω + θ + µ
= S ≤ Sc, (4.1)

µ+ θ − ωSc
µ+ θ

= S > Sc (4.2)
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are mutually exclusive. First we will look at equation (4.1). Since ω, θ ∈ R+ ∪ {0} and

µ ∈ R+,
µ+ θ

ω + θ + µ
≤ Sc ⇒ µ+ θ ≤ Sc(ω + θ + µ).

Now if we take a look at equation (4.2), we have that

µ+ θ − ωSc
µ+ θ

> Sc ⇒ µ+ θ − ωSc > Sc(µ+ θ) ⇒ µ+ θ > Sc(ω + θ + µ).

Hence, it can be concluded that equation (4.1) and equation (4.2) are mutually exclusive

and furthermore, at least one of these equations must always hold true. The DFEs

represented by x∗l and x∗g correspond to distinct real-world scenarios. The equilibrium x∗l is

relevant when the initial susceptible population S0 ≤ Sc. This circumstance arises when a

vaccine has been present in a population for an extended period. Notably, due to the

relationship 1− S0 = SV 0, this configuration implies a larger proportion of the population

has been vaccinated. Conversely, the equilibrium x∗g is relevant when a vaccine is relatively

new to a population or when vaccination has not been widespread. In the period

immediately preceding the vaccine’s release or during the introduction of the vaccine to a

new region, x∗g becomes the more plausible option to consider. This is due to the fact that

the majority of individuals would not have been vaccinated yet. On the other hand, x∗l

becomes more significant in a region that has remained unaffected by the virus, and where

preemptive vaccination has taken place. In such a scenario, allowing more time for people

to receive the vaccine results in a higher proportion of the population being vaccinated,

making x∗l the more realistic equilibrium. Ultimately, the distinction between x∗l and x∗g

allows for a nuanced understanding of various vaccination scenarios within the context of

diseases like Covid-19. With the equilibrium points established for each scenario, we can

now progress to calculate R0.

Before proceeding with the calculation of R0, it is imperative to acknowledge the

inherent nonsmooth characteristics of the Be-SEIMR model. In calculating R0 for a

compartmental epidemic model according to the methods by van den Driessche and
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Watmough [39], the equations governing all state variables are expected to be at least twice

continuous differentiable. In this context, the involvement of non-smooth mid and min

functions in the equations for S, SV , IH , IHV , and R renders them unsuitable for

straightforward analysis. However, the nonsmooth min functions appearing in the

vaccination and hospitalization compartments are locally smooth at the DFEs found above,

since the DFEs are away from the nonsmooth points of these functions, and so remain

smooth under perturbations from the DFEs, which is a requirement for a stability analysis.

On the other hand, the mid functions present within Ψ and ψ, which are associated with

the behavioral compartments, do experience nonsmoothness at the DFEs. Because of this,

we proceed by setting x = y = 1, so that ẋ = ẏ = 0 and x and y are constants, for the

remainder of this section, indicating that all individuals are opting for normal behavior.

This corresponds to considering the SEIMR submodel of the full Be-SEIMR model, with

game theory components from the model removed. In this scenario, the right-hand side

functions of the submodel are all locally smooth (at least twice continuously differentiable)

at the DFEs. Hence, we consider perturbations to all state variables except for x and y,

which will remain constant and we may use the theory from van den Driessche and

Watmough [39].

F =


Ψ
ψ
0
0
0
0
0
0
0
0

,V− =



(σ+µ)E
(σ+µ)EV

(γ+η+ϕ+µ+δ)IS
(γ++η+ϕ+µ+δv)IV

(γ+µ)IA
min(rIH ,rHc)+(µ+δh)IH

min(rIHV ,rHc)+(µ+χδh)IHV

(γ+µ+δ)IQ
(γ+µ+δv)IQV

min(ωS,ωSc)+µS
(θ+µ)SV

(ζ+µ)R


,V+ =



0
0

(1−Ξ)σE
(1−Ξ)σEV

Ξσ[E+EV ]
ηIS
ηIV
ϕIS
ϕIV

Λ+ζR+θSV

min(ωS,ωSc)
γ(IS+IA+IQ+IQV +IV )+min(rIH ,rHc)+min(rIHV ,rHc)


.
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This results in

V = V− − V+ =



(σ+µ)E
(σ+µ)EV

(γ+η+ϕ+µ+δ)IS−(1−Ξ)σE
(γ+η+ϕ+µ+δv)IV −(1−Ξ)σEV

(γ+µ)IA−Ξσ[E+EV ]
min(rIH ,rHc)+(µ+δh)IH−ηIS

min(rIHV ,rHc)+(µ+χδh)IHV −ηIV
(γ+µ+δ)IQ−ϕIS

(γ+µ+δv)IQV −ϕIV
min(ωS,ωSc)+µS−Λ−ζR−θSV

(θ+µ)SV −min(ωS,ωSc)
(ζ+µ)R−γ(IS+IA+IQ+IQV +IV )−min(rIH ,rHc)−min(rIHV ,rHc)


.

Upon obtaining these results, the subsequent step involves calculating the Jacobians,

evaluating them at the DFE, and subsequently deriving F and V . Since we are fixing

x = y = 1, ẋ and ẏ will be set to 0, thus keeping their values in equilibrium. Similar to

previous steps, our approach involves calculating the Jacobian matrices for both F and V .

JxF

=


0 0 βnS βnS βnS 01,9

0 0 βvSv βvSv βvSv 01,9

08,1 08,1 08,1 08,1 08,1 08,9


JxV

=



σ+µ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 σ+µ 0 0 0 0 0 0 0 0 0 0 0 0

−(1−Ξ)σ 0 γ+η+ϕ+µ+δ 0 0 0 0 0 0 0 0 0 0 0
0 −(1−Ξ)σ 0 γ+η+ϕ+µ+δv 0 0 0 0 0 0 0 0 0 0

−Ξσ −Ξσ 0 0 γ+µ 0 0 0 0 0 0 0 0 0
0 0 −η 0 0 µ+δh+r 0 0 0 0 0 0 0 0
0 0 0 −η 0 0 µ+χδh+r 0 0 0 0 0 0 0
0 0 −ϕ 0 0 0 0 γ+µ+δ 0 0 0 0 0 0
0 0 0 −ϕ 0 0 0 0 γ+µ+δv 0 0 0 0 0
−µ −µ −µ−δ −µ−δv −µ −µ−δh −µ−χδh −µ−δ −µ−δv ω −θ −ζ 0 0
0 0 0 0 0 0 0 0 0 −ω µ+θ 0 0 0
0 0 −γ −γ −γ −r −r −γ −γ 0 0 ζ+µ 0 0


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Then we can plug in both equilibrium and reduce the Jacobians down to the 9× 9 top left

corner to obtain:

F (x∗l ) =


0 0

βn(µ+θ)
ω+θ+µ

βn(µ+θ)
ω+θ+µ

βn(µ+θ)
ω+θ+µ

0 0 0 0

0 0 βvω
ω+θ+µ

βvω
ω+θ+µ

βvω
ω+θ+µ

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

, F (x∗g) =


0 0
βn(µ+θ−ωSc)

µ+θ
βn(µ+θ−ωSc)

µ+θ
βn(µ+θ−ωSc)

µ+θ
0 0 0 0

0 0 βvωSc
µ+θ

βvωSc
µ+θ

βvωSc
µ+θ

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


V (x∗l ) = V (x∗g)

=


σ+µ 0 0 0 0 0 0 0 0
0 σ+µ 0 0 0 0 0 0 0

−(1−Ξ)σ 0 γ+η+ϕ+µ+δ 0 0 0 0 0 0
0 −(1−Ξ)σ 0 γ+η+ϕ+µ+δv 0 0 0 0 0

−Ξσ −Ξσ 0 0 γ+µ 0 0 0 0
0 0 −η 0 0 µ+δh+r 0 0 0
0 0 0 −η 0 0 µ+χδh+r 0 0
0 0 −ϕ 0 0 0 0 γ+µ+δ 0
0 0 0 −ϕ 0 0 0 0 γ+µ+δv

.

Then we also can find V −1,

V −1(x∗l ) = V −1(x∗g) =



1
a

0 0 0 0 0 0 0 0

0 1
a

0 0 0 0 0 0 0
(1−Ξ)σ

ab
0 1

b
0 0 0 0 0 0

0
(1−Ξ)σ

ac
0 1

c
0 0 0 0 0

Ξσ
a(γ+µ)

Ξσ
a(γ+µ)

0 0 1
γ+µ

0 0 0 0

(1−Ξ)ση
ab(µ+δh+r)

0 η
b(µ+δh+r)

0 0 1
µ+δh+r

0 0 0

0
(1−Ξ)ση

ac(µ+χδh+r)
0 η

c(µ+χδh+r)
0 0 1

µ+χδh+r
0 0

(1−Ξ)σϕ
ab(γ+µ+δ)

0 ϕ
b(γ+µ+δ)

0 0 0 0 1
γ+µ+δ

0

0
(1−Ξ)σϕ

ac(γ+µ+δv)
0 ϕ

c(γ+µ+δv)
0 0 0 0 1

γ+µ+δv


with the following,

a = σ + µ, b = γ + η + ϕ+ µ+ δ, c = γ + η + ϕ+ µ+ δv.

We can also find,

FV −1(x∗l )

=
1

ω + θ + µ

[
βnd(1−Ξ)σ

(σ+µ)b
+ βndΞσ

(σ+µ)(γ+µ)
βnd(1−Ξ)σ

(σ+µ)(γ+η+ϕ+µ+δv)
+ βndΞσ

(σ+µ)(γ+µ)
βnd

γ+η+ϕ+µ+δ
βnd

γ+η+ϕ+µ+δv

βnd
γ+µ

01,4

βvω(1−Ξ)σ
(σ+µ)b

+ βvωΞσ
(σ+µ)(γ+µ)

βvω(1−Ξ)σ
(σ+µ)(γ+η+ϕ+µ+δv)

+ βvωΞσ
(σ+µ)(γ+µ)

βvω
γ+η+ϕ+µ+δ

βvω
γ+η+ϕ+µ+δv

βvω
γ+µ

01,4

07,1 07,1 07,1 07,1 07,1 07,4

]
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with the following,

b = γ + η + ϕ+ µ+ δ, d = µ+ θ.

We can also find,

FV −1(x∗g)

=
1

µ+ θ

[
βng(1−Ξ)σ

(σ+µ)b
+ βngΞσ

(σ+µ)(γ+µ)
βng(1−Ξ)σ

(σ+µ)c
+ βngΞσ

(σ+µ)(γ+µ)
βng

γ+η+ϕ+µ+δ
βng
c

βng
γ+µ

01,4

βvωSc(1−Ξ)σ
(σ+µ)b

+ βvωScΞσ
(σ+µ)(γ+µ)

βvωSc(1−Ξ)σ
(σ+µ)c

+ βvωScΞσ
(σ+µ)(γ+µ)

βvωSc
γ+η+ϕ+µ+δ

βvωSc
c

βvωSc
γ+µ

01,4

07,1 07,1 07,1 07,1 07,1 07,4

]

with the following,

b = γ + η + ϕ+ µ+ δ, c = γ + η + ϕ+ µ+ δv, g = µ+ θ − ωSc

Since FV −1(x∗l ) and FV −1(x∗g) are not upper triangular we need to find the eigenvalues.

To make things easier we will generalize both FV −1(x∗l ) and FV −1(x∗g) as

a b c d e 0 0 0 0

f g h i j 0 0 0 0

0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0


where a through j are placeholders. Utilizing the placeholder values we get the

characteristic polynomial:

−λ7(ag − aλ− bf − gλ+ λ2).

We can see that when we set this to zero, we have that λ = 0, with algebraic multiplicity

seven, or

ag − aλ− bf − gλ+ λ2 = 0 ⇒ λ2 − (g + a)λ+ (ag − bf) = 0.
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From here we can solve with the quadratic equation, giving us

λ =
(g + a)±

√
(g + a)2 − 4(ag − bf)

2

=
a+ g ±

√
g2 + 2ag + a2 − 4ag + 4bf

2

=
a+ g ±

√
g2 + a2 − 2ag + 4bf

2

=
a+ g ±

√
(g − a)2 + 4bf

2
.

We can then take the spectral radius

ρ(FV −1(x∗l )) =
a+ g +

√
(g − a)2 + 4bf

2

ρ(FV −1(x∗g)) =
a+ g +

√
(g − a)2 + 4bf

2
,

where for x∗l we have that

a =
βn(µ+ θ)(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δ)
+

βn(µ+ θ)Ξσ

(σ + µ)(γ + µ)

b =
βn(µ+ θ)(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δv)
+

βn(µ+ θ)Ξσ

(σ + µ)(γ + µ)

f =
βvω(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δ)
+

βvωΞσ

(σ + µ)(γ + µ)

g =
βvω(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δv)
+

βvωΞσ

(σ + µ)(γ + µ)
,

and for x∗g the placeholders as,

a =
βn(µ+ θ − ωSc)(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δ)
+
βn(µ+ θ − ωSc)Ξσ

(σ + µ)(γ + µ)

b =
βn(µ+ θ − ωSc)(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δv)
+
βn(µ+ θ − ωSc)Ξσ

(σ + µ)(γ + µ)

f =
βvωSc(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δ)
+

βvωScΞσ

(σ + µ)(γ + µ)

g =
βvωSc(1− Ξ)σ

(σ + µ)(γ + η + ϕ+ µ+ δv)
+

βvωScΞσ

(σ + µ)(γ + µ)
.
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(a) In this figure R0 = 5.8290.
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(b) In this figure R0 = 0.2432.

Figure 4.1: Simulations of the SEIMR model with varying R0 given x∗l .
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(a) In this figure R0 = 5.2976.
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(b) In this figure R0 = 0.4217.

Figure 4.2: Simulations of the SEIMR model with varying R0 given x∗g.

In Figures 4.1a and 4.1b, µ+θ−ωSc

µ+θ
> Sc and in Figures 4.2a and 4.2b, µ+θ−ωSc

µ+θ
≤ Sc.

Further in Figure 4.1a, we have that βn = 5, βv = 2, µ = 0.005, θ = 0.2, Ξ = 0.2, σ = 0.02,

γ = 0.03, η = 0.2, ϕ = 0.3, δ = 0.006, ω = 0.4 and Sc = 0.1. In Figure 4.1b, we have that

βn = 0.5, βv = 0.2, µ = 0.001, θ = 0.5, Ξ = 0.2, σ = 0.5, γ = 0.5, η = 0.1, ϕ = 0.3,

δ = 0.005, ω = 0.4 and Sc = 0.5. In Figure 4.2a, we have that βn = 5, βv = 2, µ = 0.005,

θ = 0.02, Ξ = 0.2, σ = 0.02, γ = 0.03, η = 0.2, ϕ = 0.3, δ = 0.006, ω = 0.4 and Sc = 0.5. In

Figure 4.2b, βn = 0.5, βv = 0.2, µ = 0.001, θ = 0.5, Ξ = 0.2, σ = 0.5, γ = 0.5, η = 0.1,
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ϕ = 0.3, δ = 0.005, ω = 0.4 and Sc = 0.7. As expected the disease dies out when R0 < 1

and persists when R0 > 1.

4.2 Sensitivity Analysis: Derivation of the Sensitivity Equations

We will now embark on the sensitivity analysis to ascertain the parameters that wield

the greatest influence within the Be-SEIMR model in equation (3.6). We will designate the

reference parameters as follows:

p∗ = (β∗
n, β

∗
a, β

∗
v , θ

∗, σ∗,Ξ∗, η∗, ϕ∗, γ∗, ζ∗, ω∗, r∗, k∗,m∗
a,m

∗
n, S

∗
0 , E

∗
0 , x

∗
0, y

∗
0). (4.3)

Additionally, we will consider the following to be constants:

C = (κ, µ, δ, δh, δv, χ, ρ, α,Hc, Sc, SV 0, EV 0, IS0, IV 0, IA0, IH0, IHV 0, IQ0, IQV 0, R0). (4.4)

We also define,

x = (S, SV , E, EV , IS, IV , IA, IH , IHV , IQ, IQV , R, x, y),

f = (f1, f2, f3, . . . , f13, f14).

Where f is the right-hand side. We also choose directions matrix

M =


m1,1 · · · m1,19

... . . . ...

m19,1 · · · m19,19

 ∈ R19×19.

Given the presence of a total of 14 compartments in the Be-SEIMR model, we highlight the

derivation of sensitivity equations associated with five. The remaining nine compartments

require similar calculations; however, their details will be provided in the appendix. Let us

commence by examining the susceptibility compartment, denoted as S. We will choose

Ṡ = OS(p,x) +WS(p,x)

OS(p,x) = Λ + θSV + ζR− µS,

WS(p,x) = −Ω−Ψ
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Here, OS represents the collection of smooth functions in the compartment S, while WS

represents the non-differentiable, nonsmooth functions. Given the smooth nature of OS,

the calculation of directional derivatives becomes straightforward:

O′
S(p

∗,x∗; (M,Sx)) = JOS(p∗,x∗)

M
Sx


=

[
JpOS(p∗,x∗) | JxO(p∗,x∗)

]M
Sx


= [ 01,3 S∗

V 01,5 R∗ 01,9 | 0 µ+θ∗ µ µ µ+δ µ+δv µ µ+δh µ+δhχ µ+δ µ+δv µ+ζ∗ 0 0 ]

M

Sx



=


S∗
Vm4,1+R∗m10,1+(µ+θ∗)Sβn

SV
+µ(Sβn

E +Sβn
EV

+Sβn
IA

)+(µ+δ)(Sβn
IS

+Sβn
IQ

)

S∗
Vm4,2+R∗m10,2+(µ+θ∗)Sβa

SV
+µ(Sβa

E +Sβa
EV

+Sβa
IA

)+(µ+δ)(Sβa
IS

+Sβa
IQ

)

...
S∗
Vm4,19+R∗m10,19+(µ+θ∗)S

y0
SV

+µ(S
y0
E +S

y0
EV

+S
y0
IA

)+(µ+δ)(S
y0
IS

+S
y0
IQ

)


T

+


(µ+δv)(S

βn
IV

+Sβn
IQV

)+(µ+δh)(S
βn
IH

+χSβn
IHV

)+(µ+ζ∗)Sβn
R

(µ+δv)(S
βa
IV

+Sβa
IQV

)+(µ+δh)(S
βa
IH

+χSβa
IHV

)+(µ+ζ∗)Sβa
R

...
(µ+δv)(S

y0
IV

+S
y0
IQV

)+(µ+δh)(S
y0
IH

+χS
y0
IHV

)+(µ+ζ∗)S
y0
R


T

.

In the case of WS, our approach involves deriving LD-derivatives of Ω and Ψ

individually and, subsequently combining them to yield the final result for the nonsmooth

sensitivity equation. Let us initiate by examining the LD-derivative of Ω.

Ω′(p∗,x∗; (M,Sx)) = slmin([ω∗S∗ Jpω
∗S∗M+ Jxω

∗S∗Sx], [ω
∗Sc Jpω

∗ScM+ Jxω
∗ScSx])

= slmin([ω∗S∗ SMω + ω∗SS], [ω
∗Sc ScMω])

= slmin





ω∗S∗

S∗m11,1 + ω∗SβS
...

Sm11,19 + ω∗Sy0S



T

,



ω∗Sc

Scm11,1

...

Scm11,19



T

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As Ψ involves a substantial sum of terms, we break it down into the following components:

Ψ = ISβnSMx + IAMyβnSMx + κIAM1−yβnSMx + IV βnSMx

+ ISβaSM1−x + IAMyβaSM1−x + κIAM1−yβaSM1−x + IV βaSM1−x =
8∑
i=1

Ψi.

where

Ψ1 = ISβnSMx

Ψ2 = IAMyβnSMx

Ψ3 = κIAM1−yβnSMx

Ψ4 = IV βnSMx

Ψ5 = ISβaSM1−x

Ψ6 = IAMyβaSM1−x

Ψ7 = κIAM1−yβaSM1−x

Ψ8 = IV βaSM1−x

To simplify things, we will utilize shorthand notation, where Ψ′
i = Ψ′

i(p,x; (M,Sx)).

Ψ1 = I∗Sβ
∗
nS

∗Mx

⇒ Ψ′
1 = I∗S

′β∗
nS

∗Mx + I∗Sβ
∗
n
′S∗Mx + I∗Sβ

∗
nS

∗′Mx + I∗Sβ
∗
nS

∗M ′
x

=


023,1

β∗
nS

∗Mx

09,1

Sx +

I∗SS∗Mx

032,1

M +


019,1

I∗Sβ
∗
nMx

013,1

SS+
I∗Sβ

∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19])

=


β∗
nS

∗MxS
βn
IS

+ I∗SS
∗Mxm1,1 + I∗Sβ

∗
nMxS

βn
S

...

β∗
nS

∗MxS
y0
IS

+ I∗SS
∗Mxm1,19 + I∗Sβ

∗
nMxS

y0
S


T

+

I∗Sβ
∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19])
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We also have that

Ψ2 = I∗AMyβ
∗
nS

∗Mx

⇒ Ψ′
2 = I∗A

′Myβ
∗
nS

∗Mx + I∗AM
′
yβ

∗
nS

∗Mx + I∗AMyβ
∗
n
′S∗Mx + I∗AMyβ

∗
nS

∗′Mx + I∗AMyβ
∗
nS

∗M ′
x

=


025,1

Myβ
∗
nS

∗Mx

07,1

Sx + I∗Aβ
∗
nS

∗Mxslmid([01,20], [y
∗, Sy], [1,01,19])+

I∗AMyS
∗Mx

032,1

M +


019,1

I∗AMyβ
∗
nMx

013,1

Sx + I∗AMyβ
∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19])

=


I∗AMyS

∗Mxm1,1 + I∗AMyβ
∗
nMxS

βn
S +Myβ

∗
nS

∗MxS
βn
IA

...

I∗AMyS
∗Mxm1,19 + I∗AMyβ

∗
nMxS

y0
S +Myβ

∗
nS

∗MxS
y0
IA


T

+

I∗AMyβ
∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19]) + I∗Aβ

∗
nS

∗Mxslmid([01,20], [y
∗, Sy], [1,01,19]).
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We also have that

Ψ3 = κI∗AM1−yβ
∗
nS

∗Mx

⇒ Ψ′
3

= κI∗A
′M1−yβ

∗
nS

∗Mx + κI∗AM
′
1−yβ

∗
nS

∗Mx + κI∗AM1−yβ
∗
n
′S∗Mx + κI∗AM1−yβ

∗
nS

∗′Mx+

κI∗AM1−yβ
∗
nS

∗M ′
x

=


025,1

κM1−yβ
∗
nS

∗Mx

07,1

Sx + κI∗Aβ
∗
nS

∗Mxslmid([01,20], [1− y∗,−Sy], [1,01,19])+

κI∗AM1−yS
∗Mx

032,1

M +


019,1

κI∗AM1−yβ
∗
nMx

013,1

SS + κI∗AM1−yβ
∗
nSslmid([01,20], [x

∗, Sx], [1,01,19])

=


κI∗AM1−yS

∗Mxm1,1 + κI∗AM1−yβ
∗
nMxS

β
S + κM1−yβ

∗
nS

∗MxS
β
IA

...

κI∗AM1−yS
∗Mxm1,19 + κI∗AM1−yβ

∗
nMxS

y0
S + κM1−yβ

∗
nS

∗MxS
y0
IA


T

+

κI∗Aβ
∗
nS

∗Mxslmid([01,20], [1− y∗,−Sy], [1,01,19])+

κI∗AM1−yβ
∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19])

Following the illustration of the process for the initial three Ψi terms, we will streamline

the presentation by omitting the intermediary steps and proceeding directly to the
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conclusions. The outcome is as follows:

Ψ′
4 =


I∗V S

∗Mxm1,1 + I∗V β
∗
nMxS

β
S + β∗

nS
∗MxS

β
IV

...

I∗V S
∗Mxm1,19 + I∗V β

∗
nMxS

y0
S + β∗

nS
∗MxS

y0
IV


T

+ I∗V β
∗
nS

∗slmid([01,20], [x
∗, Sx], [1,01,19])

Ψ′
5 =


I∗SS

∗M1−xm2,1 + I∗Sβ
∗
aM1−xS

βn
S + β∗

aS
∗M1−xS

β
IS

...

I∗SS
∗M1−xm2,19 + I∗Sβ

∗
aM1−xS

y0
S + β∗

aS
∗M1−xS

y0
IS


T

+

I∗Sβ
∗
aS

∗slmid([01,20], [1− x∗,−Sx], [1,01,19])

and

Ψ′
6 =


I∗AMyS

∗M1−xm2,1 + I∗AMyβ
∗
aM1−xS

βn
S +Myβ

∗
aS

∗M1−xS
βn
IA

...

I∗AMyS
∗M1−xm2,19 + I∗AMyβ

∗
aM1−xS

y0
S +Myβ

∗
aS

∗M1−xS
y0
IA


T

+

I∗Aβ
∗
aS

∗M1−xslmid([020], [y∗, Sy], [1,01,19]) + I∗AMyβ
∗
aS

∗slmid([01,20], [1− x∗,−Sx], [1,01,19])

Ψ′
7 =


κI∗AM1−yS

∗M1−xm2,1 + κI∗AM1−yβ
∗
aM1−xS

βn
S + κM1−yβ

∗
aS

∗M1−xS
βn
IA

...

κI∗AM1−yS
∗M1−xm2,19 + κI∗AM1−yβ

∗
aM1−xS

y0
S + κM1−yβ

∗
aS

∗M1−xS
y0
IA


T

+

κI∗Aβ
∗
aS

∗M1−xslmid([01,20], [1− y∗,−Sy], [1,01,19])+

κI∗AM1−yβ
∗
aS

∗slmid([01,20], [1− x∗,−Sx], [1,01,19])

Ψ′
8 =


I∗V S

∗M1−xm2,1 + I∗V β
∗
aM1−xS

βn
S + β∗

aS
∗M1−xS

βn
IV

...

I∗V S
∗M1−xm2,19 + I∗V β

∗
aM1−xS

y0
S + β∗

aS
∗M1−xS

y0
IV


T

+

I∗V β
∗
aS

∗slmid([01,20], [1− x∗,−Sx], [1,01,19]).
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Hence, with the LD-derivatives for all the Ψ′
i terms completed, we can consolidate them by

summing them together to obtain:

Ψ′ = Ψ′
1 +Ψ′

2 +Ψ′
3 +Ψ′

4 +Ψ′
5 +Ψ′

6 +Ψ′
7 +Ψ′

8.

With that we can now write

ṠS = O′
S +W ′

S = O′
S − Ω′ −Ψ′.

Moving forward, our focus shifts to examining the compartment IS. Notably, the right

hand side function is smooth:

İS = (1− Ξ)σE − γIS − ηIS − ϕIS − µIS − δIS,

Given its smooth nature, the LD-derivative for this compartment can be readily derived as

follows:

I ′S(p
∗,x∗; (M,Sx))

=

[
JpIS(p∗,x∗) | JxIS(p∗,x∗)

]M

Sx



=



04,1

(1−Ξ∗)E∗

−σ∗E∗

−I∗S
−I∗S
−I∗S
010,1

0
0

(1−Ξ∗)σ∗

0
−(γ∗+η∗+ϕ∗+µ+δ)

09,1



T

M

Sx



=

 (1−Ξ∗)E∗m5,1−σ∗E∗m6,1−IS(m7,1+m8,1+m9,1)+(1−Ξ∗)σ∗Sβ
E−(γ∗+η∗+ϕ∗+µ+δ)Sβ

IS

...
(1−Ξ∗)E∗m5,19−σ∗E∗m6,19−IS(m7,19+m8,19+m9,19)+(1−Ξ∗)σ∗S

y0
E −(γ∗+η∗+ϕ∗+µ+δ)S

y0
IS
.

T .
Continuing our analysis, we now delve into the recovered category:

Ṙ = γ(IS + IA + IQ + IQV + IV ) + h(IH) + h(IHV )− ζR− µR = OR(p,x) +WR(p,x).
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Similarly, we proceed to express this as a sum of a smooth and a nonsmooth function:

OR(p,x) = γ(IS + IA + IQ + IQV + IV )− ζR− µR

WR(p,x) = h(IH) + h(IHV ).

Regarding the smooth portion, we find the following:

O′
R(p

∗,x∗; (M,Sx))

=

[
JpOR(p∗,x∗) | JxO(p∗,x∗)

]M

Sx


= [ 01,8 I∗S+I

∗
A+I∗Q+I∗QV +I∗V −R∗ 09,1 | 04,1 γ∗ γ∗ γ∗ 0 0 γ∗ γ∗ −ζ∗−µ 0 0 ]

M

Sx


=

 (I∗S+I
∗
A+I∗Q+I∗QV +I∗V )m9,1−R∗m10,1+γ∗(S

β
IS

+Sβ
IV

+Sβ
IA

+Sβ
IQ

+Sβ
IQV

)+(−ζ∗−µ)Sβ
R

...
(I∗S+I

∗
A+I∗Q+I∗QV +I∗V )m9,19−R∗m10,19+γ∗(S

y0
IS

+S
y0
IV

+S
y0
IA

+S
y0
IQ

+S
y0
IQV

)+(−ζ∗−µ)Sy0
R

.
As for the first nonsmooth part, specifically h(IH), the expression is as follows:

h(IH)
′ = slmin([r∗I∗H Jpr

∗I∗HM+ Jxr
∗I∗HSx], [r

∗Hc Jpr
∗HcM+ Jxr

∗HcSx])

= slmin([r∗I∗H [01,11, I
∗
H,01,7]M + [01,7, r

∗,01,6]Sx], [r
∗Hc [01,11,Hc,01,7]M + 0Sx])

= slmin([r∗I∗H I∗Hm12,1 + r∗SβIH · · · I∗Hm12,1 + r∗Sy0
IH
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T).

Moving on to the second nonsmooth component, namely h(IHV ), the expression is as

follows:

h(IHV )
′

= slmin([r∗I∗HV Jpr
∗I∗VM+ Jxr

∗I∗VSx], [r
∗Hc Jpr

∗HcM+ Jxr
∗HcSx])

= slmin([r∗I∗HV [01,11, I
∗
HV,01,7]M + [01,8, r

∗,01,5]Sx], [r
∗Hc [01,11,Hc,01,7]M + 0Sx])

= slmin([r∗I∗HV I∗HVm12,1 + r∗SβIHV
· · · I∗HVm12,1 + r∗Sy0

IHV
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T).

In conclusion, we can express the sensitivity equation for the nonsmooth part of R as

follows:

W ′
R(p

∗,x∗; (M,Sx)) = h(IH)
′ + h(IHV )

′.
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Upon combining the smooth and nonsmooth components, the resultant equation becomes:

SR = slmin([r∗I∗H I∗Hm12,1 + r∗SβIH · · · I∗Hm12,1 + r∗Sy0
IH
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T)

+ slmin([r∗I∗H I∗HVm12,1 + r∗SβIHV
· · · I∗HVm12,1 + r∗Sy0

IHV
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T)

+

 (I∗S+I
∗
A+I∗Q+I∗QV +I∗V )m9,1−R∗m10,1+γ∗(S

β
IS

+Sβ
IV

+Sβ
IA

+Sβ
IQ

+Sβ
IQV

)+(−ζ∗−µ)Sβ
R

...
(I∗S+I

∗
A+I∗Q+I∗QV +I∗V )m9,19−R∗m10,19+γ∗(S

y0
IS

+S
y0
IV

+S
y0
IA

+S
y0
IQ

+S
y0
IQV

)+(−ζ∗−µ)Sy0
R


Proceeding further, we turn our attention to the sensitivities for x and y. Given the

relationship ẋ = ẏ, we are afforded the opportunity to derive the sensitivity equations for

these variables concurrently. Recall

ẋ = z(1− z)(−βn + βa)Υ +
ρ

α
z(1− z)[k + (ma −mn)Υ]

where

Υ = IS + IV + IH + IHV + IQ + IQV , z(t) =
x(t)S(t) + y(t)IA(t)

S(t) + IA(t)
.

Fortunately, the smooth right hand side function simplifies the solving process:

f ′
13(p

∗,x∗; (M,Sx))

=

[
Jpf13(p∗,x∗) | Jxf13(p∗,x∗)

]M

Sx



=



Υ∗(z∗)(1−z∗)
Υ∗(z∗)(1−z∗)

010,1
ρ
α
(z∗)(1−z∗)

ρ
α
Υ∗(z∗)(1−z∗)

ρ
α
Υ∗(z∗)(1−z∗)

0[4,1]

( ρ
α
(Υ∗(m∗

a−m∗
n)+k

∗)+Υ∗(β∗
a−β∗

n))(
2(x∗S∗+I∗Ay∗)2

(S∗+I∗
A

)3
+ x∗

S∗+I∗
A
− 2x∗(x∗S∗+I∗Ay∗)−x∗S∗−I∗Ay∗

(S∗+I∗
A

)2

03,1

( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
a)(z

∗)(1−z∗)
( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
a)(z

∗)(1−z∗)

( ρ
α
(Υ∗(m∗

a−m∗
n)+k

∗)+Υ∗(β∗
a−β∗

n))(
2(x∗S∗+I∗Ay∗)2

(S∗+I∗
A

)3
+ y∗

S∗+I∗
A
− 2y∗(x∗S∗+I∗Ay∗)−x∗S∗−I∗Ay∗

(S+IA)2

( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
A)(z∗)(1−z∗)

( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
A)(z∗)(1−z∗)

( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
A)(z∗)(1−z∗)

( ρ
α
(m∗

a−m∗
n)−β∗

n+β
∗
A)(z∗)(1−z∗)

0

( ρ
α
(Υ∗(m∗

a−m∗
a)+k

∗)+Υ∗(β∗
a−β∗

n))(
S∗

S∗+I∗
A
)(

2S∗(S∗x+I∗Ay∗)
(S∗+I∗

A
)2

)

( ρ
α
(Υ∗(m∗

a−m∗
a)+k

∗)+Υ∗(β∗
a−β∗

n))(
I∗A

S∗+I∗
A
)(

2I∗A(S∗x+I∗Ay∗)
(S∗+I∗

A
)2

)



T

M

Sx


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Concerning the initial values of the sensitivity system, Sx(0), the initial function of the

Be-SEIMR model is:

f0(p) = (S0, 0, E0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x0, y0).

Hence, it follows that:

f′0(p
∗;M) = Jf0(p∗)M =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


M =



m16,1 ··· m16,19
m17,1 ··· m17,19

0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0

m18,1 ··· m18,19
m19,1 ··· m19,19


.

4.3 Local Sensitivity Analysis

In order to implement the sensitivity system and produce simulations, we used Matlab’s

ode45 to simulate the model and coded the necessary nonsmooth functions, slmin and

slmid. As seen in equation (4.3), we have βn,βa,βv, θ, σ, Ξ, η, ϕ, γ, ζ, ω, r, k, ma, mn, S0,

E0, x0 and y0 as parameters and in equation (4.4) we have κ, µ, δ, δh, δv, χ, ρ, α, Hc, Sc,

SV 0, EV 0, IS0, IV 0, IA0, IH0, IHV 0, IQ0, IQV 0 and R0 as constants. Our simulations utilized

the reference parameters

p∗ = (β∗
n, β

∗
a, β

∗
v , θ

∗, σ∗,Ξ∗, η∗, ϕ∗, γ∗, ζ∗, ω∗, r∗, k∗,m∗
a,m

∗
n, S

∗
0 , E

∗
0 , x

∗
0, y

∗
0)
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where

β∗
n = 0.363282 β∗

a = 0.19397

β∗
v = 0.13259793 θ∗ = 0.0053763

σ∗ = 0.196078 Ξ∗ = 0.8787

η∗ = 0.0049 ϕ∗ = 0.262

γ∗ = 0.167504 ζ∗ = 0.00273973

ω∗ = 0.000005116 r∗ = 0.167504

m∗
n = 0.9 m∗

a = 0.2

k∗ = 0.001 S∗
0 = 0.8

E∗
0 = 0.2 x∗0 = 0.43

y∗0 = 0.43

We also used the directions matrix M = I19 as well as constant values:

δ = 0.01017576 δv = 0.0208

δh = 0.2 χ = 0.104

ρ = 1 α = 7

Hc = 0.00152 κ = 0.631

Sc = 0.00007442 µ = 0.0000391389

We conduct simulations to assess the sensitivities of the fourteen state variables,

considering the specified p∗ and constant values. The total area under each curve provides

the primary measure of the sensitivity of the state variables to the reference parameter.
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0 100 200
-1.5

-1

-0.5

0
10-8

S
S

V

n

S
S

V

a

S
S

V

v

0 100 200
-4

-3

-2

-1

0
10-6

S
S

V

S
S

V

S
S

V

0 100 200

-6

-4

-2

0

2

4
10-8

S
S

V

S
S

V

S
S

V

S
S

V

0 100 200
0

2

4

6

8

10
10-3

S
S

V

S
S

V

r

0 100 200
-6

-4

-2

0

2
10-10

S
S

V

k

S
S

V

m
a

S
S

V

m
n

0 100 200
0

0.2

0.4

0.6

0.8

1
S

S
V

S
0

S
S

V

E
0

S
S

V

x
0

S
S

V

y
0

(b) Simulations of SSV
.

Figure 4.3: Simulations of the lexicographic sensitivity functions for the susceptible

compartments.
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Figure 4.4: Simulations of the lexicographic sensitivity functions for the exposed

compartments.
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(b) Simulations of SIV .

Figure 4.5: Simulations of the lexicographic sensitivity functions for the symptomatic

infected compartments.
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(a) Simulations of SIH .

0 100 200
0

1

2

3
10-12

S
I
HV

n

S
I
HV

a

S
I
HV

v

0 100 200
-6

-4

-2

0

2
10-12

S
I
HV

S
I
HV

S
I
HV

0 100 200
-2

0

2

4

6

8
10-11

S
I
HV

S
I
HV

S
I
HV

S
I
HV

0 100 200
0

2

4

6

8
10-8

S
I
HV

S
I
HV

r

0 100 200
-5

0

5

10
10-14

S
I
HV

k

S
I
HV

m
a

S
I
HV

m
n

0 100 200
0

2

4

6
10-5

S
I
HV

S
0

S
I
HV

E
0

S
I
HV

x
0

S
I
HV

y
0

(b) Simulations of SIHV
.

Figure 4.6: Simulations of the lexicographic sensitivity functions for the hospitalized infected

compartments.
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(a) Simulations of SIQ .
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(b) Simulations of SIQV
.

Figure 4.7: Simulations of the lexicographic sensitivity functions for the quarantined infected

compartments.
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(a) Simulations of SIA .
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(b) Simulations of SR.

Figure 4.8: Simulations of the lexicographic sensitivity functions for the asymptomatic

infected compartment and the recovered compartment.
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(a) Simulations of Sx.
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(b) Simulations of Sy.

Figure 4.9: Simulations of the lexicographic sensitivity functions for the game theory

compartments.

We further employed bar graphs to provide a succinct and easily interpretable

representation of the overall sensitivity. In these bar graphs, the height of each bar,

denoted as h, is determined by the integral h(p, k) =
∫ tf
t0

|Spk(t)|dt, where p corresponds to a

chosen parameter for analysis, k represents a state variable, and t0 = 0 and tf = 200 are

the time limits, all with respect to the reference parameter p∗.
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(a) Graphs of h for S, SV , and R.
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Figure 4.10: Graphs of h(p, k) for different variables and all parameters.
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Figure 4.11: Graphs of h(p, k) for different variables and all parameters.
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Figure 4.12: Graphs of h(p, k) for different variables.
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Figure 4.13: Graph of h̃(p) =
∑nx

k=1

∫ tf
t0

|Spk(t)|dt for all parameters.

We can see from Figure 4.13 that ζ is by far the most influential parameter. As seen in

figures 3.8a and 3.9a, the disease appears to die out due to the population remaining in the

recovered compartment for a lengthy period of time. Since ζ is the reciprocal of the

average waning immunity period, or the average length of time that individuals are

naturally immune, it makes sense that altering that value would potentially cause dramatic

changes. However, due to a low R0 it could still die out after an extended period of time.

4.4 Semi-Local Sensitivity Analysis: Exploring Different Behavioral and

Medical Intervention Scenarios

Even though we pulled from real world values, as seen with reference parameters (4.3),

to simulate the parameter sensitivities of the Be-SEIMR model, we want to explore

alternative situations to see how the sensitivities may change.
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Figure 4.14: Parameter influence levels given the reference parameters from Acuña-Zegarra

[1]. These parameters are β∗
n = 0.363282, σ∗ = 0.196078, γ∗ = 0.167504, ζ∗ = 0.00273973

and Ξ∗ = 0.8787. We also have two additional reference parameters S∗
0 = 0.8 and E∗

0 = 0.2

and constants δ = 0.01017576 and µ = 0.0000391389.

All other reference parameters are set to zero to “turn them off” in the simulation but

to still allow us to see how sensitive they are at zero. As we progress further and add back

in other parameters, we will assume all other reference parameters are zero unless stated

otherwise. Once again, ζ is by far the most influential parameter. As depicted in Figure

4.15, the majority of the population transitions to the recovered category, conferring

immunity on the majority.
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Figure 4.15: Graphs of h̃(p) =
∑nx

k=1

∫ tf
t0

|Spk(t)|dt with the parameters given in Figure 4.14.

Since ζ∗ = 0.00273973 means that the average waning immunity period is a year,

1
0.00273973

= 365, individuals remain in the compartment for a relatively long period of time.

If we were to change ζ to a shorter period of time, we may find the sensitivities to be

different. Changing ζ from a year to a month, ζ∗ = 1
30

= 0.333333, we see some drastic

changes in the sensitivity bar graphs, as seen in figure 4.16.
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Figure 4.16: Parameter influence levels given by h̃(p), with the same reference parameters

as Figure 4.14 but with an increased ζ value.

We can easily see in figure 4.16 that even though ζ is still is the most influential, the

differences between ζ and the other parameters is much smaller than in Figure 4.14, where

ζ went from 30000 to 9000. This change can also be seen in Figure 4.17, where the

recovered compartment no longer consists of the majority of the population.
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Figure 4.17: Be-SEIMR simulations to accompany Figure 4.16.

For more comprehensive comparisons, we will adopt the modified one-month ζ as it

facilitates a clearer range of values. In Figure 4.13, we identify the following parameters as

the next most influential after ζ: k, ma, and mn. To further investigate their impact, we

will incorporate these parameters, along with βa, α and ρ, into our model. In addition, we

will initialize the state variables x0 and y0 with values of 0.43. We also will set

β∗
a = 0.19397, κ = 0.631, α = 7 and ρ = 1, while allowing us to vary m∗

a, m∗
n, and k∗. This

variation will enable us to explore how changes in these parameters affect the sensitivity

graphs.
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Figure 4.18: Parameter influence levels given by h̃(p), with mn = 0.7, ma = 0.3 and k = 0.1.
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Figure 4.19: Parameter influence levels given by h̃(p), with mn = 0.7, ma = 0.3 and k = 0.5.
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Figure 4.20: Parameter influence levels given by h̃(p), with mn = 0.7, ma = 0.3 and k = 0.9.

Comparing Figure 4.18, Figure 4.19, and Figure 4.20, we observe striking differences

among them. When k is set to a lower value, ζ remains the most influential parameter,

albeit with a reduced sensitivity magnitude, dropping to approximately 6000. In this

scenario, k, mn, and ma exhibit significant influence compared to other parameters.

However, as we increase the value of k, all parameters experience a substantial increase in

magnitude. In relative terms, when k reaches 0.9, as shown in Figure 4.20, the parameters

spike dramatically. The parametric sensitivity of ζ reaches nearly 2× 1010, and

interestingly, k, mn, and ma become the least influential among the nonzero parameters in

this particular context. Now if we lock k = 0.5 and modify mn and ma, we can get different

results. If we change mn or ma, the bar graphs look nearly identical to Figure 4.19. As

seen in Figure 4.21, Figure 4.22, and Figure 4.23, IS and IA are incredibly small. Therefore

since the difference of mn and ma is multiplied by Υ, their impact on the overall model is

much smaller than k and the sensitivities will change much more due to k than ma or mn.
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Figure 4.21: Be-SEIMR simulations with mn = 0.7, ma = 0.3 and k = 0.1.
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Figure 4.22: Be-SEIMR simulations with mn = 0.7, ma = 0.3 and k = 0.5.
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Figure 4.23: Be-SEIMR simulations with mn = 0.7, ma = 0.3 and k = 0.9.

Going forward we will be assuming k∗ = 0.1, m∗
n = 0.7 and m∗

a = 0.3. Now we would

like to reintroduce the rest of the parameters, as they deal with some form of medical

intervention. We let β∗
v = 0.13259793, χ = 0.104, δv = 0.0208, δh = 0.2, ϕ∗ = 0.262 and

r∗ = 0.167504. We also change η∗ = 0.1 for a more populated hospitalized population. This

leaves us with Hc, Sc, θ∗ and ω∗ as parameters to alter and see the results.

First we look towards a situation with low medical intervention. We have a max

hospitalization capacity and vaccine distribution of 0.001, or 0.1% of the population, a

vaccination rate of ω∗ = 0.01, 100 people per day, and a vaccine waning immunity rate of

θ∗ = 0.01667, 60 days. Once again we see a large spike in sensitivity values, Figure 4.24,

where the most influential parameter, ζ, is nearly at 7× 106. For the most part, the

sensitivities look similar to previous simulations qualitatively.

When we increase medical interventions, as exemplified in Figure 4.25, a significant

transformation becomes evident in the other sensitivity simulations. With the specific

values of ω∗ = 0.1, θ∗ = 0.0083, Sc = 0.1, and Hc = 0.1, not only does the scale of influence
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(a) Model simulations.
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(b) Parameter influence levels.

Figure 4.24: Parameter influence levels h̃(p), with low medical intervention values where
ω = 0.01, θ = 0.01667, Sc = 0.001, Hc = 0.001.
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(b) Parameter influence levels.

Figure 4.25: Parameter influence levels h̃(p), with low medical intervention values where
ω = 0.1, θ = 0.0083, Sc = 0.1, Hc = 0.1.

increase once more, with the most influential parameter surging to 12× 108 sensitivity

value, but the ranking of influential parameters also undergoes a noteworthy shift. In this

context, θ emerges as the overwhelmingly predominant parameter, with S0 trailing behind

at approximately one-sixth of θ’s magnitude. We now reduce θ back to the previous value

of 0.01667 and further raise Sc, Hc and ω to see if that reduces the significance of θ.
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(b) Parameter influence levels.

Figure 4.26: Parameter influence levels h̃(p), with high medical intervention values where
ω = 0.4, θ = 0.01667, Sc = 0.4, Hc = 0.4.
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Figure 4.27: Parameter influence levels h̃(p), with high medical intervention values where
ω = 0.1, θ = 0.01667, Sc = 0.4, Hc = 0.4.

When we opt to increase the parameters ω∗ = 0.4, Sc = 0.4, and Hc = 0.4, as seen in

Figure 4.26, while simultaneously reducing θ∗ = 0.01667, an interesting pattern emerges.

The dominance of θ persists, maintaining its position as the most influential parameter.

However, the influence of nearly all other parameters experiences a significant reduction,

with only ζ and ω standing out as exceptions, both nearly doubling in magnitude. If we

choose to reduce ω back to its previous value of 0.1 we find some interesting results.
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In Figure 4.27, a noteworthy shift in parameter influence becomes evident. The most

influential parameter, θ, has its sensitivity rating decrease to approximately 15× 1011.

However, the more substantial change lies in the significant growth of ω and ζ. The

parameter ω ascends to become the second most influential, approaching roughly half the

influence of θ, while ζ nearly triples its previous magnitude observed in the context of

medical intervention sensitivity simulations.

4.5 Discussion

While conducting simulations in Section 4.3 and the simulations considering real-world

parameters drawn from Acuña-Zegarra [1] in Subsection 4.4, we consistently observed that

the most influential parameter was unquestionably ζ, the average waning immunity period,

which represents the duration of an individual’s natural immunity to the disease. The

second most influential parameter, when excluding the game theory sensitivities, was

γ—the reciprocal of the average infected period. With the real-world values in play, we can

interpret these findings as indicating that γ and ζ hold paramount significance in

determining the persistence or eradication of the disease. In scenarios without medical

interventions or the capability for individuals to engage in disease avoidance strategies, the

fate of the disease largely hinges on these inherent disease parameters. This implies that in

the absence of medical solutions, individuals may find themselves with limited options to

evade illness, relying largely on chance when dealing with a sufficiently dangerous disease.

When we introduced disease avoidance practices into the simulations, ζ remained the most

influential parameter, although its dominance was less pronounced, resulting in a more

equitable balance among the parameters. Instead of rendering other parameters virtually

irrelevant in comparison, they all assumed more comparable levels of influence. Moreover,

we noticed that changes in the value of k, the social cost associated with altered behavior,

exerted the most significant influence on mn, ma, k, and S0. When k was set to a high

value, indicating that people perceived disease avoidance strategies as highly costly to their
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social lives, S0 became notably influential. In this scenario, the disease transmission itself

remained relatively unaffected, but the initial pool of susceptibles, S0, assumed greater

importance in determining whether the disease would persist or not. However, when k was

set to a low value, a contrasting dynamic emerged. Suddenly, ma, mn, and k took on

heightened significance in the disease dynamics. While ζ and γ remained the most

influential parameters, the choices individuals made in response to the perceived social cost

of disease avoidance had a more substantial impact on the disease’s survival under these

conditions. Upon the introduction of medical interventions, a striking shift in parameter

influence occurs. The parameter θ, the average vaccination rate, emerges as the single most

influential parameter, towering six times above the influence of the next most important

parameter. This pronounced dominance of θ underscores its pivotal role. As θ correlates

with the rate of vaccination and other medical intervention strategies, it surpasses the

intrinsic dangers and characteristics of the virus itself. This leads us to a significant

conclusion, when resources are available, the wide distribution and easy accessibility of a

vaccine can have the most profound impact on the disease’s longevity and containment. In

essence, the availability and efficient deployment of vaccines can override the inherent

properties of the virus, establishing them as the primary determinant of the disease’s

outcome.
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CHAPTER 5

CONCLUSION

In this thesis, our aim was to harness the power of game theory and nonsmooth

functions to enhance the realism of disease spread simulations within populations.

Nonsmooth functions introduce a unique challenge, as standard theory falters when dealing

with points of nondifferentiability. However, leveraging recent advancements in nonsmooth

analysis, we have successfully adapted sensitivity analysis techniques to accommodate these

intricate functions.

We extended the standard SEIR model by introducing additional complexities in the

form of mortality rates, asymptomatic infections, alterations in behavior, and medical

interventions. This extended model, which we called the Be-SEIMR model, became the

focal point of this thesis. We provided simulations of the model using parameter values

from the literature [1]. Subsequently, we performed a stability analysis, a fundamental

endeavor that allowed us to determine a basic reproduction number, R0, for the SEIMR

submodel where behavioral changes were turned off. This insight provided critical

information about the model’s potential for disease transmission. Next, we conducted a

sensitivity analysis, a pivotal step in identifying the most influential parameters within our

Be-SEIMR model. This analysis unveiled key insights into which parameters exerted the

greatest impact on the model’s outcomes and dynamics.

While conducting simulations, we observed the following key points regarding the

influence of parameters on disease dynamics:

• The most influential parameter is ζ, representing the average waning immunity

period, indicating its crucial role in determining disease persistence.

• The second most influential parameter, excluding game theory considerations, is γ

(average infected period), showing its importance in disease dynamics.
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• Real-world values highlight the significance of γ and ζ in determining disease

persistence in scenarios without medical interventions or disease avoidance strategies.

• In the absence of medical solutions, individuals may have limited options to evade

illness, relying largely on chance when dealing with a sufficiently dangerous disease.

• Introduction of disease avoidance practices reduces the dominance of ζ, resulting in a

more balanced influence of parameters.

• Changes in the social cost parameter (k) significantly impacts mn, ma, k, and S0,

with high k making S0 more influential and low k increasing the importance of ma,

mn, and k in disease dynamics.

• While ζ and γ remain the most influential parameters, the choices individuals make

in response to the perceived social cost of disease avoidance have a more substantial

impact on disease survival under these conditions.

• Upon the introduction of medical interventions, a striking shift in parameter

influence occurs. The parameter θ, representing the average vaccination rate, emerges

as the single most influential parameter, towering six times above the influence of the

next most important parameter. This dominance of θ underscores its pivotal role,

surpassing the intrinsic dangers and characteristics of the virus itself.

In summary, the analysis reveals that the influence of parameters on disease dynamics

varies depending on the presence of disease avoidance practices and medical interventions.

The parameters ζ and γ are paramount in scenarios without interventions, while θ takes

precedence when resources for medical interventions are available. The availability and

efficient deployment of vaccines can override the inherent properties of the virus,

establishing them as the primary determinant of the disease’s outcome, ultimately resulting

in the eradication of the disease.
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The development of the Be-SEIMR model involved an expansion of the conventional

SEIR model, aiming to create a framework that closely mimics the dynamics of COVID-19

while maintaining the versatility to simulate other diseases. This approach opens up

multiple avenues for future research and exploration. Firstly, the Be-SEIMR model offers

opportunities for further expansion and refinement to address scenarios not covered in this

thesis. Future work could involve incorporating factors like viral mutations, considering

how a virus might evolve to counteract vaccines, and allowing for changes in vaccine

effectiveness over time. Additionally, the model could be extended to account for disease

spread across different regions, encompassing cities, states, or even countries, offering a

more comprehensive perspective on disease dynamics. Another avenue for future research

could involve shifting the focus away from COVID-19 and applying the model to study

other diseases, such as the common cold or influenza. This would serve as a rigorous test of

the model’s adaptability and open doors for researchers to tailor it to better simulate

specific diseases, just as we have expanded upon the SEIR model in this thesis. Finally, a

more in depth exploration into the calculation of R0 could be done. This would either allow

us to find the formula for the full Be-SEIMR model with behavior components or looking

into connecting the analysis of the SEIMR submodel to the concept of partial stability [42].

This approach would provide a more comprehensive understanding of a given disease’s risk

factors and enable a more precise determination of whether an epidemic will occur.
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APPENDIX A
R0 FOR INTERMEDIATE MODELS

A.1 SEIR Model R0 Formulation

In this appendix we will be finding the R0 for a few of the intermediate SEIR models
that were used to build the final Be-SEIMR model. First we start with a epidemic model
containing the quarantined and asymptomatic compartments.

Ė = Ψ− ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − ϕIS − µIS − δIS

İA = ΞσE − γIA − µIA

İQ = ϕIS − γIQ − µIQ − δIQ

Ṡ = Λ−Ψ+ ζR− µS

Ṙ = γ(IS + IA + IQ)− ζR− µR

with secondary equations

Λ = µ(S + E + IS + IA + IQ +R) + δ(IS + IQ)

Ψ = βnS(Is + IA)

Υ = IS + IQ

Once again we have to solve for R0. First we find F , V− and V+,

F =


Ψ
0
0
0
0
0

 ,V
− =


(σ + µ)E

(γ + ϕ+ µ+ δ)IS
(γ + µ)IA

(γ + µ+ δ)IQ
µS

(ζ + µ)R

 ,V
+ =


0

(1− Ξ)σE
ΞσE
ϕIS

Λ + ζR
γ(IS + IA + IQ)


then we have that

V =


(σ + µ)E

(γ + ϕ+ µ+ δ)IS − (1− Ξ)σE
(γ + µ)IA − ΞσE

(γ + µ+ δ)IQ − ϕIS
µS − Λ− ζR

(ζ + µ)R− γ(IS + IA + IQ)

 .

Now that we have F and V we need to identify the disease free equilibrium. For this model
we have

x∗ = (E, IS, IA, IQ, S, R) = (0, 0, 0, 0, 1, 0)

which corresponds to all people being susceptible and all individuals acting with normal
behavior. With these pieces we can find the Jacobians, however we only need the top
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quadrant leaving us with 4× 4 matrices,

F (x∗) =


0 βn βn 0
0 0 0 0
0 0 0 0
0 0 0 0



V (x∗) =


σ + µ 0 0 0

(Ξ− 1)σ γ + ϕ+ µ+ δ 0 0
−Ξσ 0 γ + µ 0
0 −ϕ 0 γ + µ+ δ



V −1(x∗) =


1

σ+µ
0 0 0

(1−Ξ)σ
(σ+µ)(γ+ϕ+µ+δ)

1
γ+ϕ+µ+δ

0 0
Ξσ

(σ+µ)(γ+µ)
0 1

γ+µ
0

((1−Ξ)σ)(ϕ)
(σ+µ)(γ+ϕ+µ+δ)(γ+µ+δ)

ϕ
(γ+ϕ+µ+δ)(γ+µ+δ)

0 1
γ+µ+δ

 .
Then we have that

FV −1 =


βn(1−Ξ)σ

(σ+µ)(γ+ϕ+µ+δ)
βn

γ+ϕ+µ+δ
βa
γ+µ

0

0 0 0 0
0 0 0 0
0 0 0 0

 .
Once again, since FV −1 is upper triangular and has only one non zero entry along the
diagonal, we can easily see that

ρ(FV −1) = R0 =
βn(1− Ξ)σ

(σ + µ)(γ + ϕ+ µ+ δ)
.

A.2 Be-SEIMR Model Without Vaccination R0 Formulation

Here we look at another intermediate SEIR model. This time we add in minimal
medical intervention with hospitalization. This model serves as the Be-SEIMR model
without vaccination and behavioral components.

Ė = Ψ− ΞσE − (1− Ξ)σE − µE

İS = (1− Ξ)σE − γIS − ηIS − ϕIS − µIS − δIS

İA = ΞσE − γIA − µIA

İH = ηIS − h(IH)− µIH − δhIH

İQ = ϕIS − γIQ − µIQ − δIQ

Ṡ = Λ−Ψ+ ζR− µS

Ṙ = γ(IS + IA + IQ) + h(IH)− ζR− µR
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Figure A.1: For figure (a) we have R0 = 1.263 with βn = 0.8, µ = 0.001, Ξ = 0.2, σ = 0.7,
γ = 0.2, ϕ = 0.3 and δ = 0.005. For figure (b) we have R0 = 0.4953 with βn = 0.5, µ = 0.001,
Ξ = 0.2, σ = 0.5, γ = 0.5, ϕ = 0.3 and δ = 0.005.

with secondary equations

Λ = µ(S + E + IS + IA + IH + IQ +R) + δ(IS + IQ) + δhIH

Ψ = βnS(IS + IA)

Υ = IS + IQ + IH

h(IH) = min(rIH , rHc).

For this version of the model we have that

F =



Ψ
0
0
0
0
0
0


,V− =



(σ + µ)E
(γ + η + ϕ+ µ+ δ)IS

(γ + µ)IA
(µ+ δh)IH +min(rIh, rHc)

(γ + µ+ δ)IQ
µS

(ζ + µ)R


,V+ =



0
(1− Ξ)σE

ΞσE
ηIS
ϕIS

Λ + ζR
γ(IS + IA + IQ) +min(rIh, rHc)


and therefore

V =



(σ + µ)E
(γ + η + ϕ+ µ+ δ)IS − (1− Ξ)σE

(γ + µ)IA − ΞσE
(µ+ δh)IH +min(rIH , rHc)− ηIS

(γ + µ+ δ)IQ − ϕIS
µS − Λ− ζR

(ζ + µ)R− γ(IS + IA + IQ)−min(rIH , rHc)


.

With these found we once again need to find the Jacobian for F and V , but we only need
to worry about the top 5× 5 inputs of the matrix that correspond to F and V . Given the

127



disease free equilibrium,

x∗ = (E, IS, IA, IH , IQ, S, R, x, y) = (0, 0, 0, 0, 0, 1, 0),

we have that

F (x∗) =


0 βnS βnS 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (x∗) =


0 βn βn 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

V (x∗) =


σ + µ 0 0 0 0

−(1− Ξ)σ γ + η + ϕ+ µ+ δ 0 0 0
−Ξσ 0 γ + µ 0 0
0 −η 0 µ+ δh + r 0
0 −ϕ 0 0 γ + µ+ δ

 (x∗)

=


σ + µ 0 0 0 0

−(1− Ξ)σ γ + η + ϕ+ µ+ δ 0 0 0
−Ξσ 0 γ + µ 0 0
0 −η 0 µ+ δh + r 0
0 −ϕ 0 0 γ + µ+ δ

 .
Therefore we have that,

V −1(x∗) =


1

σ+µ
0 0 0 0

(1−Ξ)σ
(σ+µ)(γ+η+ϕ+µ+δ)

1
γ+η+ϕ+µ+δ

0 0 0
Ξσ

(σ+µ)(γ+µ)
0 1

γ+µ
0 0

0 η
(µ+δh+r)(γ+η+ϕ+µ+δ)

0 1
µ+δh+r

0

0 ϕ
(γ+µ+δ)(γ+η+ϕ+µ+δ)

0 0 1
γ+µ+δ



FV −1 =


(1−Ξ)σβn

(σ+µ)(γ+η+ϕ+µ+δ)
+ Ξσβn

(σ+µ)(γ+µ)
βn

γ+η+ϕ+µ+δ
βa
γ+µ

0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Once again FV −1 is upper triangular and we can easily see it has only one nonzero
eigenvalue, therefore

ρ(FV −1) = R0 =
(1− Ξ)σβn

(σ + µ)(γ + η + ϕ+ µ+ δ)
+

Ξσβn
(σ + µ)(γ + µ)

.
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Figure A.2: For figure (a) we have R0 = 1.1578 with Ξ = 0.5, σ = 0.5, βn = 0.8, µ = 0.001,
γ = 0.5, ϕ = 0.5, η = 0.1 and δ = 0.005. For figure (b) we have R0 = 0.6398 with Ξ = 0.2,
σ = 0.5, βn = 0.5, µ = 0.001, γ = 0.5, ϕ = 0.3, η = 0.1 and δ = 0.005.
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APPENDIX B
BE-SEIMR SENSITIVITY ANALYSIS

Let us now examine SV = Ω(S)− θSV − ψ − µSV . Drawing from the earlier
development of the sensitivity equations for S, we are already familiar with Ω(S)′.
Focusing on the smooth component, we find:

OSV
(p,x) = −θSV − µSV

O′
SV

(p∗,x∗; (M,Sx) =
[
JpOSV

(p∗,x∗) | JxOSV
(p∗,x∗)

] [M
Sx

]
= [ 0 0 0 −S∗

V 01,15 | 0 −θ∗−µ 01,12 ]

[
M
Sx

]

=

 −S∗
Vm4,1+(−θ∗−µ)Sβn

SV

...
−S∗

Vm4,19+(−θ∗−µ)Sy0
SV

T .
Subsequently, for the remaining nonsmooth component, we will investigate:

ψ = βvSV [IS + IAmid(0, y, 1) + κIAmid(0, (1− y), 1) + IV ]

= βvSV IS + βvSV IAmid(0, y, 1) + βvSV κIAmid(0, (1− y), 1) + βvSV IV .

Once more, we will follow a parallel process similar to when we derived Ψ for S. We will
start by considering:

ψ1 = βvSV IS

ψ2 = βvSV IAmid(0, y, 1)
ψ3 = βvSV κIAmid(0, (1− y), 1)

ψ4 = βvSV IV .
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From this, we can determine the expression. Similar to before, we will use abbreviated
notation, where ψ′

i = ψ′
i(p∗,x∗; (M,Sx)),

ψ′
1 =

S∗
V I

∗
Sm3,1 + β∗

vI
∗
SS

βn
SV

+ β∗
vS

∗
V S

βn
IS...

S∗
V I

∗
Sm3,19 + β∗

vI
∗
SS

y0
SV

+ β∗
vS

∗
V S

y0
IS


ψ′
2 =

S∗
V I

∗
Amid(0, y∗, 1)m3,1 + β∗

vI
∗
Amid(0, y∗, 1)SβnSV

+ β∗
vS

∗
V mid(0, y∗, 1)SβnIA...

S∗
V I

∗
Amid(0, y∗, 1)m3,19 + β∗

vI
∗
Amid(0, y∗, 1)Sy0SV

+ β∗
vS

∗
V mid(0, y∗, 1)Sy0IA


+ β∗

vS
∗
V I

∗
Aslmid([020], [y, Sy], [1,0

19])

ψ′
3 =

S∗
V κI

∗
Amid(0, (1− y∗), 1)m3,1 + β∗

vκI
∗
Amid(0, (1− y∗), 1)SβnSV

+ β∗
vS

∗
V κmid(0, (1− y∗), 1)SβnIA...

S∗
V κI

∗
Amid(0, (1− y∗), 1)m3,19 + β∗

vκI
∗
Amid(0, (1− y∗), 1)Sy0SV

+ β∗
vS

∗
V κmid(0, (1− y∗), 1)Sy0IA


+ β∗

vS
∗
V κI

∗
Aslmid([020], [1− y,−Sy], [1,0

19])

ψ4 =

S∗
V I

∗
Vm3,1 + β∗

vI
∗
V S

βn
SV

+ β∗
vS

∗
V S

βn
IV...

S∗
V I

∗
Vm3,19 + β∗

vI
∗
V S

y0
SV

+ β∗
vS

∗
V S

y0
IV

 .
Therefore

ψ′ = ψ′
1 + ψ′

2 + ψ′
3 + ψ′

4

ṠSV
= −ψ′(p∗,x∗; (M,Sx)) + Ω′(p∗,x∗; (M,Sx)) +O′

SV
(p∗,x∗; (M,Sx)).

Turning our attention to Ė, we have:

Ė = Ψ− ΞσE − (1− Ξ)σE − µE.

Given that we have already LD-differentiated Ψ earlier, our focus will be on the smooth
portion:

OE(p,x) = −ΞσE − (1− Ξ)σE − µE = −ΞσE − σE + ΞσE − µE = −σE − µE

⇒ O′
E(p

∗,x∗; (M,Sx)) =
[
JpOE(p∗,x∗) | JxOE(p∗,x∗)

] [M
Sx

]
= [ 01,4 −E∗ 01,14 | 0 0 −σ∗−µ 01,11 ]

[
M
Sx

]
=

[
−E∗m5,1+(−σ∗−µ)Sβn

E

...
−E∗m5,19+(−σ∗−µ)Sy0

E

]
.

Consequently:

ṠE = Ψ′(p∗,x∗; (M,Sx)) +O′(p∗,x∗; (M,Sx))
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Moving forward, we consider:

ĖV = ψ − ΞσEV − (1− Ξ)σEV − µEV = ψ − σEV − µEV

Once more, since we have already LD-differentiated ψ in the section pertaining to SV , our
attention will be directed towards the smooth part:

OEV
(p,x) = −σEV − µEV

⇒ O′
EV

(p∗,x∗; (M,Sx)) =
[
JpOEV

(p∗,x∗) | JxOEV
(p∗,x∗)

] [M
Sx

]
= [ 01,4 −E∗

V 01,14 | 0 0 0 −σ∗−µ 01,10 ]

[
M
Sx

]

=

 −E∗
Vm6,1+(−σ∗−µ)Sβn

EV

...
−E∗

Vm6,19+(−σ∗−µ)Sy0
EV

.
Therefore

ṠEV
= ψ′(p∗,x∗; (M,Sx)) +O′(p∗,x∗; (M,Sx)).

Likewise, for IS,

İV = (1− Ξ)σEV − γIV − ηIV − ϕIV − µIV − δvIV ,

the equation is smooth and leads to straightforward solution.

I ′V (p
∗,x∗; (M,Sx)) =

[
JpIV (p∗,x∗) | JxIV (p∗,x∗)

] [M
Sx

]
= [ 01,4 (1−Ξ∗)E∗

V −σ∗E∗
V −I∗V −I∗V −I∗V 01,10 | 0 0 0 (1−Ξ∗)σ∗ 0 −(γ∗+η∗+ϕ∗+µ+δv) 01,8 ]

[
M
Sx

]

=

 (1−Ξ∗)E∗
Vm5,1−σ∗E∗

Vm6,1−IV (m7,1+m8,1+m9,1)+(1−Ξ∗)σ∗Sβ
EV

−(γ∗+η∗+ϕ∗+µ+δ)Sβ
IV

...
(1−Ξ∗)E∗

Vm5,19−σ∗E∗
Vm6,19−IV (m7,19+m8,19+m9,19)+(1−Ξ∗)σ∗S

y0
EV

−(γ∗+η∗+ϕ∗+µ+δ)S
y0
IV
.


Once again, we encounter a scenario characterized by smooth dynamics:

İA = Ξσ[E + EV ]− γIA − µIA.

This can be solved to find:

I ′A(p
∗,x∗; (M,Sx)) =

[
JpIA(p∗,x∗) | JxIA(p∗,x∗)

] [M
Sx

]
= [ 01,4 Ξ∗(E∗+E∗

V ) σ∗(E∗+E∗
V ) 0 0 −I∗A 01,9 | 0 0 Ξ∗σ∗ Ξ∗σ∗ 0 0 −γ∗−µ 01,6 ]

[
M
Sx

]

=

 Ξ∗(E∗+E∗
V )m5,1+σ∗(E∗+E∗

V )m6,1−I∗Am9,1+Ξ∗σ∗Sβ
E+Ξ∗σ∗Sβ

EV
+(−γ∗−µ)Sβ

IA

...
Ξ∗(E∗+E∗

V )m5,19+σ∗(E∗+E∗
V )m6,19−I∗Am9,19+Ξ∗σ∗S

y0
E +Ξ∗σ∗S

y0
EV

+(−γ∗−µ)Sy0
IA
.


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As we shift our focus back to the non-smooth realm with IH , the expression is as follows:

İH = ηIS − h(IH)− µIH − δhIH

= −min(rIH , rHc) + ηIS − µIH − δhIH

= W (p,x) +O(p,x)
WIH (p,x) = −min(rIH , rHc)

OIH (p,x) = ηIS − µIH − δhIH .

For the smooth part we have that

OIH (p,x) = ηIS − µIH − δhIH

O′
IH
(p∗,x∗; (M,Sx)) =

[
JpOIH (p

∗,x∗) | JxOIH (p
∗,x∗)

] [M
Sx

]
= [ 01,6 I∗S 01,12 | 01,4 η∗ 0 0 −µ−δh 01,6 ]

[
M
Sx

]

=

 I∗Sm7,1+η∗S
β
IS

+(−µ−δh)Sβ
IH

...
I∗Sm7,19+η∗S

β
y0

+(−µ−δh)Sβ
y0


For the nonsmooth part, our approach mirrors the calculation previously performed in the
sensitivity derivation for R, albeit with a sign change. Hence, we have:

ṠIH = −slmin([r∗I∗H I∗Hm12,1 + r∗SβIH · · · I∗Hm12,1 + r∗Sy0
IH
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T)

+

 I∗Sm7,1+η∗S
β
IS

+(−µ−δh)Sβ
IH

...
I∗Sm7,19+η∗S

β
y0

+(−µ−δh)Sβ
y0


Much like its unvaccinated counterpart, IHV also falls into the non-smooth category. In
this instance, we select:

İHV = ηIV − h(IHV )− µIHV − χδhIHV

= −min(rIV , rHc) + ηIV − µIHV − χδhIHV

= WIHV
(p,x) +OIHV

(p,x)
WIHV

(p,x) = −min(rIV , rHc)

OIHV
(p,x) = ηIV − µIHV − χδhIHV .

For the non smooth part W (p,x) we have that

W ′
IHV

(p∗,x∗) = −slmin([r∗I∗HV Jpr
∗I∗VM+ Jxr

∗I∗VSx], [r
∗Hc Jpr

∗HcM+ Jxr
∗HcSx])

= −slmin([r∗I∗HV [011, I∗HV,0
7]M + [08, r∗,05]Sx], [r

∗Hc [011,Hc,0
7]M + 0Sx])

= −slmin([r∗I∗HV I∗HVm12,1 + r∗SβIHV
· · · I∗HVm12,1 + r∗Sy0

IHV
]T,

[r∗Hc Hcm12,1 · · · Hcm12,19]
T ).
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For the smooth part we have that

O′
IHV

(p∗,x∗; (M,Sx)) =
[
JpOIHV

(p∗,x∗) | JxOIHV
(p∗,x∗)

] [M
Sx

]
= [ 01,7 I∗V 01,11 | 01,5 η∗ 0 0 −µ−χδh 01,5 ]

[
M
Sx

]

=

 I∗Vm7,1+η∗S
β
IV

+(−µ−χδh)Sβ
IHV

...
I∗Vm7,19+η∗S

y0
IV

+(−µ−χδh)S
y0
IHV


Therefore

ṠIH = −slmin([r∗I∗H I∗HVm12,1 + r∗SβIHV
· · · I∗HVm12,1 + r∗Sy0

IHV
]T, [r∗Hc Hcm12,1 · · · Hcm12,19]

T)

+

 I∗Vm7,1+η∗S
β
IV

+(−µ−χδh)Sβ
IHV

...
I∗Vm7,19+η∗S

y0
IV

+(−µ−χδh)S
y0
IHV


The quarantine categories exhibit smooth behavior, with the initial one being:

İQ = ϕIS − γIQ − µIQ − δIQ

and can be easily solved resulting in

I ′Q(p
∗,x∗; (M,Sx)) =

[
JpIQ(p∗,x∗) | JxIQ(p∗,x∗)

] [M
Sx

]
= [ 0[1,7] I

∗
S −I∗Q 01,9 | 01,4 ϕ∗ 01,4 −γ∗−µ−δ 01,4 ]

[
M
Sx

]

=

 I∗Sm8,1−I∗Qm9,1+ϕ∗S
β
IS

+(−γ∗−µ−δ)Sβ
IQ

...
I∗Sm8,19−I∗Qm9,19+ϕ∗S

y0
IS

+(−γ∗−µ−δ)Sy0
IQ
.


The second quarantine category is

İQV = ϕIV − γIQV − µIQV − δvIQV

and can be easily solved resulting in

I ′QV (p
∗,x∗; (M,Sx)) =

[
JpIQV (p∗,x∗) | JxIQV (p∗,x∗)

] [M
Sx

]
= [ 0 0 0 0 0 0 0 I∗V −I∗QV 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 ϕ∗ 0 0 0 0 −γ∗−µ−δv 0 0 0 ]

[
M
Sx

]

=

 I∗Vm8,1−I∗QVm9,1+ϕ∗S
β
IV

+(−γ∗−µ−δ)Sβ
IQV

...
I∗Vm8,19−I∗QVm9,19+ϕ∗S

y0
IV

+(−γ∗−µ−δ)Sy0
IQV

.


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APPENDIX C
BE-SEIMR MODEL COMPARISON

We have opted to draw parameters from Acuña-Zegarra et al. [1] due to the noteworthy
parallels between their non-vaccination model and our initial base model. Here we present
their model:

Ṡ = µN − (
βSIS + βAIA

N
)S − µS + σRR

Ė = (
βSIS + βAIA

N
)S − µE − σEE

İS = ρσEE − µIA − αAIA

İA = (1− ρ)σEE − µIA + αAIA

Ṙ = αSIS − θαSIS + αAIA − µR− σRR

Ḋ = θαSIS.

In order to get a better understanding of their model we must make a few modifications.
As a preliminary step, we must adjust the outputs of their system. We will transform the
exact values representing individuals within each compartment into proportions of the
population, ranging from zero to one. We will then change their naming conventions to
match our own, ensuring consistency in terminology. This results in their model becoming:

Ṡ = µ− Sβn(IS + IA)− µS + ζR

Ė = Sβn(IS + IA)− µE − σE

İS = (1− Ξ)σE − µIA − γIA

İA = ΞσE − µIA + γIA

Ṙ = γIS − δIS + γIA − µR− ζR

Ḋ = δIS.

While there exist a few minor disparities between the Acuña-Zegarra model and our model,
they are of minimal consequence. One such difference is their choice to direct disease
related deaths out of the recovered compartment instead of IS. However, it is important to
note that these two flows are identical in value and lead to the same ultimate outcome.
The other minor distinction lies in their omission of adding disease related deaths back into
the model as births. Given the relatively large population values they employed
N = 26446435 [1], the impact of this omission on the overall model dynamics is negligible.
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