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The ability to relate physical concepts and phenomena to multiple mathematical 

representations—and to move fluidly between these representations—is a critical outcome 

expected of physics instruction. In upper-division quantum mechanics, students must work with 

multiple symbolic notations, including some that they have not previously encountered. Thus, 

developing the ability to generate and translate expressions in these notations is of great 

importance, and the extent to which students can relate these expressions to physical quantities 

and phenomena is crucial to understand. 

To investigate student understanding of the expressions used in these notations and the 

ways they relate, clinical think-aloud interviews were conducted and an online survey was 

administered, all to students enrolled in upper-division quantum mechanics courses. The 

interviews were conducted at a single institution with a “spins-first” instructional approach, 

while the surveys were administered at ten institutions, including both “spins-first” and “wave 

functions-first” courses. The interviews and surveys focused on expressions for probabilities and 

their constituent terms. Analysis of student interviews used the symbolic forms framework to 

determine the ways that participants interpret and reason about these expressions. Survey 



 

responses were analyzed using network analysis techniques to determine the ways that 

students conceptualized these expressions and both whether and how they related analogous 

expressions between notations. Survey responses were also used to compare students’ 

understanding of these expressions and their relations between the two curricula studied. 

Multiple symbolic forms—internalized connections between symbolic templates and 

their conceptual interpretations—were identified in both Dirac and wave function notation, 

suggesting that students develop an understanding of expressions for probability both in terms 

of their constituent pieces and as larger composite expressions. Network analysis techniques 

determined the relative strength of conceptual connections between expressions in different 

notations and were also used to understand the relative weight of different conceptualizations 

of expressions that share multiple possible interpretations. Comparative analysis between 

instructional approaches showed similarity in their conceptions of common expressions within 

quantum mechanics but also highlighted differences, such as a general preference for and 

better understanding of expressions in the notation taught first in their respective courses. 
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CHAPTER 1  

INTRODUCTION 

Mathematics is the language of physics, and thus any student seeking to model the 

physical world will by extension be required to develop mathematical skills and reasoning to be 

successful in the field of physics. This only becomes more true as students begin to study more 

advanced systems and interactions, where mastering the mathematics required can quickly 

become one of the most challenging aspects of learning these advanced topics in physics. 

There has been extensive work both within the physics education research (PER) and the 

research in undergraduate mathematics education (RUME) communities to better understand 

students’ physical and mathematical reasoning skills, both individually and where the reasoning 

between these two domains overlap. Some of this work has been conducted at the introductory 

level, such as in studies of student understanding of integrals as the area under curves (Nguyen 

& Rebello, 2011), their use of differentials in electrostatic integrals (Hu & Rebello, 2013), or in 

attempts to assess students’ ability to reason about quantities (White Brahmia et al., 2021). 

There has also recently been a focus on these math-physics skills in the upper division, including 

investigations of students working with vector calculus concepts such as divergence and curl in 

electromagnetic contexts (Bollen, Van Kampen, Baily, & De Cock, 2016) and representations of 

vector fields (Bollen, Van Kampen, Baily, Kelly, & De Cock, 2017). Some of these studies have 

made use of epistemological framing, whereby students tend to exist within certain modes—

such as one focused on formal mathematical manipulations or focused solely on physical 

intuition—and transition between them as the need arises while reasoning through physics 

problems (Bing & Redish, 2012; Modir, Thompson, & Sayre, 2017). Another theoretical 
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framework for analyzing the ways that students reason about the mathematics required in 

physics that will see much discussion in this dissertation was developed by Sherin (2001). Sherin 

studied students’ understanding of mathematical relationships within symbolic expressions and 

found that students had developed the ability to separate different symbolic organizations into 

distinct interpretable elements that he called symbolic forms. This symbolic forms framework 

was adapted from diSessa’s knowledge-in-pieces (KiP) framework (and Hammer’s resources 

framework, another extension of KiP), whereby the complex nature of student conceptual 

understanding could be modeled by collections of smaller knowledge elements (diSessa, 1993; 

Hammer, 2000). Where these theoretical frameworks modelled student conceptual 

understanding of physics, symbolic forms sought to model student understanding and 

interpretations of symbolic mathematical expressions as they are used to express mathematical 

and physical relationships. This framework has since been extended to study mathematical 

sensemaking in contexts such as electrostatics (Hu & Rebello, 2013; Schermerhorn & 

Thompson, 2019) and quantum mechanics (Dreyfus, Elby, Gupta, & Sohr, 2017). Redish and Kuo 

(2015) discussed symbolic forms as an example of an extension of embodied cognition—the 

theory that meaning is grounded in physical experience—into mathematical reasoning. In 

general, much has been made of attempting to better understand students’ mathematical 

reasoning and the ways in which it relates to their physical understanding. 

This research aims to extend this work further into the realm of quantum mechanics. 

While Dreyfus et al. (2017) did previously investigate mathematical reasoning in quantum 

mechanics, their work was primarily grounded in an expert perspective and focused primarily 

on interpretations of eigenvalue equations within a quantum mechanical context (Dreyfus et al., 
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2017). This quantum mechanical context is particularly well-suited for research into students’ 

physical-mathematical reasoning due to its relative abundance of symbolic notations that are 

regularly used, and the abstract nature of the mathematics on offer. Because of the non-

classical, probabilistic nature of quantum physics, students need to rely more than ever on their 

mathematical reasoning to succeed, thus making an understanding of their 

mathematical/physical reasoning even more pertinent within this context. In upper-division 

quantum mechanics, students are expected to generate, interpret, and work with symbolic 

expressions written in three different notations: Dirac notation, wave function notation, and 

matrix-vector notation. While studies have been conducted both on these notations’ particular 

affordances and limitations (Gire & Price, 2015) and students’ preferences for selecting a 

notation for calculations (Schermerhorn, Passante, Sadaghiani, & Pollock, 2019), only a few 

studies have investigated students’ ability to translate between them and the factors that may 

permit students to do so successfully (Wan, Emigh, & Shaffer, 2019). Similarly, only a small 

amount of prior work has been done to study how students interpret expressions in these 

notations and how they reason while generating these expressions (successfully or 

unsuccessfully) (Wan et al., 2019). 

Another reason that this quantum mechanical context is of particular interest for this 

research topic is due to the curricular differences between quantum mechanics courses at 

different institutions. There are primarily two different instructional approaches used for upper-

division quantum mechanics courses—those that begin by studying the Schrödinger equation 

with continuous systems expressed in wave function notation (wave functions-first curricula), 

and those that begin with spin-1/2 systems and the Stern-Gerlach experiment, studying discrete 
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systems with Dirac and matrix-vector notations (spins-first curricula). Each approach eventually 

transitions to study the alternative systems and use the alternate notations later in the course. 

Because these notations have such distinct appearances, govern seemingly disparate physical 

systems, and are taught with very different focuses and in a different order, it is reasonable to 

suspect that the choice of curriculum by an instructor would affect their students’ reasoning 

about the symbolic expressions they work with. 

In pursuit of our goal to extend prior work on student understanding of the notations 

used in quantum mechanics courses, we aim to answer the following questions: 

1. In what ways do students conceptualize and interpret symbolic expressions in 

quantum mechanics? 

2. How strongly and in what ways do students conceptually relate expressions, both 

within and across notations? 

3. To what extent, and in what ways, do students in spins-first and wave functions-first 

curricula differ in how they conceptualize symbolic expressions in quantum 

mechanics? 

To address these questions, we used a combination of in-person think-aloud interviews 

and online surveys. Due to the broad nature of our questions, we constrained our purview to 

study only expressions representing probability concepts within quantum mechanics and only 

expressions within the Dirac and wave function notations. Because these expressions contain 

constituent sub-expressions such as Dirac bras and kets and wave functions, we necessarily 

studied these sub-expressions as well—specifically as they are used in these probability 

contexts. We defined new symbolic forms identified within student interviews as the elemental 
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building blocks of symbolic expressions in quantum mechanics. The investigation comparing the 

two approaches in question relied on data from the online surveys, which were distributed at 

multiple institutions over two years. 

The core of this dissertation consists of three chapters (Chapters 3, 4, and 5), the 

structure of which bears some explanation. Chapter 3 contains a symbolic forms analysis of data 

from interviews conducted both virtually and in-person with students in a spins-first course. 

These interviews primarily concerned students generating, translating, working with, and 

reasoning about expressions for probability (and their constituent sub-expressions), and the 

findings of this chapter serve as a useful means of helping to explain some of the findings seen 

in later chapters. Chapter 4 is a manuscript (in preparation for journal submission) describing a 

study of the survey data collected from students enrolled in spins-first quantum mechanics 

courses around the US. This survey largely consisted of students categorizing various 

expressions by their conceptual interpretations. Much of this manuscript concerns a novel use 

of network analysis techniques to glean meaningful understanding of students’ conceptual 

understanding of expressions from this survey’s responses with minimal reliance on free-

response questions. Due to this chapter’s status as a stand-alone manuscript, it is a self-

contained work and thus there will be some repetition of the relevant literature discussed 

within Chapter 2. These network analysis techniques (among others) are then used in Chapter 5 

to analyze survey responses from students in wave functions-first and spins-first courses; the 

results are then used to compare the conceptual understanding and interpretations of 

expressions across the two different curricula. Due to the nature of Chapter 4 as a stand-alone 

paper, there is not a single unified methodology chapter; explanations for the study designs and 
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analysis methods used are instead contained within their respective chapters. In Chapter 6, 

conclusions from across the study are summarized, larger themes of our results are explored, 

potential avenues for future research are discussed, and some instructional implications are 

offered based on our findings. 
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CHAPTER 2  

BACKGROUND AND REVIEW OF RELEVANT LITERATURE 

A substantial amount of research has been conducted concerning student use and 

understanding of mathematical representations, both in physics at large and in quantum 

mechanics specifically. Much of this work has been conducted to investigate how students 

interpret meaning from equations and graphs. However, these studies are often either very 

broad in intended application—and therefore as general as possible—or are limited in scope to 

a specific relation or representational translation. We seek to extend the current literature base 

by investigating the ways students engage with two representations that are ubiquitous in 

upper-division quantum mechanics classrooms: wave function notation and Dirac notation. To 

do so, we will be drawing from existing literature from both physics education research (PER) 

and research in undergraduate mathematics education (RUME) regarding student conceptual 

understanding and the ways in which students interpret meaning from mathematical 

representations. Section 2.1 will provide a broad overview of the ways that typical spins-first 

and wave functions-first courses discuss and introduce the two notations we are studying. This 

context will prove helpful while discussing the results of our analyses in Chapters 3, 4, and 

especially 5. Sections 2.2 and 2.3 will review prior work in these two areas, respectively, while 

sections 2.4 and 2.5 will discuss prior studies in these areas within the context of quantum 

mechanics, specifically. As much of the analysis conducted in Chapters 4 and 5 will be 

conducted with network analysis techniques, Section 2.6 will discuss prior discipline-based 

education research using these techniques. 
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2.1 Instructional Context 

Because much of this work will discuss notation, and particularly notation as understood 

by upper-division quantum mechanics students, it will prove useful to briefly discuss the ways 

that the texts these students use introduce and discuss the notations in question. While 

instructors are certainly not expected to (and rarely do) teach in exactly the way the text 

introduces and discusses topics, it is nonetheless the case that they are likely to hew fairly close 

if for no other reason than it is the book they selected and that students will be expected to use 

as reference. Thus, our expectation is that the ways that the chosen text discusses a topic will 

be roughly indicative of the instruction that the students in these courses will receive. This 

section will discuss the broad differences between the two primary instructional approaches 

used within upper-division quantum mechanics: spins-first and wave functions-first approaches. 

The tables of contents for the most commonly-used textbooks for both of these types of 

courses are perusable in Appendix A, providing an overview of the topics covered in these 

courses as well as the order in which they are commonly taught. Appendix B provides a more in-

depth examination of the ways that Dirac notation and wave function notation are introduced in 

the texts used for these two different types of courses. 

Spins-first courses generally begin by motivating both the existence of discretized 

quantum states and the use of Dirac state vectors to describe them via the Stern-Gerlach 

experiment. The textbooks used in these courses introduce Dirac formalism and connect them 

to matrix-vector descriptions of superposition states. They also explicitly analogize Dirac 

eigenstates/eigenvectors with cartesian unit vectors, including connecting dot product ideas 

seen in earlier physics courses to inner products as used in quantum mechanics. Wave function 
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notation is introduced later in the course, and expressions are directly connected to their Dirac 

notation analogs (e.g., with “|𝜓⟩ =̇ 𝜓(𝑥),” where “=̇” means “is represented by” rather than “is 

equivalent to”). Because these courses begin by studying systems with discrete observables and 

are necessarily transitioning to study continuous observables with the introduction of wave 

functions, explicit parallels are drawn between discrete probability amplitudes (as expressed by 

Dirac brackets) and continuous probability density amplitudes (as expressed by wave functions). 

Generally, textbooks used in these courses make use of Dirac expressions and their 

interpretations as seen earlier in the course to introduce wave function expressions via their 

analogs in Dirac. More details on the ways that these notations are introduced and the ways 

that analogs are used to relate them to each other within a spins-first text can be found in 

Appendix A. 

As may be expected, textbooks used in wave functions-first courses begin by introducing 

wave functions and the Schrödinger equation as a necessary step for describing time evolution 

of quantum systems. This is motivated by drawing a parallel between the Schrödinger equation 

and Newton’s second law for quantum and classical systems, respectively. Similar to the way 

that Dirac notation is introduced in spins-first courses, much of the mathematical formalism is 

simply posited—though without the analogies to geometric spatial vectors used to ground an 

understanding of state vectors seen in spins-first courses. When these texts then introduce 

Dirac notation, they do so by drawing parallels between the wave function solutions to various 

potential wells discussed earlier in the course and general mathematical properties of quantum 

mechanics—namely, linear algebra. Expressions with the appearance of Dirac kets and brackets 

are briefly introduced, but discussed in terms of wave function notation operations such as 
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integration. Kets are eventually discussed as being a representation of quantum states and as 

“vector[s] […] ‘living out there in Hilbert space’” (Griffiths, 1995, p. 119), and bras as first “an 

instruction to integrate” and later as a row vector within a dual space (Griffiths, 1995, p. 122). 

Once Dirac notation is introduced, it is not used for much of the rest of a one-semester course 

(a two-semester course will typically include advanced topics later in the text, such as 

perturbation theory, for which Dirac notation is more appropriate). More details on the ways 

that these notations are introduced and the ways that analogs are used to relate them to each 

other within a wave functions-first text can be found in Appendix A. 

2.2 Theoretical Frameworks for Analysis of Student Understanding 

Multiple theoretical frameworks have been developed for use in analyzing student 

understanding of concepts and representations. The following frameworks allow for insight into 

student thought processes regarding these topics, providing a lens with which to interpret 

student data as well as a foundation from which to construct models of conceptual 

understanding. This discussion will prove useful as a means of framing our investigation of 

students’ representational understanding within a quantum mechanical context. As we are 

investigating students’ mathematical and physical interpretations of expressions within this 

context, these theoretical frameworks come from both RUME and PER communities, and 

address different grain sizes and breadth, ranging from concepts to individual knowledge 

elements (both mathematical and physical) and from representations to individual symbols in 

expressions. 
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2.2.1 Concept Images 

Originally used by researchers in the RUME community in the study of functional 

continuity and limits, concept images are cumulative cognitive structures that are associated 

with a given concept, including “all mental pictures, associated properties, and processes” 

associated with the concept (Tall & Vinner, 1981). This idea has been used in PER as well, largely 

in the context of upper-level electromagnetism and the associated mathematics (Bollen, Van 

Kampen, Baily, & De Cock, 2016; Roundy et al., 2015; Schermerhorn & Thompson, 2019), but 

also to study more general mathematical difficulties such as concepts of integration as an area 

under a curve (Nguyen & Rebello, 2011). The essential idea behind this framework is that 

students develop a structure of these properties and processes through their own experiences, 

which will change as they mature and meet new stimuli. Most of the associated mental pictures 

remain dormant, with a given context causing certain associated meanings to come to the fore; 

these “excited” aspects of the whole concept image create what is known as an evoked concept 

image, which is what we observe in student behavior. This context-dependent nature of what 

we can observe is key to this framework, as many different contexts may be necessary to gain a 

better look at a student’s entire concept image, and thus see what their true understanding of a 

given concept may be. The concept images developed by students may or may not be in 

agreement with concept images used by experts, but the goal of instruction is to better align 

the two. Bollen et al. (2016) studied these concept images of divergence and curl within 

electromagnetic contexts, while Roundy et al. (2015) studied experts’ concept images related to 

partial derivatives. Schermerhorn and Thompson (2019), meanwhile, studied students’ concept 

images for differential length vectors. 
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2.2.2 Knowledge-In-Pieces and Resources 

There are somewhat analogous frameworks to that of concept images that have arisen 

within the PER community as well, e.g. that of knowledge-in-pieces (diSessa, 1993) and 

resources (Hammer, 2000). They are similar in that they all view student conceptual 

understanding as both context-dependent and as an amalgam of multiple smaller concepts that 

are combined in a given context to form a cumulative whole idea. According to the knowledge-

in-pieces framework, students have simple, fundamental ideas related to their embodied 

experience such as bigger means slower and springiness. These primitive ideas and relations 

were (rather appropriately) dubbed phenomenological primitives (p-prims) and were viewed as 

fundamental building blocks of physics reasoning. The resources framework is a knowledge-in-

pieces framework and thus draws upon the same ideas while postulating that students have 

conceptual and epistemological resources—ideas of physical relations or types of information—

that may be in conflict and that may or may not be activated in a given context to generate 

plausible physical theories. In this way, the resources framework seeks to describe student 

concept creation, where in a given context certain conceptual resources may be activated in 

tandem and will inform a student’s understanding or belief of how a physical phenomenon may 

work. While it postulates that p-prims may act as conceptual resources, the resources 

framework also leaves room for larger conceptual resources that may have their own structure 

of smaller ideas as well (diSessa & Sherin, 1998). 

2.2.3 Symbolic Forms 

Similar to how physics education researchers worked to find basic building blocks of 

student conceptual understanding with p-prims and conceptual resources, so too has other 
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work sought to extend the resources framework in order to describe students’ symbolic 

representational understanding with the symbolic forms framework (Sherin, 2001). Where p-

prims and conceptual resources were found to represent building blocks of conceptual 

knowledge and understanding, symbolic forms serve as building blocks for meaning encoded in 

symbolic representations. Symbolic forms thus represent a marriage of form (e.g., the shapes 

and squiggles on paper and their orientation relative to each other) and meaning (i.e., the 

relationships ascribed to the given arrangements of shapes and squiggles). These are referred to 

within the framework as symbol templates and conceptual schemata, respectively, and their 

combinations are dubbed symbolic forms. These are intended to be viewed as the simplest 

possible relationships; a given equation in physics may be constructed of multiple symbolic 

forms. An example symbolic form is “opposition,” represented by the symbol template “□ −  □” 

and the conceptual schema “two influences working against each other.” An example 

application of the “opposition” symbolic form would be in the sum of vertical forces acting on a 

block resting on a surface: 𝑁 − 𝑚𝑔. This framework allows for theory building where new 

building blocks of symbolic reasoning are discovered, and has been used as such both for 

studying mathematical sense-making in electrostatics contexts with vector calculus (Hu & 

Rebello, 2013; Schermerhorn & Thompson, 2019) and linear algebra concepts in quantum 

mechanics (Dreyfus et al., 2017; Pina, Topdemir, & Thompson, 2023). Dreyfus et al. (2017) 

studied students’ reasoning about quantum mechanical eigenvalue equations and posited a 

number of symbolic forms from an expert perspective, while Pina et al. (2023) adapted and 

extended this work to study symbolic forms for these expressions that were developed by 

students. As these symbolic representations and their implied meaning are often not taught 
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explicitly (unlike much of the conceptual knowledge built from conceptual resources, which is 

largely the curricular focus), a greater understanding of these forms and more explicit curricular 

goals related to symbolic understanding is largely the goal of research within this framework. 

2.2.4 Symbol Sense 

The RUME community has used the framework of symbol sense (Arcavi, 1994) for 

studying student understanding of symbolic representations. Designed primarily for analyzing 

student sense-making in algebra, symbol sense concerns the abilities both to detach meaning 

from symbols in an expression and to retain a global, gestalt view of the expression as a whole 

in order to more efficiently conduct algebraic steps. In a way, an aspect of symbol sense would 

be the ability to work constructively with symbolic forms, as it includes “sensing the different 

roles symbols can play in different contexts” (Arcavi, 1994). These abilities to aid in symbolic 

manipulation as well as the reading of symbolic expressions for meaning are all viewed as 

aspects of symbol sense. Symbol sense goes beyond reading and manipulation of equations, 

however, as it also includes the ability to choose an appropriate representation as well as switch 

between options when a choice becomes unsatisfactory. The ability to construct symbolic 

representations to correctly model desired mathematical relationships is also a sign of symbol 

sense—perhaps one of the more difficult aspects to master. Related to our work, symbol sense 

also encompasses “the ability to select a possible symbolic representation of a problem, and, if 

necessary … [to search] for a better one as a replacement” (Arcavi, 1994). When looking at how 

to foster and improve symbol sense in students, researchers have found that the development 

of symbol sense may be affected more by an attitude toward knowledge and learning rather 

than simply cognitive ability alone (Arcavi, 2005). 
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2.2.5 Representational Competence 

Representational competence is a theoretical framework that was originally developed 

in chemistry education research to specifically target students’ understanding of and ability to 

work with multiple representations—including symbolic and graphical representations (Kozma 

& Russell, 1997). Researchers using this framework found that students possess an impressive 

ability to generate, judge the quality of, and refine representations of given phenomena. This 

aspect of representational competence was dubbed meta-representational competence (MRC) 

(diSessa, Hammer, Sherin, & Kolpakowski, 1991), as it was not only their competence with 

generating or understanding representations that proved valuable, but their ability to reason 

about the representations as well—critiquing and refining them as deemed necessary by the 

students. They found that even young children possess a “deep, rich, and generative (if intuitive 

and sometimes limited) understanding of representation” (diSessa & Sherin, 2000), and that this 

inherent MRC may be key to deepening student understanding of the power and limitations of 

representations both in physics and more generally (diSessa, 2004). Specifically, MRC focuses on 

the benefits of representations beyond the “sanctioned” representations such as graphs and 

tables, and more on student-generated representations that may prove more useful for a given 

context. This framework has been used by both mathematics and physics education researchers 

to study student understanding of linear algebra representations in quantum mechanics 

(Wawro, Watson, & Christensen, 2020). 

Related work within PER also describes two skills that are needed to benefit from using 

multiple representations in physics: representational fluency and representational flexibility (De 

Cock, 2012). Representational fluency refers to “the ability to construct or interpret certain 
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representations like equations, diagrams, or graphs, but also to what extent someone can 

switch between different representations on demand,” and representational flexibility involves 

“making appropriate representational choices when solving problems” (Bollen et al., 2017). The 

idea of representational fluency has been used to investigate the challenges students face when 

working with symbolic and graphical representations of vector fields (Bollen et al., 2017).  

2.3 Meaning from Mathematical Representations 

Research in physics education has shown that the ways in which conceptual meaning is 

tied to representations are multifaceted, and authors often use different combinations of the 

various frameworks previously mentioned to analyze their student data and to inform their 

claims. Redish and Kuo (2015) used some aspects of cognitive semantics to compare how 

meaning is made in language and to “show how those same mechanisms can be used to 

understand how meaning is made with mathematical expressions in both science and math” 

(Redish & Kuo, 2015). They discuss how embodied cognition—the theory that conceptualization 

and meaning are grounded in physical experience and actions—can be extended to 

mathematical reasoning, using the symbolic forms framework as an example (Sherin, 2001). 

They argued that the conceptual schema—the understanding of the relationships between the 

different objects within a symbolic form—is obtained through embodied experience (Redish & 

Kuo, 2015). They cite the parts-of-a-whole symbolic form, where the concept of pieces of a 

larger whole are inherently connected to physical experiences with real-life objects that are 

made up of smaller objects.  

Other researchers have conducted studies on students’ ability to translate a concept 

represented graphically into an equation and vice versa (Van den Eynde, van Kampen, Van 
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Dooren, & De Cock, 2019), and how their success in doing so depends on the context given. 

Particularly, they found that students do significantly better at translating between the two in a 

“pure” mathematical context than they do in contexts grounded in physics. They also showed 

that students were more successful at constructing a symbolic equation from a graph than they 

were at selecting the appropriate graphical representation for a given equation. 

In the realm of a more “pure” math context, work has been done in the RUME 

community on student understanding of linear algebra concepts such as eigenvalue equations 

(Henderson, Rasmussen, Zandieh, Wawro, & Sweeney, 2010). This work has explored common 

student notational confusion in this subject, where an operator and its corresponding 

eigenvalue can be interpreted to be similar despite one being a matrix and the other a scalar. 

Other work in this field has pursued the actual type of equation that eigenvalue equations are, 

and have considered how this equivalence is viewed by students (Thomas & Stewart, 2011). 

Their findings include that the equality signified in the eigenvalue equation seems to represent 

a different kind of relationship to students than other equalities they are more accustomed to. 

This type of investigation has recently been somewhat extended into the realm of quantum 

mechanics eigenvalue problems as well. Wawro and colleagues (2017) used the theory of meta-

representational competence (diSessa et al., 1991) alongside Gire and Price’s structural features 

framework (a framework for understanding the affordances and limitations of the various 

algebraic notations used in quantum mechanics) (Gire & Price, 2015) to analyze students’ 

critical use of and selection between different notational forms. Gire and Price’s structural 

features framework is discussed in greater detail in Section 2.5.2. 
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2.4 General Quantum Mechanics Meaning and Understanding 

Research into student understanding of quantum mechanics is nothing new to the field 

of PER. There has been a large amount of work conducted in this topic for many reasons, 

perhaps foremost because it is widely considered a difficult subject for students due to its 

unintuitive nature and the relatively under-used mathematics common in its implementation. 

Studies of common student difficulties in quantum mechanics go as far back as the 1990s (Styer, 

1996), and other such compilations of scientifically-validated areas of difficulty in quantum have 

been published in the years since (Singh, 2001, 2008; Singh & Marshman, 2015). These studies 

typically delve slightly into how to improve instruction based on their findings, but such 

interventions are not typically the focus of the paper. Other work has been done to try and 

improve student outcomes by drawing parallels between subjects in physics that are more well-

understood by students—like introductory mechanics—and quantum mechanics (Bao & Redish, 

2002). This and similar work focus on an aspect of quantum physics that is often seen as a 

barrier to students’ understanding: the inherently probabilistic nature of quantum particles. 

This work attempts to ground this probabilistic nature of quantum mechanics by showing that 

quantities such as probability densities of position can be used in classical mechanical systems, 

and thus attempts to demystify some aspects of quantum physics. More research has been 

conducted in this field more recently as well, implementing interactive simulations to better 

show the mathematical connections between quantum and non-quantum systems with regard 

to classical probability densities (Kohnle, Jackson, & Paetkau, 2019). 

Other recent studies focused on the different ontologies students assign to quantum 

entities such as wave packets, and the way in which these wave-particle duality-based 
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ontologies are constructed (Hoehn & Finkelstein, 2018). Somewhat in contrast to the broader 

investigations of student difficulties in quantum physics, recent work has been focused on deep 

dives into specific difficulties to better understand them (Emigh, Passante, & Shaffer, 2015; 

Passante, Emigh, & Shaffer, 2015), breaking down difficulties in time dependence and 

measurements in quantum physics, respectively, looking closer at the contributing factors to 

these challenging topics. Tutorials have also been designed to improve outcomes for these and 

other specific difficulties in quantum mechanics as well (Emigh, Passante, & Shaffer, 2018; 

Passante, Emigh, & Shaffer, 2014). These recent studies have greatly expanded our 

understanding of student thinking about these particular topics, their associated difficulties, and 

effective ways to combat these difficulties, while leaving much still to be explored further. 

2.5 Meaning from Quantum Mechanical Representations 

Recent work has also investigated representational understanding in quantum 

mechanics specifically. This includes the development of simulation-tutorials specifically 

designed to target students’ graphical understanding of wave functions after measurement and 

time evolution, as well as work conducted to study conceptual interpretations and 

understanding of symbolic representations within quantum mechanics. 

2.5.1 Simulations to Help Students Interpret Quantum Mechanics Graphical Representations 

Like with the previously-mentioned simulations to connect classical sensibilities with 

quantum mechanical concepts (Kohnle et al., 2019), work has also gone into combination 

simulation-tutorial activities to help students better understand aspects of measurement in 

quantum mechanics (Zhu & Singh, 2012). These simulations largely focus on building graphical 

understanding of wave functions and their changes through time and after measurements (if 
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any). The researchers were able to show substantial growth in student understanding of several 

common sticking points in student understanding of wave functions, including stationary states, 

shapes of eigenstates, and wave function shape post-measurement. Other work has since built 

on the idea of graphically-focused simulations, tackling other common areas of difficulty such as 

time evolution of quantum states (Passante & Kohnle, 2019). These simulation-tutorial activities 

aim to develop students’ representational competence by displaying four different 

representations of the same quantum state as it evolves through time (see Figure 2.1). The 

simulation gives students the option of viewing either the ground or first excited states within a 

one-dimensional infinite square well potential or a linear superposition of the two. The 

representations shown in the simulation consist of a symbolic algebraic representation, a three 

dimensional view of the chosen wave function(s) (along the length of the well as well as the 

complex plane), a complex plane cross-section of this three-dimensional view at a single 

position value, and the plot of the probability density of the total wave function along the well. 

Three of the representations used are graphical in design, and all serve to underscore the 

complicated nature of the time evolution of quantum states, as well as the connections 

between the graphical and symbolic representations. Students transitioned from classical visual 

reasoning (such as a traveling wave on a string or a standing wave) toward quantum mechanical 

visual reasoning (requiring understanding of complex geometry and concepts such as 

arbitrary/non-arbitrary phase and relative magnitudes) by working through this highly visual 

simulation-based tutorial. 
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Figure 2.1: Screenshot of the QuVis simulation-tutorial focused on representations of time 
evolution for superpositions of energy states for an infinite square well potential (Passante & 
Kohnle, 2019). This simulation is available at https://www.st-andrews.ac.uk/physics/quvis/. 

2.5.2 Symbolic Representations in Quantum Mechanics 

Other research on mathematical sense-making in quantum mechanics has been used in 

an attempt to expand Sherin’s symbolic forms framework into quantum mechanics by defining 

new symbolic forms from an expert perspective (Dreyfus et al., 2017). They claimed that many 

of the “classical” symbolic forms identified by Sherin still hold for quantum mechanical systems, 

but define two new forms that are inherently necessary for mathematical sense-making in 

quantum mechanics: the transformation symbolic form—represented by the symbol template 

□̂| ⟩—and the eigenvector-eigenvalue symbolic form—represented by the symbol template 

□̂| ⟩ = 𝐶| ⟩. They claimed that these symbolic forms are more abstract and require more 
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indirect reasoning, which reflect the complexity and indirectness of physical interpretations in 

quantum physics. This research, while useful in its extension of the symbolic forms framework 

into quantum reasoning, is ultimately somewhat limited due to its emphasis on proposing 

symbolic forms from an expert point of view, and thus leaves much room still to be investigated 

in this realm in terms of symbolic forms used by students. 

Gire and Price introduced a structural features framework to directly investigate the 

three most prevalent symbolic representations in undergraduate quantum mechanics: Dirac 

notation, matrix notation, and algebraic wave function notation (Gire & Price, 2015). They 

provided evidence of four aspects of the symbolic notations, and investigated how these 

aspects manifest in students’ physical and mathematical interpretations of symbolic statements 

across the different notations (Gire & Price, 2015). The first of these aspects is individuation, 

which is a measure of how easily separable and/or elemental important features are 

represented in a given notation. The second aspect is a notation’s degree of externalization, 

which is a measure of how explicitly relevant elements and features are externalized via 

markings included within the notation. The third, compactness, is simply a measure of how 

much space and writing is required to express quantities and expressions in a given notation. 

Finally, symbolic support for computation measures how well the symbols themselves support 

computation due entirely to their visual properties, such as shape. The relative strength of the 

three notations Gire and Price studied, as well as examples of the reasoning for the notations’ 

scores in each category, can be seen in Figure 2.2. They used this framework to help explain 

students’ work with the notations, as well as their success (or lack thereof) in “using an 

expression in one notation to guide the development of the analogous expression in another 
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notation.” They also discussed their work’s implications for instruction, including “support for 

the value and appropriateness of Dirac notation for undergraduates … and the need for practice 

using and coordinating multiple notational systems.” 

 

Figure 2.2: Gire & Price’s four “structural features” of notations in quantum mechanics. Relative 
scores are given for each notation, as well as examples explaining their relative scores (Gire & 
Price, 2015). 

Researchers have since used this structural features framework to investigate student 

relations between inner products and probabilities in quantum mechanics (Wan et al., 2019). 

They found that Dirac notation’s more directly obvious geometric interpretations aided students 

in thinking about inner products as analogous to dot products, which helped when thinking of 

the meaning of the coefficients. This benefit aside, they found Dirac notation’s low 

externalization to hinder student interpretations of position eigenstates, and its high 

compactness may have led to more student difficulties differentiating between ⟨𝜓|𝜓⟩ and 

𝜓∗(𝑥)𝜓(𝑥). In summary, this research looks both at how the structural features framework can 
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be applied to student sense-making, and analyzes symbolic difficulties prevalent in translating 

between algebraic wave functions and Dirac notation.  

The structural features framework has also been adapted to study student preferences 

for using a given notation when computing expectation values in quantum mechanics within a 

spins-first curriculum context (Schermerhorn, Passante, Sadaghiani, & Pollock, 2019). In 

adapting the structural features framework for the purposes of studying students’ use of 

different methods for computation, they identified four slightly different features that were 

similar to those identified by Gire and Price (2015). Instead of individuation, they used 

identification to refer to whether elements within an expression are identifiable for a given 

student. Externalization remained, but was recontextualized as a measure of a student’s ability 

to express the previously identified components successfully. Compactness returned as well, 

though as computational compactness, referring to the amount of space/writing required to 

compute a given quantity, thus allowing for documentation of both how compact a students’ 

computation is as well as whether they value a given computation technique’s compactness. 

Finally, they removed the symbolic support for computation feature from the structural features 

framework and replaced it with a student’s level of computational confidence, which is a 

measure of a student’s level of comfort with various mathematical operations. In the end, they 

found that students were more likely to use matrix or integral methods for calculating 

expectation values, even where summation methods would be much simpler (i.e., when the 

state is expressed in the basis of the operator in question in Dirac notation). They found that the 

primary drivers of student preference for a given notation were their confidence conducting 

mathematics with the notation and the amount of space required to conduct the computation. 



25 

In other words, students were more likely to use a notation with which they were confident 

performing calculations and that required the least amount of space and/or writing during the 

computation. 

2.6 Network Analysis in Discipline-Based Education Research 

Network analysis is the collective name of a body of work that has been developed to 

study anything where actors and connections between them are worth studying. This includes 

study of topics as diverse as physical infrastructure networks (e.g., airports and the flights 

between them), neural networks (e.g., neurons or areas of the brain and the synapses 

connecting them), information networks (e.g., websites and hyperlinks between them), and 

social networks (e.g., students at a university and social interactions between them) among 

others (Newman, 2010). In these analysis techniques, the actors (e.g., airports, websites, and 

students) are called nodes or vertices, and the connections between them (e.g., flights, 

hyperlinks, and social interactions) are called links or edges. Network analysis consists of a large 

number of techniques that have been developed to study and interpret the relationships 

between these nodes and the edges connecting them. These techniques have recently also seen 

extensive use in both education research in general and physics education research in particular.   

Community detection and cluster analysis techniques have been used to study response 

groupings for various conceptual inventories in physics education research (Brewe, Bruun, & 

Bearden, 2016; Wells et al., 2019; Wells, Henderson, Traxler, Miller, & Stewart, 2020; Wells, 

Sadaghiani, Schermerhorn, Pollock, & Passante, 2021; Wheatley, Wells, Henderson, & Stewart, 

2021; Yang et al., 2020). As these inventories were designed to study student understanding in 

several conceptual categories using several questions apiece, network analysis techniques such 
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as community detection were used as another means of validation of these inventories by 

determining which non-normative responses are often used by the same students, and 

determining whether they represent shared conceptual difficulties. These techniques have also 

seen recent use in interpreting results of Likert-style surveys, where they were showed to be a 

viable alternative or complement to a principal component analysis (PCA) of this format of 

surveys by categorizing survey questions into similar categories as a previously-conducted PCA 

on the aspects of student experience scale (ASES) survey (Dalka, Sachmpazidi, Henderson, & 

Zwolak, 2022).  

There has also been extensive work done with these techniques to study social 

communities and their various impacts in physics, both among communities of educators 

(Hopkins, Ozimek, & Sweet, 2017; Smith, Hayes, & Lyons, 2017) and students (Brewe et al., 

2012; Hopkins et al., 2017; Thomas, 2000). These studies investigated the effects of peer 

coaching on improving teachers’ abilities (Hopkins et al., 2017) and their sense of self-efficacy 

(Smith et al., 2017), as well as the effects of peer interactions on students’ sense of belonging 

within a learning environment (Brewe et al., 2012) and their levels of persistence in higher 

education (Hopkins et al., 2017; Thomas, 2000). Recent work has also been conducted with 

network analysis techniques to characterize how these social communities are affected by 

different active-learning pedagogies (Commeford, Brewe, & Traxler, 2021), as well as by remote 

physics courses (Sundstrom, Schang, Heim, & Holmes, 2022). No work has yet been conducted 

within PER to study student conceptual interpretations of mathematical expressions in physics 

using network analysis techniques, and so in Chapter 4 we contribute to this research base by 

showcasing a means to do so within the context of quantum mechanics. 
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2.7 Summary 

A great deal of research has been conducted in attempting to understand how students 

reason about physical phenomena and the mathematical representations that describe them. 

Some of this was geared toward simply describing students’ conceptual understanding such as 

the development of the concept images and knowledge-in-pieces frameworks (including 

resources and symbolic forms). Other work developed frameworks for understanding the ways 

students reason about mathematical representations, such as symbol sense and 

representational competence/fluency/flexibility. In recent years, some of this work in 

conceptual and representational understanding has been conducted in quantum mechanics 

contexts due to the conceptual difficulty of quantum mechanics and the multitude of 

representations that are regularly used to describe quantum systems. This work has included 

cataloguing the challenges students face while taking courses in this topic, determining the 

ways students reason about certain quantum mechanical phenomena such as wave-particle 

duality, and assisting in their conceptual understanding of multiple challenging topics within this 

context. Some work has even been conducted on the mathematical representations used in 

quantum mechanics, including the development of targeted interventions to assist students in 

the development of their representational competence within quantum-specific mathematics 

such as time evolution within complex function spaces. Other research with the goal of 

understanding the ways that students may conceptualize symbolic representations used in 

quantum mechanics such as Dirac eigenvalue equations through utilization of the symbolic 

forms framework was conducted. This work was valuable in that it codified potential expert-like 

symbolic forms present within representations specific to quantum mechanics such as Dirac 
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notation, but is similarly limited due to not focusing on students’ own developed symbolic 

forms. Similarly, while all of this research has been conducted within either spins-first or wave 

functions-first contexts, there has been no prior research comparing the two populations with 

regard to their understanding of the different notations used within quantum mechanics. As 

notational focus is one of the primary distinguishing factors between these two curricula, this is 

potentially fertile ground for further research. It is with the goal of helping to fill in these 

perceived gaps within the existing literature that we pose our research questions (as discussed 

in Chapter 1): 

1. In what ways do students conceptualize and interpret symbolic expressions for 

probability concepts in quantum mechanics? 

2. How strongly and in what ways do students conceptually relate expressions for 

probability concepts in quantum mechanics, both within and across notations? 

3. To what extent, and in what ways, do students in spins-first and wave functions-first 

curricula differ in how they conceptualize symbolic expressions for probability 

concepts in quantum mechanics? 

It is our hope that in answering these questions, we can contribute to the field’s 

understanding of student representational understanding within this context. We also hope that 

future work both by us and others will both continue to investigate these topics as well as 

extend our initial work on comparing the spins-first and wave functions-first curricula. 
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CHAPTER 3  

SYMBOLIC FORMS ANALYSIS OF EXPRESSIONS FOR PROBABILITY IN DIRAC 

AND WAVE FUNCTION NOTATIONS FOR SPINS-FIRST STUDENTS 

3.1 Introduction 

Physics students enrolled in upper-division quantum mechanics courses are expected to 

learn and use Dirac formalism to represent quantum systems and compute relevant values such 

as probabilities and expectation values for specific measurements and physical observables, 

respectively. Students in these courses are also expected to learn and use other, more familiar 

mathematical notations, such as matrix-vector and wave function notation, that they may have 

used previously in linear algebra or modern physics contexts. Perhaps most crucially, they are 

expected to learn how these different notational styles interrelate, as calculating properties 

related to different physical observables will often require a student to work partially in one 

notation before needing to finish a calculation using another. If this translation is not required, it 

is nonetheless often preferred, as certain calculations are less computationally demanding with 

a given notation for a given context. 

As discussed in Section 2.2.3, the symbolic forms framework was proposed by Sherin in 

an attempt to capture the ways in which students reason about formal mathematical 

expressions in physics (Sherin, 2001). In particular, it functions on the premise that students 

learn to interpret expressions via a vocabulary of smaller elements arranged via some 

syntactical rules. One goal of instruction is to assist students in developing and refining an 

understanding of these elements, such that the students are eventually able both to make 
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sense of new expressions they encounter as well as to generate mathematical expressions to 

describe physical phenomena. 

Viewing upper-division quantum mechanics courses through a symbolic forms lens thus 

provides a means of studying the mathematical and physical interpretations of quantum 

mechanical quantities that students develop in these courses. That students in this context are 

typically learning an entirely new mathematical representation (in the form of Dirac formalism) 

makes the application of this lens even more interesting, as it allows for an investigation into the 

mathematical and physical interpretations that students develop for expressions that are 

entirely new to them, and that will be of great relevance should they continue on to graduate 

study in physics. This study investigates the ways that students reason about expressions 

commonly used in upper-division quantum mechanics courses, particularly those used to 

represent probabilities in Dirac and wave function notations. To this end, we seek to determine 

the various symbolic forms students develop relating to probability concepts throughout a 

spins-first, upper-division quantum mechanics course. 

3.2 Mathematical Background and Symbolic Forms’ Suitability 

Before discussing the experimental design and digging into our analyses, it will be 

helpful to first discuss the normative expressions for these probability concepts in these 

notations and to discuss the suitability of the symbolic forms framework for this analysis. 

3.2.1 Dirac Notation Expressions for Probability 

Given that the focus of this work is on the interpretation of expressions for probability 

that commonly occur within upper-division quantum mechanics courses, there are two 
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normative expressions within Dirac notation that are of explicit interest for this study. First is 

inner products, which represent probability amplitudes: 

⟨𝑎𝑛|𝜓⟩. 

These are also expressed as 𝑐𝑛, the coefficient of an eigenstate in that operator’s basis 

expansion. The associated probabilities are found by taking the complex square of these inner 

products: 

𝒫𝑎𝑛
= |⟨𝑎𝑛|𝜓⟩|2 = |𝑐𝑛|2. 

For both of these expressions, |𝜓⟩ is a state vector (ket) and is presumed to represent the initial 

state of a system prior to a measurement and |𝑎𝑛⟩ is also a state vector (ket) and is presumed to 

represent an eigenstate of a quantum mechanical observable (i.e., an eigenvector of the 

associated physical observable’s mathematical operator). ⟨𝑎𝑛|𝜓⟩ is the mathematical inner 

product between the initial state vector |𝜓⟩ and the dual of the eigenstate vector |𝑎𝑛⟩, which is 

represented as ⟨𝑎𝑛| (and called a bra). The bras and kets get their titles from the name ascribed 

to the inner product expressions formed from the coupling of a bra with a ket: that of a Dirac 

bracket. The complex square of this inner product (bracket), |⟨𝑎𝑛|𝜓⟩|2, is the probability of 

measuring the |𝑎𝑛⟩ eigenstate’s associated eigenvalue from a system described by the initial 

state vector |𝜓⟩. Thus, the principal (normative) expression in Dirac notation that is expected to 

show up within students’ responses as representing probability is the complex square of an 

inner product, |⟨𝑎𝑛|𝜓⟩|2. It would also be expected for students to have developed conceptual 

knowledge about the constituent parts of this expression, such as the inner product, the ket, 

and/or the bra, separately. It should be noted that bras and kets are formally distinct 

mathematical objects: a bra is the covector of its associated ket and the set of bras forms a dual 
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vector space to the vector space within which the set of ket vectors reside. These nuances of 

dual spaces are not discussed in depth in most upper-division quantum mechanics courses, and 

thus students are expected to view these distinctions as relatively “fuzzy.” Primarily, the 

instructional goal for this distinction is for students to treat ⟨𝜓| and |𝜓⟩ as representing the 

“same” vector, with the main distinction being that ⟨𝜓| and |𝜓⟩ are representable as a row 

vector and column vector, respectively, with the elements within one row/column vector being 

the complex conjugates of the elements in the other. 

3.2.2 Wave Function Notation Expressions for Probability 

When studying physical observables that have continua of possible measurable values 

(such as position or momentum/energy for unbound states), it is no longer fruitful to consider 

probabilities for measuring single values. Instead, one must consider the probabilities for the 

continuous observable to lie within given ranges of values. These probabilities are expressed as 

𝒫𝑎→𝑏 = ∫ 𝜓∗(𝑚)𝜓(𝑚)𝑑𝑚

𝑏

𝑎

, 

where 𝑚 represents the continuous physical observable in question, and the probability in 

question is being calculated for the values of 𝑚 lying between 𝑎 and 𝑏. The function 𝜓(𝑚) is 

generally called the wave function, and represents the probability density amplitude for a given 

system with respect to the observable 𝑚. In practice, this means that 𝜓∗(𝑚)𝜓(𝑚) = |𝜓(𝑚)|2 

is the probability density function such that |𝜓(𝑚0)|2𝑑𝑚 is the probability for the system in 

question to have a value of 𝑚 measured between 𝑚0 and 𝑚0 + 𝑑𝑚. 

A probability for a specific value of a discretized observable (such as intrinsic angular 

momentum or energy for a bound state) can be represented in wave function notation as well. 
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While in Dirac notation this probability is represented with the complex square of a Dirac 

bracket (e.g., 𝒫𝑛 = |⟨𝑎𝑛|𝜓⟩|2), in wave function notation this is expressed instead as 

𝒫𝑛 = | ∫ 𝜉𝑛
∗ (𝑚)𝜓(𝑚)𝑑𝑚

∞

−∞

|

2

, 

where 𝜉𝑛(𝑚) is the probability density amplitude (i.e., the wave function) for the system 

following a measurement of the 𝑛𝑡ℎ eigenvalue of the discretized observable. These 𝜉𝑛(𝑚)s are 

thus eigenfunctions of the operators corresponding to these observables, just as the |𝑎𝑛⟩ kets 

were the eigenvectors of these observables as discussed in Section 3.2.1. Essentially, where 

𝜓(𝑚) is the wave function form of the initial state (analogous to |𝜓⟩ in Dirac notation), 𝜉𝑛(𝑚) is 

the wave function form of an eigenstate of the discretized observable (analogous to |𝑎𝑛⟩ in 

Dirac notation). Just as the bras represented the dual vectors of the kets in Dirac notation, 

complex conjugates of wave functions represent the dual function space counterparts of the 

wave functions. 

The principal (normative) wave function expression expected of students as 

representative of probabilities in quantum mechanics would therefore be twofold. For 

situations where a probability for a single value of a discrete observable is being represented in 

wave function notation, a complex square of an integral with two different functions, similar to 

𝒫𝑛 = |∫ 𝜉𝑛
∗(𝑚)𝜓(𝑚)𝑑𝑚

∞

−∞
|

2
, would be expected. For scenarios where the students discuss 

probabilities for a system to have a measured value of a continuous observable within a given 

region, an integral over the range of values of the complex square of a single function should be 

expected, either expressed as exactly that (∫ |𝜓(𝑚)|2𝑑𝑚
𝑏

𝑎
) or as the product of the wave 

function and its complex conjugate (∫ 𝜓∗(𝑚)𝜓(𝑚)𝑑𝑚
𝑏

𝑎
). As was the case with the expressions 



34 

in Dirac notation, it is reasonable to suspect that students would also learn to view the 

components of these expressions—the wave functions 𝜓(𝑚) and 𝜉𝑛(𝑚) as well as their 

complex conjugates—as individual objects with their own interpretations as well. 

3.2.3 Symbolic Forms’ Suitability for This Analysis 

Because these expressions for probability concepts in principle follow a simple formula 

as inner product expressions and complex squares of inner product expressions, the symbolic 

forms framework is particularly apt for this analysis. The symbolic forms framework describes 

consistent symbolic templates to which students learn to ascribe specific meaning, and the 

types of expressions discussed earlier in this section very much fit the description as fitting 

certain symbolic templates. In particular, Dirac brackets and inner product integrals, as well as 

their complex squares and their constituent pieces (the bras, kets, and functions), are seen and 

used extensively enough within these courses that it is reasonable to expect that students 

would learn to recognize them quickly and treat them as representative of 

physical/mathematical objects/processes. In short, we would expect students to develop 

symbolic forms for many of the expression types discussed in this section by connecting 

recognizable symbol templates with distinct conceptual schemata. 

3.3 Research Design and Methodology 

To determine the ways that students interpret expressions in these two different 

notations, clinical interviews were conducted over several years with students enrolled in the 

upper-division quantum mechanics course at the University of Maine. This course is offered 

every fall semester, and follows the spins-first curricular structure. All students enrolled within 

these classes were offered financial compensation for agreeing to participate in the interviews, 
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and all students who expressed interest were interviewed. The COVID-19 pandemic greatly 

affected both the distribution of and participation rates for the interviews conducted—

interviews planned for the spring of 2020 were cancelled due to safety concerns, and interviews 

were required to be virtual the following spring. In-person interviews were conducted in the fall 

of 2021 and 2022. The differences inherent in virtual and in-person interview settings required 

the structure of these interviews to differ significantly, and participation rates were lower than 

expected for all three instances of interview data collection. In total, two individual virtual 

interviews, a single in-person interview of a pair of students, and two individual in-person 

interviews were conducted. All interviews were planned to take place over an hour. 

Pseudonyms have been selected for all six students, with Aaliyah and Bilbo as the two 

virtual interviewees, Castor and Delilah as the participants in the pair interview, and Enoch and 

Frodo as the participants in the individual interviews. The perceived gender of participants’ 

pseudonyms do not necessarily correspond to the participants’ own gender identities. 

3.3.1 Virtual Interviews 

Due to concerns about the spread of COVID-19, the two individual interviews conducted 

in the spring of 2021 were conducted virtually over Zoom conference video calls. Because the 

participants could not be expected to have equipment at hand such as tablets and styluses or 

other means of writing that would be convenient and visible in a virtual environment, the 

interview tasks were necessarily designed to be conducted solely with a computer mouse. 

Accordingly, two tasks were administered to the participants: a card-sorting task and an 

expression-construction task. 
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3.3.1.1 Card-Sorting Interview Task 

The card-sorting task made use of the card-sorting functionality in Desmos, and 

effectively tasked participants with categorizing and recategorizing a number of expressions by 

whatever means they deemed appropriate. An example of the expressions and a potential 

sorting done by a participant is shown in Figure 3.1. The expressions selected for inclusion in 

this task were selected for a number of reasons. First, they were all expressions with which the 

students should have been familiar, either from the quantum mechanics course they were 

enrolled in or from earlier physics courses (e.g., �⃗�, �⃗⃗� ∙ �⃗�, and 𝑗̂). Second, they were all 

normatively “correct” statements, in that each expression has some legitimate physical 

interpretation. Third, they largely covered every normative expression for probability and their 

constituent parts within Dirac and wave function notation, such that groups could be 

constructed containing analogous or equivalent expressions from both notations. Participants 

were expected to determine categories that “made sense” for these expressions, and to group 

them accordingly. They were asked to reason aloud about their thought processes, and were 

encouraged to sort the expressions multiple times to capture as many different categorizations 

that they thought made sense. The goals of this interview task were to allow for insights into (a) 

the ways that students think of expressions conceptually, by seeing the categories into which 

they would sort the expressions and (b) the ways that various expressions interrelate for 

students, both within and between the given representations. This task generally took the first 

20 minutes of the interview; upon the student being satisfied with their categorizations, the 

second task was initiated.  
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Figure 3.1: (a) The original view of the expression cards in the card-sorting task as seen by the 
participants. (b) One way that a participant chose to sort the given expression cards. 
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3.3.1.2 Expression-Construction Interview Task  

The second task was an expression-construction task, where students were provided 

with an assortment of expressions and parts of expressions that were commonly used in their 

quantum mechanics course. They were then tasked with constructing as many expressions as 

possible that they deemed as representative of a quantum mechanical probability. This was 

conducted via a shared Google Slides file, with the student clicking and dragging the parts of 

expressions around to form the desired probability expressions. The expressions used, as well as 

an example of some expressions formed by participants, are shown in Figure 3.2. Similar to the 

card-sorting task, participants were asked to think aloud and explain their reasoning for each 

expression they constructed. Due to the nature of this task, follow-up questions posed to 

participants depended greatly on the particular expressions they constructed and the 

expression elements they indicated, selected, and manipulated. The goals of this interview task 

were to elicit student thinking on (a) what the individual components of expressions mean and 

(b) how these expression components interact to form larger expressions with their own 

meaning. Due to the structure of the questions, the meaning ascribed to these expressions 

would be expected to relate to probability concepts. By observing the language students used 

to describe both the components and larger expressions as they were in the process of 

constructing them, these goals could be addressed. The remaining 40 minutes of interview time 

were generally dedicated to this task. 
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Figure 3.2: (a) The list of expression components provided to the students for the expression-
construction task. (b) An example of a participant’s constructed expressions. Some expression 
components are free-floating from the process of constructing other expressions. 

3.3.2 In-Person Interviews 

By the fall of 2021, concerns over the spread of COVID-19 were lessened enough that in-

person student interviews could be conducted. The questions and tasks posed to these 

participants differed from the virtual interviews but were identical between the two years these 

in-person interviews were conducted, with the exception of one additional question asked 

during the two interviews in the fall of 2022. These interviews took place in a room with a 

whiteboard and markers, with both the participants and their writing captured by a video 

camera. The initial prompts given to the students are shown in Table 3.1, and generally required 
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students to either generate or translate expressions in Dirac and/or wave function notations. 

Participants were asked to voice their thought processes throughout the interview, and further 

follow-up questions were asked to get a clearer idea of their thinking based on their responses. 

This methodology is known as a “think-aloud” interview structure, and has been used 

extensively within physics education research (Lewis & Rieman, 1993; Otero, Harlow, & 

Harlowe, 2009). These interviews are semi-structured, and the interviewer and interviewees are 

encouraged to follow trains of thought until they are ultimately satisfied with their responses 

and move on to the next structured prompt in the sequence. 

Table 3.1: The structured prompts given in the in-person interviews. Prompt 2 (in blue) was not 
asked during the Fall 2021 interview, but was added for the Fall 2022 interviews. 

Prompt 1 
How would you express the probability for an electron within a potential well to 

be measured as having the ground state energy of that well? 

Prompt 2 

Let’s say we have an electron in a potential well—perhaps an infinite square well. 
If we know that it has an even 33% chance of having any of the three lowest 
possible measurable energy values for that well, how could you express its 

current quantum state mathematically? 

Prompt 
3a 

Let’s say we have a particle in an infinite square well (“particle-in-a-box”) 
potential. It is currently in the superposition state described by: 

|𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩) 

How would you go about finding the probability of measuring that particle to be 
in the left half of the square well? 

Prompt 
3b 

How would you go about finding the probability of measuring that particle to be 
in the lowest energy state? 

Prompt 
4a 

Let’s say we have a particle in an infinite square well (“particle-in-a-box”) 
potential. The particle is described by the following wave function: 

𝜓(𝑥) =
4

√5𝐿
sin3 (

4𝜋𝑥

𝐿
) 

How would you go about finding the probability of measuring that particle to be 
in the lowest energy state? 

Prompt 
4b 

How would you go about finding the probability of measuring that particle to be 
on the left half of the square well? 
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The primary goal of these interviews was to ascertain students’ functional understanding 

of the expressions used to represent probability concepts in quantum mechanics, by which we 

mean the understanding these students exhibit in an authentic setting such as in the classroom, 

on homework problem sets, or on an exam (McDermott, 2001). This idea of a functional 

understanding is critical, as we care about what students think while they are learning and 

working with these ideas. One could imagine simply asking “how do you reason about 

probability expressions in quantum mechanics?” or “what are the requisite components of a 

complete expression for probability?”, but these hypothetical students’ responses would be 

representative of how students respond when prompted with vague, high-level questions about 

the meaning of mathematical expressions, and not of situations in the classroom or on 

assessments. Most physics instructors can relate to the difference in the response a student will 

give when asked what Newton’s 2nd Law is versus when they are asked to use Newton’s 2nd 

Law in a given context. Prompts 3 and 4 were thus designed to be similar to homework 

problems the participants would have seen throughout the course. Prompts 1 and 2 were 

chiefly focused on how students generate an expression with only verbal prompting, as well as 

seeing what participants’ first choice for notational style would be. These prompts and their 

respective follow-up questions were thus intended to gain an understanding of the ways 

students reason about these expressions, including what they mean as a whole, what their 

constituent parts mean, and how they are related to their analogous expressions in other 

notational styles. These responses were analyzed through a symbolic forms lens. 
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3.4 Symbolic Forms Analysis Results and Discussion 

Analysis of students’ responses in both virtual and in-person interviews was conducted 

to determine any conceptual interpretations that were consistently applied to expressions and 

components of expressions when working with or discussing them. The results of this analysis 

will be broken down primarily by notational representation and secondarily by the types of 

expressions identified as separable by students. There will then be discussion about the 

instances of students identifying conceptual overlap between the two notations, as often 

occurred in situations where they translated between the different representations.  

As discussed in Chapter 2, symbolic forms are the means by which students learn to 

interpret—and eventually generate—mathematical expressions to represent physical processes 

or quantities (Sherin, 2001). Symbolic forms are made of two constituent parts: symbol 

templates and conceptual schemata. A symbol template represents the visual aspects to an 

expression or part of an expression that cues a student to apply a certain symbolic form. The 

conceptual schema is the meaning that a student has learned to ascribe to that symbol 

template—and thus, the meaning that is applied to an expression once a symbolic form has 

been cued. An example of this is the idea that students could learn to interpret a sum of 

separate terms as describing a combination of multiple separate parts of a larger quantity being 

combined to form that larger whole. The symbol template used to represent this “parts-of-a-

whole” symbolic form is [□ + □ + □ + ⋯ ], and a common example of this symbolic form being 

used in physics is the total energy of a system being described by the sum of several different 

types of energy such as kinetic, gravitational potential, electrostatic potential, etc.: 𝐸𝑡𝑜𝑡 = 𝐾𝐸 +

𝑃𝐸𝑔 + 𝑃𝐸𝑒 + ⋯. As simplified by the creator of the symbolic forms framework, “the schema is 
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the idea to be expressed in the equation, and the symbol template specifies how that idea is 

written in symbols” (Sherin, 2001, p. 13). The symbolic forms we have identified are presented 

in Table 3.2, along with their associated symbol templates. It is notable that multiple forms seen 

in this table share identical symbol templates; this is not unprecedented, as Sherin himself 

noted cases where templates can appear similar or identical, depending on the context. This 

includes the “base ± change” symbolic form having the symbol template [□ ± Δ], which can 

appear identical to the templates used for “parts-of-a-whole” or “whole – part” symbolic forms 

depending on context ([□ + □ + □ + ⋯ ] and [□ − □], respectively). The thing that 

distinguishes two symbolic forms with identical symbol templates is the interpretations that 

students apply to them—that is, their conceptual schemata. The conceptual schemata applied 

to each symbolic form is summarized somewhat by their titles and is made explicit within the 

following sections where they are discussed in detail. To assist the reader, the end of each 

section will include a smaller table containing the specific symbolic forms and symbol templates 

identified in that section. 

Table 3.2: The symbolic forms identified through our analysis, as well as their associated symbol 
templates. Symbolic forms are divided into two categories, based on whether their associated 
conceptual schemata imply more physical or mathematical interpretations of their associated 
symbol templates. 

(More) mathematical 
symbolic forms 

Symbol templates 
(More) physical 
symbolic forms 

Ket as vector | ⟩ Ket as quantum state 

Bra as vector ⟨ | Bra as quantum state 

Bracker as projection ⟨ | ⟩ Bracket as probability amplitude 

 |⟨ | ⟩|2 Square bracket as probability 
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Function as vector 𝑓(□) Function as superposition state 
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Table 3.2 Continued. 

Conjugate function as vector 𝑓∗(□) 
Conjugate function as 

superposition state 

 𝑓𝑛(□) Function as specific state 

 𝑓𝑛
∗(□) 

Conjugate function as specific 
state 

Inner product integral of two 
identical functions as projection 

∫ 𝑓∗(□)𝑓(□) 𝑑□ 

Inner product integral of two 
identical functions as probability 

amplitude 

Inner product integral of two  
identical functions as probability 

Inner product integral of two 
different functions as projection 

∫ 𝑓∗(□)𝑔(□) 𝑑□ 

Inner product integral of two 
different functions as probability 

amplitude 

Inner product integral of two  
different functions as probability 

 |∫ 𝑓∗(□)𝑓(□) 𝑑□|
2

 

Complex square of inner 
product integral of two identical 

functions as probability 

 |∫ 𝑓∗(□)𝑔(□) 𝑑□|
2

 

Complex square of inner 
product integral of two different 

functions as probability 

Coefficient as component 𝑐𝑛  

 |𝑐𝑛|2 
Squared coefficient as 

probability 

 

3.4.1 Symbolic Forms Identified Within Dirac Notation Expressions 

Many symbolic forms were identified within Dirac notation expressions for probability 

concepts. We begin by discussing the symbolic forms identified for the smallest constituent 

pieces of these expressions: Dirac bras and kets. 
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3.4.1.1 Dirac Bras and Kets as Quantum States 

One consistent observation is that students appeared to consider bras and kets as 

representative of quantum states. Aaliyah was seen doing this in the virtual card-sorting task, 

when discussing the elements within a category containing several Dirac bras and kets and a 

Dirac inner product: 

This [|𝐸𝑛⟩] represents a ket energy eigenstate, and this [⟨𝐸𝑛|] represents a bra 

energy eigenstate. So these [|𝜓⟩ and ⟨𝜓|] are general ones, these [|𝐸𝑛⟩] and 

⟨𝐸𝑛|] are specific energy eigenstates, and this thing [⟨𝐸𝑛|𝜓⟩]- this inner product 

represents the amplitude of the energy eigenstate 𝐸𝑛 if I […] map out all the […] 

energy eigenstates that make up the 𝜓. 

Here Aaliyah called out the 𝐸𝑛 bras and kets as being different from the 𝜓 bras and kets, as she 

drew a distinction between “specific” eigenstates and “general” states. This distinction shows up 

again later in the interview, when Aaliyah discusses an expression for probability that she 

constructed (|⟨𝐸𝑛|𝜓⟩|2): “The 𝐸𝑛 𝜑𝑛 [gestures at |⟨𝐸𝑛|𝜓⟩|2] represents, like the probability of 

finding 𝜓, which is a general state, in a particular energy eigenstate 𝐸𝑛.” This may suggest that, 

for Aaliyah at least, there may be a distinction between the symbolic forms for a “general state” 

and for a “specific eigenstate.” The exact nature of the meaning of a “general state” may be 

hinted at by Aaliyah’s discussion of 𝜓 being “[made] up” of the energy eigenstates. This may be 

indicative of an interpretation of 𝜓 and “general” states as relating to superposition states made 

of a combination of “specific” eigenstates. 

Bilbo, in his interview, discussed the ket |𝑥⟩ in the following terms: “you could make 𝑥 an 

eigenstate, you could make it a spin state […] put anything in there […] I just need it to be a ket.” 

This implies that Bilbo was very much treating the ket symbol as a marker for a quantum state. 
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Interestingly, he appeared to treat 𝑥 here as a mathematical variable, with it being a possibility 

to swap it with some other symbol to signify a given quantum state; so long as it is a ket, it 

represents some kind of quantum state, with the marker inside the ket determining the exact 

type of state. 

Castor and Delilah quite frequently discussed 𝐸𝑛 bras and kets as representing quantum 

states, such as early in their interview when explaining an expression they wrote to represent an 

electron in a potential well. They had written  

|𝜓(𝑥)⟩𝐸 = 𝑐1|𝐸1⟩𝐸 + 𝑐2|𝐸2⟩𝐸 + ⋯ , 

and Delilah described it with: “if psi is written in terms of the energy states, in Dirac notation 

like this [points to kets in the expression] then 𝒫 [probability] is, you know, as [Castor] said, is 

just [writes 𝒫𝐸0
= 𝑐0

2].” Much later in the interview, Delilah reflected on their earlier response 

to Prompt 3a, where they were given the expression 

|𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩) 

as representing a particle in an infinite square well potential. She discussed her interpretation of 

the expression as a whole and why it was written that way: 

I think it's just, by design. The point of this is to give information. And so the 

coefficients are designed to give us the probability. And well, […] these [points to 

the different terms in |𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩)] are all our possible 

values. […] And so we just represent it as […] [points to √3] the square root of 

the probability times the first state [points to |𝐸1⟩] plus the square root of 

probability [points in front of |𝐸2⟩] times the second state [points to |𝐸2⟩] plus 

the square root of the probability [points to the 2] times the third state [points to 
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|𝐸3⟩] and then do that. We can do that infinitely. […] So yeah, […] we essentially 

just have square root of probability times each state. 

As can be seen from this excerpt, Delilah directly referred to the ket symbols as states, with the 

𝐸𝑛’s representing “all our possible values” (presumably the possible measurable energy values 

for each state). She also notably described the coefficients in front of each eigenstate as “the 

square root of the probability” for measuring that state’s energy, which is a normatively correct 

interpretation, albeit without explicitly referring to the possibility of complex coefficients and 

the necessity of a complex square to attain the probabilities. 

Delilah also wrote an expression equating ⟨𝐸𝑛| and �̂�, �̂�, and �̂� with a large and 

exaggerated “≈” sign (see Figure 3.3). When asked to explain her expression, she replied with 

“I’m just trying to say that's how I reconciled the complete orthonormal basis of the 𝐸𝑛 energy 

states,” calling out a conceptual similarity to them between a bra representing an “energy state” 

and Cartesian unit vectors. This vector interpretation of bras and kets will be discussed in more 

depth in Section 3.4.1.2. 

 

Figure 3.3: Delilah’s expression relating an ⟨𝐸𝑛| bra to Cartesian unit vectors. 

While Aaliyah, Bilbo, Castor, and Delilah all claimed bras and kets represented quantum 

states, there was some ambiguity as to what they meant when they said “state.” Did they have a 

clear conceptual interpretation for that phrase, or was that simply a learned name from 

lecture? Evidence that they did in fact have a clear conceptual understanding of what a 

quantum state “is” or describes can be found in the interviews with Enoch and Frodo. When 
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Enoch interpreted the expression given in Prompt 3a (|𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩)), he 

identified the kets as energy states: “What this equation is saying is that […] the particle could 

be in any of the three energy states [gestures at the three 𝐸𝑛 kets].” Later, Enoch discussed his 

error in writing 𝜓(𝑥) on the LHS of the expression he initially wrote for Prompt 2 (𝜓(𝑥) =

1

√3
|𝐸1⟩ +

1

√3
|𝐸2⟩ +

1

√3
|𝐸3⟩): “[𝜓(𝑥)] is a function of 𝑥, and then I wrote it as a sum of vectors of 

the distinct energy levels.” Frodo likewise discussed kets as representing explicit energy levels, 

discussing the terms in his expression for prompt 2 (written as 𝜓 =
1

√3
(|1⟩ + |2⟩ + |3⟩)) with 

“so each of these [gestures to the three kets]… these are the three lowest energy levels,” later 

describing the state of the particle as “a mixture of the three different energy states.” Frodo did 

explain that he was being imprecise with calling it a “mixture,” and was conscientious of the 

difference between superposition and mixed states. In these examples, Enoch and Frodo were 

clear about what a (quantum) state means to them—that it was related to a property 

associated with a particle, be it describing a particle’s (possible) energy value, or a superposition 

of possible energy values. 

Based on the responses discussed in this section, two symbol templates are present 

here—| ⟩ and ⟨ |—both of which appear to share a conceptual schema of representing a 

particle or system in a specific quantum state (either a general state or an eigenstate of an 

observable), with their associated physical properties/eigenvalues. These symbol 

template/conceptual schema pairs then define the “ket as quantum state” and “bra as quantum 

state” symbolic forms (Table 3.3). Looking at the responses from Aaliyah, it is also possible that 

there are distinctions to be made between a “general” state—typically with a 𝜓 inside the ket or 
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bra—and a “specific” eigenstate—with some other label within the bras/kets. This would 

suggest that perhaps there should be a differentiation between two types of kets/bras as 

symbol templates based on the symbol within them, and that there are distinct conceptual 

schemata for the two “flavors” of kets and bras. While this is representative of a normative 

understanding as there is indeed a distinction between a general ket that can represent any 

state (typically expressed as |𝜓⟩) and kets such as |+⟩𝑧 or |𝐸2⟩ that describe specific eigenstates 

of physical observables, without more evidence of this from the other five interviewees there 

does not appear to be enough evidence to entirely support that claim. Thus, we will only lay out 

the two symbolic forms discussed above (ket and bra as quantum state). 

Table 3.3: Symbolic forms identified for Dirac bras and kets as describing quantum states and 
their associated symbol templates.  

Symbolic form Symbol template 

Ket as quantum state | ⟩ 

Bra as quantum state ⟨ | 

 

3.4.1.2 Dirac Bras and Kets as Vectors, and Dirac Brackets as Dot Products 

Another cluster of symbolic forms that appeared in student responses relates to treating 

bras and kets as vectors, and Dirac brackets as vector dot products. As students often discussed 

brackets in terms of bras and kets—particularly in the context of bras/kets as vectors—and 

brackets as dot products between bra and ket vectors, these three symbol templates and their 

associated vector-like conceptual schemata will all be discussed together. 

In the virtual card-sorting task, Aaliyah discussed both the ⟨𝐸𝑛|𝜓⟩ and ⟨𝜓|𝜓⟩ brackets in 

terms relating to a geometric interpretation of dot products, where she calculated a projection 

of one vector onto another. When discussing the ⟨𝐸𝑛|𝜓⟩ bracket, she said: “I will get the 
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amplitude from this inner product […] like in vector form, like how one vector along the other, 

like projection of one thing along the other, so that is like the projection of 𝜓 function along the 

𝐸𝑛-basis.” When discussing the ⟨𝜓|𝜓⟩ bracket, she said “why would I do 𝜓 of 𝜓? Because 

physically like I’m thinking in terms of vectors, it represents 𝜓 along 𝜓.” Upon being asked what 

she meant by “____ along ____,” she explicitly connected their interpretation of the Dirac 

bracket to that of a dot product’s projection idea: “it’s a traditional way to think about vectors, 

like because our dot product represents– like �⃑� ∙ �⃑⃗� represents, basically, the projection of �⃑� 

along �⃑⃗� or projection of �⃑⃗� along �⃑�.” Later, Aaliyah was thinking aloud about the meaning of 

|⟨𝑥|𝑥⟩|2, and asked herself “what does a vector dot-product-ed with itself represent? The 

magnitude? Squared…” She eventually settled on the convention that a dot product of a vector 

with itself would in fact produce the magnitude of that vector squared (e.g., �⃗� ∙ �⃗� = |𝑣|2), and 

thus the complex square on the outside of the bracket was redundant. In all of these cases, the 

connection between Dirac brackets and the projection ideas she associated with dot products is 

clear. She also appeared to relate the Dirac bracket as a combination of a bra and a ket, and 

associated them as her �⃑� and �⃑⃗� vectors (e.g., treating the bracket as an analog: ⟨ | ⟩ ↔ �⃑� ∙ �⃑⃗�), 

where the bracket is explicitly the projection of a ket vector onto a bra vector with a geometric 

spatial interpretation to both the vectors and the inner product. 

During the virtual card-sorting task, Bilbo provided explicit categories for “vector” and 

“vector inner product,” wherein he placed the bras/kets and Dirac brackets, respectively. He 

initially grouped the �⃑� and |𝜓⟩ together, saying “I’m going to be grouping these things as 

vectors,” then added 𝑗̂ and |𝐸𝑛⟩ sequentially, explicitly calling out that they go into that group 

because they are all vectors. Bilbo briefly grouped ⟨𝐸𝑛| and ⟨𝜓| together separately, saying 
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“bras are effectively vectors as well, they’re just conjugate vectors,” before then combining the 

two groups together, stating “I could combine the bras with the kets, surely, because to me, 

those are just— they’re all— they’re vectors.” He crystallized this point for himself by declaring 

“If you’re gonna take an inner product between a bra and a ket, you can only have an inner 

product of two vectors.” This connected in with his earlier grouping of Dirac brackets and dot 

product expressions, which began by grouping ⟨𝜓|𝜓⟩ together with �⃑⃗� ∙ �⃑�, with him stating “yeah 

so, I mean, got some dot products here,” and continued with adding ⟨𝐸𝑛|𝜓⟩, saying, “this is also 

going to be a dot product.” Bilbo applied other rules of dot products and vectors to this 

category, when he stated “⟨𝐸𝑛|𝜓⟩, ⟨𝜓|𝜓⟩, �⃑⃗� ∙ �⃑�] should be scalars because they're inner 

products”—upon being asked why that meant they were necessarily scalars, he expounded with 

“a dot product produces a scalar. Due to mathematics […] that’s the way it goes—there are two 

types of vector multiplication. You’re doing an inner product that is the […] scalar 

multiplication.” He later clarified that “[he’d] been taught to think of [a dot/inner product] as 

like a projection, so then you know how much does one vector project onto the other.” Bilbo 

also treated kets and bras as geometric vectors in contexts beyond inner products. For example, 

during the expression construction task, he discussed what operating an �̂�𝑧 operator on |𝜓⟩ or 

⟨𝜓| would do. 

Certainly changes the state […] well actually […] does it have to change the state? 

I mean […] if the state is purely in z, I believe it’ll still change it, but I think by only 

lengthwise stretching […] rather than rotating.  

[Asked why it would only stretch and not rotate] Because it would be an 

eigenstate of that matrix […] we just know if you have a vector […] that is an 

eigenvector of the operator, then when you operate you just get you know ‘𝜆 
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your eigenvalue times your vector,’ which is thus the same vector and not rotated 

at all, but its magnitude may have changed. 

Here it is clear that Bilbo was treating these bras and kets very geometrically, with “stretching” 

and “rotating” as viable operations that could occur to them. It is also of note that Bilbo 

discussed this action as occurring not only to a vector, but to a state as well. This is further 

evidence of the ket as quantum state symbolic form from Section 3.4.1.1, as well as evidence of 

Bilbo thinking fluidly about these symbolic forms. 

Castor and Delilah likewise treated brackets as dot products, and even had a discussion 

on the distinctions between an inner product and a dot product, starting when the interviewer 

asked them about their calling ⟨𝐸1|𝜓(𝑥)⟩, an expression they wrote prior, a dot product. 

Interviewer: Okay, so you called the– this thing [⟨𝐸1|𝜓(𝑥)⟩] a dot product. 

Delilah: Uh, inner product, yes. 

Castor: They're basically the same.  

Delilah: I think a dot product is a form- one of them is a form of the other 

Castor: Like, one is more broad than the other, but they're basically the same 

thing. 

Delilah: Which one is which though […] I think dot product is a form of an inner 

product. 

Here they can be seen determining (correctly) that an inner product is a generalization of a dot 

product, but they nonetheless referred to Dirac brackets as dot products. Later in their 

interview, they made the assertion that for 𝑛 ≠ 𝑚, ⟨𝐸𝑛|𝐸𝑚⟩ = 0. When asked to explain why 

that was the case, Castor stated “because of like orthonormality, the eigenstates are 
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perpendicular in a space,” ascribing spatial geometric properties such as 

orthogonality/perpendicularity to a Dirac bracket. As was discussed in Section 3.4.1.1, Delilah 

wrote an exaggerated version of ⟨𝐸𝑛| ≈ �̂�, �̂�, �̂� on the board. Later in the interview, the two 

discussed it in the following way: 

Delilah: But like that [⟨𝐸𝑛| ≈ �̂�, �̂�, �̂� ], that helps me realize, why it's orthonormal- 

why it's orthogonal. And complete. 

Castor: And like the dot product, or inner product is like the, if you do it with just 

with vectors, it's like, how much is a projection onto the other... thing. 

Delilah: Yeah, how much of them are in the same direction. 

Castor: So if they're 90 degrees from each other, then their components are just 

in their directions. They're not, like, a superposition or like a vector that has 

multiple pieces. [sketches an arrow lying between two perpendicular dotted 

arrows (presumably two axes)] 

Here Castor and Delilah were discussing the similarities between the bra ⟨𝐸𝑛| and the Cartesian 

unit vectors �̂�, �̂�, and �̂�. They explicitly connected ⟨𝐸𝑛| to ideas of dot products, projection, and 

directionality. Later on, when working through some calculations for Prompt 3b, they 

determined that ⟨𝐸2|𝐸2⟩ = 1. When asked to explain that step, Castor responded with 

“because, like 100% of E2 [points to the ⟨𝐸2| in ⟨𝐸2|𝐸2⟩] is in the direction of E2 [ points to the 

|𝐸2⟩ in ⟨𝐸2|𝐸2⟩].” 

Enoch and Frodo also described Dirac bras/kets and brackets in terms of a vector- and 

dot product-like interpretation, respectively. While explaining his answer to prompt 3b, Enoch 

described |⟨𝐸1|𝜓⟩|2 as “giving the component of this [|𝜓⟩] in a particular direction or in this 

case of the particular energy, and then norm squaring it.” Enoch was referring to the Dirac 
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bracket within the complex square as a process of determining a component along a direction, a 

clearly geometric dot product interpretation. Enoch also discussed the ket |𝜓⟩ alone, referring 

to it as “a vector sum of each of the probabilities of the different energy states or observables 

that you can do,” where he explicitly connected a ket for a superposition state to a vector sum. 

Very early in Enoch’s interview, he wrote 𝜓(𝑥) =
1

√3
|𝐸1⟩ +

1

√3
|𝐸2⟩ +

1

√3
|𝐸3⟩ for prompt 2. Upon 

reflection near the end of the interview, he corrected himself: “Yeah, that's wrong […] [𝜓(𝑥)] is 

a function of 𝑥, and then I wrote it as a sum of vectors of the distinct energy levels.” Here, 

Enoch again referred to a sum of kets as a vector sum. It is notable that there are two ways that 

Enoch could have corrected this expression: he could have changed 𝜓(𝑥) into |𝜓⟩, thus 

matching it to the “vector” ontology he identifies the 𝐸𝑛 kets as sharing; alternatively, he could 

have changed the 𝐸𝑛 kets into their corresponding eigenfunctions written as functions of 

position to match the 𝜓(𝑥)’s “function of x” identity. It is also worth noting the somewhat 

“sloppy” language Enoch uses, referring earlier to a vector sum of probabilities (which are scalar 

quantities) and “vectors of […] energy levels.” Based on his other responses, we believe this 

sloppiness is not indicative of a low level of understanding and view his first statement as 

referring to the probability amplitudes being the coefficients in front of the basis vectors and his 

reference to “energy levels” referring to energy eigenstates (which describe states at certain 

energy levels). Frodo, meanwhile, used perpendicularity to explain the Dirac bracket ⟨𝐸1|𝐸2⟩: 

“so, these two [gestures at ⟨𝐸1|𝐸2⟩], when they're not the same state, they're perpendicular to 

each other. Like these [gestures at ⟨𝐸1| and |𝐸2⟩ in ⟨𝐸1|𝐸2⟩] are each orthogonal to each other.” 

Similarly to Castor and Delilah, Frodo conceptually connected inner products and dot products 
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together, saying “we were calling these inner products in class. […] But I mean, it's the same as a 

dot product.” 

As can be seen from these interview excerpts, these students all made very strong 

conceptual connections between bras and kets and vector ideas, and between projection/dot 

product ideas and Dirac brackets. In this case, there are three symbol templates: | ⟩, ⟨ |, and 

⟨ | ⟩. The conceptual schemata that these students appear to have connected to the | ⟩ and 

⟨ | symbol templates include ideas related to vectors in a geometric sense, such as 

length/magnitude and directionality. They appear to have identical conceptual schemata tied to 

both: although Bilbo does potentially draw a distinction between | ⟩ as a “vector” and ⟨ | as a 

“conjugate vector,” he quickly sorted the two together into one overarching “vector” category 

so a strong conceptual distinction does not seem likely. We name the symbolic forms formed 

from these symbol template-conceptual schema pairs “ket as vector” and “bra as vector” (Table 

3.4). The ⟨ | ⟩ symbol template, meanwhile, appears to elicit a very strong conceptual 

response as representing a dot product, complete with a geometric projection interpretation. 

We call the combination of this symbol template with these ideas of two vectors being 

projected together via a dot product the “bracket as projection” symbolic form (Table 3.4). 

Table 3.4: Symbolic forms identified for Dirac bras, kets, and brackets in the context of vector-like 
conceptualizations. 

Symbolic form Symbol template 

Ket as vector | ⟩ 

Bra as vector ⟨ | 

Bracket as projection ⟨ | ⟩ 
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3.4.1.3 Dirac Brackets – and Squared Brackets – as Probability Concepts 

Another common interpretation of Dirac brackets was that of probabilities or probability 

amplitudes (meaning a quantity that will represent a probability upon being multiplied with its 

complex conjugate). Recall from Section 3.2.1 that the complex square of a Dirac bracket 

between a state vector (often represented as |𝜓⟩) and an eigenstate of an operator is generally 

representative of a probability (e.g., |⟨𝑎𝑛|𝜓⟩|2 is the probability of measuring the eigenvalue 

associated with |𝑎𝑛⟩, the 𝑛𝑡ℎ eigenstate of the operator �̂�). The bracket alone generally 

represents the probability amplitude. The only deviation from this rule is when the bracket 

includes two identical vectors (e.g., ⟨𝜓|𝜓⟩ or ⟨𝑎𝑛|𝑎𝑛⟩). These expressions have two 

interpretations: as a step in the process of normalizing the vectors within the inner product, or 

as a sum of probabilities of all states included within a superposition expansion of the vector 

within the bracket in a basis (which, not coincidentally, need to sum to one—hence the 

normalization condition). In the card-sorting task, Aaliyah discussed the bracket ⟨𝐸𝑛|𝜓⟩ as 

representing a probability amplitude in this way, saying “this inner product represents the 

amplitude of the energy eigenstate 𝐸𝑛 if I, you know, map out all the […] energy eigenstates that 

make up the 𝜓 […] and this will give me- squaring it will give me the probability.” Aaliyah also 

discussed a similar interpretation of the complex square of the bracket ⟨𝜓|𝜓⟩, constructing 

|⟨𝜓|𝜓⟩|2 and saying “I’m trying to represent probability in bra-ket notation […] and this will be 

just one, if psi is normalized […] that should represent probability of one.” In these excerpts, 

Aaliyah was connecting the square of a Dirac bracket with the means of calculating a probability. 

Similarly, Aaliyah later described |⟨𝐸𝑛|𝜓⟩|2 as “the probability of finding 𝜓, which is a general 
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state, in a particular energy eigenstate 𝐸𝑛.” Aaliyah also explicitly connected |⟨𝜓|𝜓⟩|2 and 

|⟨𝐸𝑛|𝜓⟩|2 later in the interview: 

for me, this [|⟨𝜓|𝜓⟩|2] also represents probability in the sense like if I go all– to 

like all space […] This [|⟨𝜓|𝜓⟩|2] is like a summation of all the possible variations 

of this [|⟨𝐸𝑛|𝜓⟩|2], okay. If I add all of these guys [|⟨𝐸𝑛|𝜓⟩|2] together I'll get– 

end up getting a one […] since every 𝜓 is made up of all the possible energy 

eigenstates […] so if I find the individual probabilities of all of these 𝐸𝑛’s 

[|⟨𝐸𝑛|𝜓⟩|2] and add them together what do I get? I get 1. Because that's how we 

represent probability. […] One means hundred percent of the time so— so that's 

what like this [|⟨𝜓|𝜓⟩|2] is like more broader [sic] representation of the right 

thing [|⟨𝐸𝑛|𝜓⟩|2], but again, essentially […] they would both represent 

probabilities to me. 

Aaliyah was clearly treating both |⟨𝜓|𝜓⟩|2 and |⟨𝐸𝑛|𝜓⟩|2 as representations of probability; she 

also noted (incorrectly) that |⟨𝜓|𝜓⟩|2 is the sum of all possible |⟨𝐸𝑛|𝜓⟩|2 probabilities (in fact, 

⟨𝜓|𝜓⟩ is the sum of all possible |⟨𝐸𝑛|𝜓⟩|2’s). Earlier in her interview, however, Aaliyah also 

explained a Dirac bracket she constructed—⟨𝑥|𝜓⟩—as representing a probability, despite the 

fact that it lacked the complex square: “this will also represent the probability of finding 𝑥— 

sorry, the probability of finding the general state 𝜓 in the eigenstate 𝑥.” It is unclear if this is a 

mere slip of the tongue for Aaliyah, as she was consistent in requiring the complex square in all 

other cases, or if the position representation for this expression had a different meaning for her.  

Bilbo also treated |⟨𝐸𝑛|𝜓⟩|2 as a probability in the card-sorting task, saying “I'm looking 

at [|⟨𝐸𝑛|𝜓⟩|2] and I'm thinking like, probability. […] In this case, probability of being in that 

eigenstate. Of this wave function [indicates 𝜓] being in that [indicates 𝐸𝑛] eigenstate.” Later in 

the card-sorting task, Bilbo grouped |⟨𝐸𝑛|𝜓⟩|2, |∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥|2, and |∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥|2 
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together and said “okay, here we got our inner products- our probabilities, excuse me, because 

they're […] magnitude squared of inner products.” Here he explicitly stated the necessity of 

taking the complex square of an inner product to effectively represent a probability. Later on, 

Bilbo expressed some confusion as to whether he should square ⟨𝜓|𝜓⟩, asking “do we want to 

square [⟨𝜓|𝜓⟩] here? Do we need to square this again? I’m not so sure here, because it's 

already a magnitude. It is already a scalar. That is just an inner product, though I had been 

saying the inner product squared is a probability and that this [⟨𝜓|𝜓⟩] is just a density.” Here 

Bilbo exhibited a behavior that was observed quite often: mixing up terminology, particularly 

probability amplitude and probability density. He also appeared to be confused due to the 

repeated label within both the bra and ket of ⟨𝜓|𝜓⟩, asking if it was necessary to “square [it] 

again”. Taking the statement about it being a magnitude, this is presumably a result of his 

conceptualizing the result of taking a dot product of a vector with itself as the magnitude of the 

vector squared, hence the question of whether he was squaring it “again.” Regardless, it is clear 

that Bilbo thought both an inner product and a square of some kind was required (be it implicit 

in the repeated 𝜓, or explicit in the complex square). Enoch showcased similar reasoning to 

Aaliyah and Bilbo, even describing his own pseudo-symbol template when asked how to write a 

probability in prompt 1: “The probability, which I will call squiggly P, is going to be something 

like the norm squared of some business with some kets and... [writes 𝒫 = |⟨ | ⟩|2] 

something like that.”  

Frodo likewise discussed the complex squares of Dirac brackets representing 

probabilities, discussing his answer to prompt 2 (𝜓 =
1

√3
(|1⟩ + |2⟩ + |3⟩)) by declaring the 

criteria for its correctness as “when you do the square- when you do this... [writes |⟨𝜓|𝜓⟩|2 =] 
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you need it to spit out the one third for the probability.” While the expression he gave for the 

desired probability was incorrect (we believe he meant to write |⟨1|𝜓⟩|2), he nonetheless wrote 

a complex square of a Dirac bracket. Similarly to Enoch, he then went on to (correctly) write for 

their solution to prompt 3b that the probability could be written 𝒫𝐸1
= |⟨𝐸1|𝜓⟩|2. When asked 

why the square was necessary, he explained “because we're looking for the probability, and 

without it, we just have the probability amplitude.” 

These students have developed some symbol templates—⟨ | ⟩ and |⟨ | ⟩|2—as 

well as some consistent conceptual schemata tied to them. The latter template has developed a 

strong conceptual association as a representation of a probability, while the former, commonly 

referred to as a probability amplitude but occasionally as a probability density, appears to have 

a strong association as a quantity that is squared to become a probability. In some cases, as with 

Aaliyah with ⟨𝑥|𝜓⟩, the Dirac bracket is declared a probability despite lacking the square. In 

others, as with Bilbo getting confused about whether |⟨𝜓|𝜓⟩|2 is squaring a quantity one too 

many times, leads him to wonder if ⟨𝜓|𝜓⟩ is in fact a probability and not a probability 

amplitude. While these fuzzy distinctions do appear to exist, for the majority of cases these 

students appeared to have robust conceptual schemata ascribed to these symbol templates. We 

name these symbolic forms the “square bracket as probability” symbolic form, and the “bracket 

as probability amplitude” symbolic form, as seen in Table 3.5. While some students referred to 

the probability amplitude as effectively the square root of the probability, rather than using the 

technically rigorous term, we have elected to use the normatively correct term for this symbolic 

form, but note that most students appear to interpret it in terms of an object that needs to be 

squared.  
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Table 3.5: Symbolic forms identified for Dirac brackets (and complex squares of Dirac brackets) in 
the context of probability concepts. 

Symbolic form Symbol template 

Square bracket as probability |⟨ | ⟩|2 

Bracket as probability amplitude ⟨ | ⟩ 

 

3.4.2 Symbolic Forms Identified Within Wave Function Notation Expressions 

Just as the focus of our work on expressions for probability determined the particular 

expressions of interest within Dirac notation to primarily be Dirac brackets and their constituent 

parts, this same focus is true for the wave function notation. As in Section 3.4.1, we begin by 

looking at symbolic forms identified for the smallest constituent components of these 

expressions: the wave functions themselves. 

3.4.2.1 Functions as Quantum State 

A common interpretation of wave function expressions was that—similar to Dirac bras 

and kets—they represented quantum states. During the card-sorting task, Aaliyah sorted 𝜓(𝑥), 

𝜑𝑛(𝑥), 𝜓∗(𝑥), and 𝜑𝑛
∗ (𝑥) all into the same category, and said they “would represent a general 

eigenstate 𝜓(𝑥) or its conjugate [indicates 𝜓∗(𝑥)], or like a specific energy eigenstate phi of- … 

Those represent states […] some of them represent general states [𝜓(𝑥) and 𝜓∗(𝑥)], some of 

them represent specific energy states [𝜑𝑛(𝑥) and 𝜑𝑛
∗ (𝑥)], but they represent states.” Here 

Aaliyah drew a parallel to the distinction she drew between “general” states and “specific” 

states in Dirac notation, as discussed in Section 3.4.1.1. If taken in conjunction with her 

discussion in that section of the general states ⟨𝜓| and |𝜓⟩ as being “made up of” the specific 
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states ⟨𝐸𝑛| and |𝐸𝑛⟩, it is reasonable that this interpretation of general vs. specific applies to the 

𝜓 and 𝜑𝑛 wave functions here. 

Bilbo also discussed wave functions as representing quantum states, particularly while 

discussing them in the context of inner product integrals. While discussing the expression 

∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥, he said “I'm thinking okay, you have this state [indicates 𝜓(𝑥)] … and you want 

to ask the question of, you know, ‘what about that state [indicates the 𝜓(𝑥)] being in this 

[indicates the 𝜑𝑛
∗ (𝑥)] eigenstate.’” Later in his interview, he discussed the expression 

|∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥|2 on two different occasions. First, he seemed somewhat puzzled by what it 

could mean but suggested that “it’s like the probability of a state being… in… its own state? I- 

yeah I’m not quite sure honestly.” He later came back to it and declared that 

“[|∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥|2] I believe should be one […] because it's a state with itself- what's the 

probability of a state being in itself? What's the probability of a heads-up coin being heads? It's 

one.” Here he drew a parallel between the wave function 𝜓(𝑥) and a heads-up coin. Both 

objects have a certain quality that describes them—whatever quantum state a system is in and 

that the heads side is facing up, respectively. The analogy is not a perfect one, as heads-up 

would be more analogous to an eigenstate of a coin flip, and thus the quantum state described 

by 𝜓(𝑥) would need to be in a post-measurement eigenstate to be perfectly analogous to a coin 

with a predetermined coin flip result. Regardless, Bilbo did appear to treat the functions inside 

of the integral as representing a quantum state, and moreover the complex conjugate of the 

wave function (𝜓∗(𝑥)) as representing the same state as 𝜓(𝑥). He also treats the integral as 

determining the probability of one function “being in” the other. 
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While responding to prompt 1 in his interview, Frodo described his thinking after writing 

𝜓(𝑥) = 𝑐1𝜑1(𝑥) as “𝜓(𝑥) is […] 𝑐1 times 𝜑1(𝑥) […] but I think these [gestures at the 𝜑1(𝑥)] are 

the […] energy eigenstates written in the position basis.” Later, during his response to prompt 2, 

Frodo wrote an expression in Dirac notation for a superposition state: 𝜓 =
1

√3
(|1⟩ + |2⟩ + |3⟩). 

When asked whether he could translate it into another notation, he wrote a 𝜑1 directly above 

the |1⟩, and discussed the difference between the 𝜓 and 𝜑1, saying “so this [gestures at 𝜓] 

would be this- like the whole state, and then these [gestures at the 𝜑1] are the individual 

energy functions, I believe.” Frodo can be seen here describing 𝜓(𝑥) and 𝜑1(𝑥) as 

representative of “whole” states and “energy” eigenstates, respectively. This is reminiscent of 

the distinction between “general” and “specific” states drawn by Aaliyah earlier. 

As was seen with the Dirac bras and kets, these wave function expressions appear to be 

treated as representative of quantum states. There appear to be two symbol templates present: 

that of a function 𝑓(□) and of a function with a subscript 𝑓𝑛(□), as well as distinct symbol 

templates for their complex conjugates (i.e., 𝑓∗(□) and 𝑓𝑛
∗(□)). We use generic function 

notation (the 𝑓) for these symbol templates because we do not wish to make a claim about 

what specific letters the students cue these templates from (if there exist specific letters at all). 

The conceptual schemata that students have applied to these functions seem to consistently 

differ, with 𝑓(□) connoting a “whole” or “general” state. This suggests they regard these 

functions as representative of superposition states, which is distinct from their conception of 

𝑓𝑛(□) as representing a “specific” state associated with a given quantity, i.e., an eigenstate; this 

manifested as a specific energy in the situations prompted by the interview setting. This is 

similar to the quantum state conceptual schemata observed for Dirac bras and kets in Section 
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3.3.1.1, though there appears to be a more obvious symbolic distinction between the “general” 

states and the “specific” states in the context of wave function expressions. We note that while 

the symbol templates differ between the functions and their respective complex conjugates 

(𝑓(□)/𝑓∗(□) and 𝑓𝑛(□)/𝑓𝑛
∗(□)), there were no real differences between the conceptual 

schemata applied to the complex conjugate functions when compared to their respective non-

conjugated function—i.e., these students did not appear to draw a physical or mathematical 

distinction between the wave functions or their dual functions. We name the symbolic forms 

associated with the 𝑓(□), 𝑓∗(□), 𝑓𝑛(□), and 𝑓𝑛
∗(□) symbol templates with their associated 

conceptual schemata the “function as superposition state,” “conjugate function as superposition 

state,” “function as eigenstate,” and “conjugate function as eigenstate,” respectively. These 

symbolic forms and their symbol templates are summed up within Table 3.6. 

Table 3.6: Symbolic forms identified for functions in the context of describing quantum states. 

Symbolic form Symbol template 

Function as superposition state 𝑓(□) 

Conjugate function as superposition 
state 

𝑓∗(□) 

Function as eigenstate 𝑓𝑛(□) 

Conjugate function as eigenstate 𝑓𝑛
∗(□) 

 

3.4.2.2 Functions as Vectors, and Integrals as Dot Products 

One potentially surprising conceptualization of wave function expressions is the 

combination of wave functions representing vectors and integrals representing dot products. 

This was most often exhibited within the context of inner product integrals, such as Aaliyah 

describing |∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥|2 with “it basically represents an inner product of 𝜓 with itself. So 
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in the Cartesian world it will look like the projection of 𝜓 along itself.” Aliyah drew an explicit 

analogy between the integral and projection in a Cartesian space. During the card-sorting task, 

after discussing how he interpreted the expression, Bilbo added ∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥 to the group 

containing ⟨𝜓|𝜓⟩ and ⟨𝐸𝑛|𝜓⟩: “So this integral without being squared [referring to 

∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥], also a dot product, I believe, effectively- or an inner product of those 

functions over space.” He similarly remarked upon subsequently adding ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥 to the 

same group, saying that it is also “just a dot product.” Later, he discussed his interpretation of 

∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥: 

“in this case here […] I'm thinking okay, you have this state [indicates the 𝜓(𝑥)] 

[…] and you want to ask the question of, you know, ‘what about that state 

[indicates the 𝜓(𝑥)] being in this [indicates the 𝜑𝑛(𝑥)] eigenstate.’ […] to me I'm 

looking at this thing I'm thinking, ‘what is the projection of this eigenstate onto 

this wave function,’ or maybe vice versa, but I don't think it should matter— dot 

products are […] commutative.” 

Bilbo seemed to be categorizing these integrals into a group of what he considered to be dot 

products, which bear the conceptualization of a geometric projection. He also sorted 𝜓(𝑥) and 

𝜑𝑛(𝑥) together with |𝐸𝑛⟩, �⃑�, |𝜓⟩, and 𝑗̂, saying “these [𝜓(𝑥), 𝜑𝑛(𝑥)] could also, you know, be 

kets in functional form, so we could think of all of these [|𝐸𝑛⟩, �⃑�, |𝜓⟩, 𝑗̂, 𝜓(𝑥), and 𝜑𝑛(𝑥)] as just 

vectors, kets I guess,” explicitly referring to the wave functions as representing vectors. Bilbo 

also discussed wave functions in terms of representing vectors to him in the context of 

operating an operator on a function. During the expression construction task, Bilbo constructed 

|∫ 𝜑𝑛
∗ (𝑥)𝑥𝜓(𝑥)𝑑𝑥|2, which is something of a conflation of an expression for a probability of 

measuring an energy value and that of an expectation value for position. He discussed the effect 
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of placing the 𝑥 in this expression in the following way: “if I am saying [the 𝑥 in 

|∫ 𝜑𝑛
∗ (𝑥)𝑥𝜓(𝑥)𝑑𝑥|2] is an operator, an operator on a vector is just […] a vector, so it's the same 

thing. It's just another probability […] it’s a different state after being operated on.” In this 

context, Bilbo was expressing that the expression still represented a probability because he 

treated the 𝑥 as an operator, which acts on one of the wave functions like it would a vector, 

which will just generate another vector (albeit one that’s been scaled and/or rotated from the 

original). This is further evidence that these wave functions represented vector objects to these 

students. 

As has been shown, some students appear to have developed an understanding relating 

wave functions to vector properties, and inner product integrals to dot products. The symbol 

templates at play here include 𝑓(□), 𝑓∗(□), ∫ 𝑓∗(□)𝑓(□) 𝑑□, and ∫ 𝑓∗(□)𝑔(□) 𝑑□. While there 

does not appear to be any conceptual distinction between wave functions with and without 

subscripts when students are interpreting these functions in this way, students did discuss 

integrals in this manner both when the two functions within the integrand were the same (e.g., 

∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥) and different (e.g., ∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥). These students did not appear to focus 

on the bounds of integration (i.e., distinguishing between an indefinite integral, a definite 

integral over all space and a definite integral over a finite region), and so these are excised from 

the symbol template that they have developed. The conceptual schema tied to both of the first 

two symbol templates (𝑓(□) and 𝑓∗(□)) appears to be that of a vector with an associated 

directionality, which is the same as was connected to the bras and kets in Section 3.4.1.2. Thus, 

we call the symbolic forms formed from these symbol template-conceptual schema pairs 

“function as vector” and “conjugate function as vector.” The latter symbol templates 
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(∫ 𝑓∗(□)𝑓(□) 𝑑□ and ∫ 𝑓∗(□)𝑔(□) 𝑑□) appear to also both share a conceptual schema that 

appeared in Section 3.4.1.2 when discussing the Dirac brackets: that of a dot product’s 

projection along a direction. In this context, the “direction” is that of one of the two functions’ 

vector interpretation. We name these symbolic forms “inner product integral of two 

identical/different functions as projection.” These symbolic forms and their symbol templates 

are again shown in Table 3.7. 

Table 3.7: Symbolic forms identified for describing functions and integrals in vector-like terms. 

Symbolic form Symbol template 

Function as vector 𝑓(□) 

Conjugate function as vector 𝑓∗(□) 

Inner product integral of two identical 
functions as projection 

∫ 𝑓∗(□)𝑓(□) 𝑑□ 

Inner product integral of two different 
functions as projection 

∫ 𝑓∗(□)𝑔(□) 𝑑□ 

 

3.4.2.3 Integrals as Probabilities 

Finally, students also viewed complex squares of inner product integral expressions as 

representative of probabilities. Because the distinctions between expressions for probability, 

probability density, and probability amplitude for continuous variables are quite similar, a brief 

refresher of the distinctions is warranted, similar to what was done earlier for discrete 

quantities. Recall from Section 3.2.2 that there are a number of normatively correct expressions 

for probabilities in wave function notation. Similar to those in Dirac notation discussed in 

Sections 3.2.1 and 3.4.1.3, complex squares of inner products between quantum states (often 

expressed as generic wave functions 𝜓(𝑥) in wave function notation) and eigenfunctions of 

operators represent probabilities for measuring the eigenfunctions’ associated eigenvalue. In 
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wave function notation, these inner products are represented by integrals: for example, 

|∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥|2 represents the probability of measuring the 𝑛𝑡ℎ eigenvalue of the operator 

associated with the 𝜑𝑛(𝑥) eigenfunctions. The integral without the complex square is thus the 

probability amplitude, typically written as 𝑐𝑛. Similar as well to Dirac the inner products 

discussed in Section 3.4.1.3, inner products between the same function have a different 

normatively correct interpretation than those with a wave function and an eigenfunction. As 

was the case with Dirac brackets between two identical vectors, an integral over the entire 

space of two identical wave functions represents both a normalization condition and the sum of 

all probabilities within the basis in which the functions are written (e.g., ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞
=

1). If the bounds of integration are not over the entire space, however, these integrals with 

identical wave functions have a different interpretation: that of the probability for the system to 

be measured with any value of the (continuous) observable that the wave function is a function 

of within the bounds of integration. Essentially, the product of two identical wave functions 

(e.g., 𝜓∗(𝑥)𝜓(𝑥) or |𝜓(𝑥)|2) is the probability density for a system. These different integrals 

and their interpretations can look quite similar, and it is thus reasonable that they could prove 

challenging to students in the development of firm symbolic forms. 

In her card-sorting task, Aaliyah grouped two pairs of expressions together, with each 

pair containing a Dirac expression and a wave function expression. She discussed the distinction 

between one pair (|⟨𝜓|𝜓⟩|2 and ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥) and the other (|⟨𝐸𝑛|𝜓⟩|2 and 

∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥) as follows: 

So this [|⟨𝜓|𝜓⟩|2] and this [∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥] will represent the same thing, 

[|⟨𝐸𝑛|𝜓⟩|2 and ∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥] will represent the same thing, which is 
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probability- […] [|⟨𝜓|𝜓⟩|2 and ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥] will be just [makes finger 

quotations] "one" if 𝜓 is normalized […] and then [|⟨𝐸𝑛|𝜓⟩|2 and 

∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥] will be like some number, less than one, unless it’s an 

eigenstate itself. 

Here, Aaliyah was drawing parallels between the Dirac and wave function notation expressions 

she viewed as representative of probabilities. Interestingly, the squares that are present in the 

Dirac expressions are missing from their associated integrals. It is not entirely clear why she 

paired these together despite their visual (and mathematical/physical) dissimilarity, though it is 

perhaps evidence of some confusion as to whether and/or how a complex square translates 

between Dirac and wave function notation. She also drew a distinction again between the 

expressions that contained an eigenstate (and thus have a probability less than one), and 

expressions that contained two identical states (which have a probability of one).  

Bilbo sorted |⟨𝐸𝑛|𝜓⟩|2, |∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥|2, and |∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥|2 all together, and 

explained the grouping as “okay, here we got our inner products— our probabilities, excuse me, 

because they're […] magnitude squared of inner products.” The square on the outside of the 

integrals appeared to be crucial to him for delineating which expressions represented 

probabilities.  

When Enoch was asked the question in prompt 3a about finding the probability for 

measuring a particle (provided as in a superposition state in Dirac notation) within the left half 

of an infinite square well, his immediate response was “I remember it being an integral of sorts 

[…] it was something like the probability equals integral of 𝜓 of 𝑥 complex conjugate 𝜓 𝑥 𝑑𝑥 

[writes 𝒫 = ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥].” Later in his interview, while working with the expression given in 
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prompt 3 (|𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩)), Enoch explained the difference between the 

probabilities calculated by |⟨𝐸1|𝜓⟩|2 and ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥:  

The particle could be in any of the three energy states [gestures at 

1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩)] by a probability given by whatever you calculate 

this to be [gestures at |⟨𝐸1|𝜓⟩|2]. Whereas this [gestures at ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥] is 

saying […] what is the probability of the particle to be at a certain position, 

regardless of which energy state you're looking at. 

Enoch later successfully translated the expression given in prompt 3 into generic wave function 

notation: 

𝜓(𝑥) =
1

2√2
[√3𝜑1(𝑥) + 𝜑2(𝑥) + 2𝜑3(𝑥)]. 

He was then asked how he would find the probability for measuring the particle to be in the left 

half of the well, and said that he would “take this whole conflagration [draws brackets around 

the expression he translated, and squares it all] […] just do that from 0 to L/2.” It seems that 

Enoch had developed a fairly consistent symbol template of an integral of a product of two 

functions that he drew from when expressing probabilities in wave function notation. 

Again, a few symbol templates appear to capture the work of these students when 

generating or selecting function-based expressions for probability. ∫ 𝑓∗(□)𝑓(□) 𝑑□ shows up 

here as it did in Section 3.2.2.2, though this time it is called upon to represent either a 

probability for a measurement or a quantity that must be complex-squared to get a probability 

(i.e., a probability amplitude). Unlike in Section 3.2.2.2, however, it appears that some of the 

students treated integrals differently depending on whether they contained a product of the 

same function (albeit with one being the function’s complex conjugate) or a product of two 
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different functions. Because this appears to be a meaningful distinction within this context, we 

will propose another symbol template here, ∫ 𝑓∗(□)𝑔(□)𝑑□, with the same (or at least 

fundamentally similar) interpretations as a (square root of) probability as was applied to the 

∫ 𝑓∗(□)𝑓(□) 𝑑□ symbol template. Relatedly, |∫ 𝑓∗(□)𝑓(□) 𝑑□|2 appears to represent 

probabilities of a measurement as well, and thus shares a conceptual schema. We name these 

symbolic forms the “inner product integral of two identical/different functions as probability 

amplitude,” “inner product integral of two identical/different functions as probability,” and 

“complex square of inner product integral of two identical/different functions as probability” 

symbolic forms, as shown in Table 3.8. Similar to what was noted in Section 3.4.1.3, we are 

naming some of these forms “probability amplitudes” to better reflect convention, though 

students often appeared to reason about them as a thing that must be squared. Given the 

discussion of normative interpretations of inner product integrals at the beginning of this 

section, it is worth pointing out which of these symbolic forms are generally normatively 

correct. These would be the “inner product integral of two identical functions as probability,” 

“inner product integral of two different functions as probability amplitude,” and “complex 

square of inner product integral of two different functions as probability” symbolic forms. 

Table 3.8: Symbolic forms identified for inner product integrals in the context of describing 
probability concepts. 

Symbolic form Symbol template 

Inner product integral of two identical 
functions as probability amplitude 

∫ 𝑓∗(□)𝑓(□) 𝑑□ 

Inner product integral of two  
identical functions as probability 

∫ 𝑓∗(□)𝑓(□) 𝑑□ 

Inner product integral of two different 
functions as probability amplitude 

∫ 𝑓∗(□)𝑔(□) 𝑑□ 
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Table 3.8 Continued. 

Inner product integral of two  
different functions as probability 

∫ 𝑓∗(□)𝑔(□) 𝑑□ 

Complex square of inner product 
integral of two identical functions as 

probability 
|∫ 𝑓∗(□)𝑓(□) 𝑑□|

2

 

Complex square of inner product 
integral of two different functions as 

probability 
|∫ 𝑓∗(□)𝑔(□) 𝑑□|

2

 

 

3.4.3 Castor and Delilah’s Focus on Coefficients as an Intermediate Step Between Inner 

Products and Probability Expressions 

While Aaliyah, Bilbo, Enoch, and Frodo all shared very similar interpretations of the ways 

that inner products expressed in both notations related to probability concepts, Castor and 

Delilah appeared to connect the expressions and concepts differently. They instead seemed to 

prefer to make an additional symbolic step between inner products and the probabilities they 

represent: that of first converting the inner product to a coefficient associated with a term in 

the initial state’s representation as a superposition of orthonormal eigenstates. For example, 

after they had finished with prompt 3a, where they were given |𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ +

2|𝐸3⟩) and asked to find the probability for the left half of the well, they were asked to calculate 

the probability for measuring the lowest energy value for the given particle. The following 

exchange then occurred: 

Castor: I mean, it's written in the energy basis. 

Delilah: Yeah. I mean, I'd go back to the energy basis 

Castor: And just square the coefficient. 
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[…] 

[Castor writes |
√3

2√2
|

2

] 

Interviewer: Okay. Why is that the probability of the first energy state? 

Castor: Because it's the coefficient for the first energy state. 

In this exchange, Castor has squared the coefficient in front of the lowest energy state’s ket and 

claimed that as the probability of a measurement of 𝐸1. Earlier in their interview, they defined 

their own initial state for prompt 1 as |𝜓(𝑥)⟩𝐸 = 𝑐1|𝐸1⟩𝐸 + 𝑐2|𝐸2⟩𝐸 + ⋯, and, when explaining 

how they would find the probability for the lowest energy, Delilah said, “if psi is written in terms 

of the energy states, in Dirac notation like this [gestures at their expression for |𝜓(𝑥)⟩𝐸], then 𝒫 

is […] just [writes 𝒫𝐸1
= 𝑐1

2],” defining the probability as an eigenstate’s associated component 

(squared) when expressed as a superposition state. Later, they expanded that expression for the 

probability and added in complex square bars to make it 𝒫𝐸1
= |𝑐1|2 = |⟨𝐸1|𝜓⟩|2; Castor 

justified their addition of the complex square thusly: “because this [⟨𝐸1|𝜓(𝑥)⟩] gives you the 

coefficient. […] Because when you do, like, the inner product of that they end up like, the dot 

product of something times itself [referring to the ⟨𝐸1| multiplication being distributed through 

the superposition state, specifically the |𝐸1⟩ component to form ⟨𝐸1|𝐸1⟩] it all works out to give 

you the coefficient.” Again, they were very focused on the coefficient as the expression that 

represents the probability amplitude, and treat the inner product as a means of obtaining the 

coefficient, rather than the probability itself. However, they then got confused as to whether 

they needed to square the integrand of a wave function version of an inner product or square 
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the result of the integral (i.e., whether the complex square happens inside or outside the 

integral). In the end, they made sense of this problem through the following conversation: 

Castor: Isn't it inside the integral? 

Delilah: Well, I'm not sure. I have to think… 

Castor: I'm pretty sure- I don't think we've ever seen- 

Delilah: -No, but I think, I think this equation is [writes 𝑐1 = ∫ [squiggle
2

1
]] 

Castor: Oh, yeah. 

[…]  

Castor: Because that's where you get your coefficient and then you square it. I 

was like, thinking I'm like, we've never really seen that on the outside.  

Delilah: Yeah, no, we've never done that. But I think that's just because we write 

it as this [gestures to 𝑐1 = ∫ [squiggle]
2

1
] 

Castor: Because typically we write it as the coefficient and square it to be able to 

get the probability 

Here Castor and Delilah are calling back to a recognizable expression in the 𝑐1 = ∫ [squiggle
2

1
]. 

Their statements such as “I don’t think we’ve ever seen ____,” “we write it as ____,” and 

Castor’s “Oh, yeah” upon seeing Delilah’s expression template fits very well with the symbolic 

forms framework. 

While Castor and Delilah do occasionally make direct connections between inner 

products in both notations and probabilities (displaying use of the symbolic forms discussed in 

Sections 3.4.1.3 and 3.4.2.3), they appear to have two symbol templates that show up with 
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much more importance in their thinking than did in the other students’ interviews: 𝑐𝑛 and |𝑐𝑛|2. 

Given the role these appear to play in their reasoning and interpretation of these expressions, 

the symbolic forms framework suggests there are different conceptual schemata tied to each of 

these symbol templates. The first is that of a coefficient in a linear combination of terms, as 

seen in their superposition state |𝜓(𝑥)⟩𝐸 = 𝑐1|𝐸1⟩𝐸 + 𝑐2|𝐸2⟩𝐸 + ⋯, with the interpretation of 

the relative importance or size of its associated component in the sum. The inner products’ 

symbolic forms relating to projection along axes thus interfaces with this conceptual schema 

with the interpretation of the inner product “picking out” the coefficient. This manifests in their 

equality 𝑐1 = ⟨𝐸1|𝜓⟩. This conceptual schema pairs with the 𝑐𝑛 symbol template in what we call 

the “coefficient as component” symbolic form. The conceptual schema connected to the |𝑐𝑛|2 

symbol template is that of the squared coefficient being a representation for the probability for 

the coefficient’s associated component. This pair forms the symbolic form “squared coefficient 

as probability.” These two symbolic forms are ultimately manifested in their equality 𝒫𝐸1
=

|𝑐1|2 = |⟨𝐸1|𝜓⟩|2. Given this interpretation, this equality can be read out as “the probability of 

measuring 𝐸1 is the complex square of the coefficient for the |𝐸1⟩ term in the expansion of |𝜓⟩, 

which can be obtained by taking the inner product of ⟨𝐸1|𝜓⟩,” and understood as relating 

|⟨𝐸1|𝜓⟩|2 to 𝒫𝐸1
 by means of picking out the 𝐸1 component of |𝜓⟩. These two symbolic forms 

and their symbol templates are shown in Table 3.9. 

Table 3.9: Symbolic forms identified for coefficients and complex squares of coefficients as 
describing probability concepts. 

Symbolic form Symbol template 

Coefficient as component 𝑐𝑛 

Squared coefficient as probability |𝑐𝑛|2 
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3.5 Conclusions and Future Work 

One conclusion that can be drawn from these excerpts is evident merely by comparing 

the lengths of Sections 3.4.1 and 3.4.2: these students used and referred to wave function 

expressions less often than they did those expressed in Dirac notation. This is perhaps 

explainable by the curricular focus of the course, as in a spins-first course students may be 

expected to be more comfortable with Dirac notation than with wave function notation. Viewed 

through a symbolic forms lens, it could be that the increased time spent working with and 

thinking about expressions in Dirac notation increased the strength of the connections between 

symbol templates and conceptual schemata for expressions in that notation. This is potentially 

significant as, due to the timing of these interviews during or following the course, students had 

likely used more wave functions than Dirac expressions in the weeks before the interview. This 

relative recency nonetheless does not appear to override the comfort working with Dirac 

expressions that has been engendered by working within this notation since day one of the 

course. 

It is also apparent from Section 3.4 and Table 3.2 that students in this course developed 

numerous symbolic forms to aid them in interpreting, generating, and translating expressions in 

one or both notations explored in this study. Of note is that the vast majority of the symbolic 

forms explored in this work are normative; most non-normative symbolic forms are explainable 

by a lack of a complex square. This is potentially a problem when it leads to students failing to 

take complex squares when calculating probabilities in quantum mechanical contexts. This 

confusion did appear to manifest more often within wave function contexts (with students not 

being sure where to put the square, or if a square is necessary at all), though often students 
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would mix up the terms “probability,” “probability amplitude,” and “probability density” in both 

contexts—they would simply write the correct expressions more often in Dirac notation, 

regardless of what they called them. This confusion regarding the different probability concepts 

has been noted in prior work as well (Marshman & Singh, 2017), and challenges in correctly 

translating between Dirac and wave function inner product expressions were previously 

documented by Wan et al. (2019). While one would like to believe that this data suggests that 

students mostly develop normative symbolic forms in these courses, it is possible that the tasks 

given within these interviews were not conducive to capturing any other non-normative 

symbolic forms. It is also possible that there is a selection bias to the participants, as the 

interviews were entirely opt-in, and thus only the students with well-developed normative 

symbolic forms (and thus likely well-performing students in the class) were willing to volunteer 

to answer questions about quantum mechanics. Regardless, these symbolic forms provide a 

useful means for understanding the interpretations students hold for common expressions for 

probabilities in quantum mechanics, both of the expressions as a whole and their constituent 

parts. 

Indeed, the symmetry between the symbol templates for the Dirac and wave function 

expressions—due largely to very similar conceptual schemata cropping up within both 

notations—is perhaps evidence of the symbolic forms framework’s usefulness in explaining how 

students translate between expressions that they deem “equivalent.” Within the symbolic forms 

framework, shared conceptual schemata—such as that between the “bracket as dot product” 

and “integral as dot product”—may be the means by which students coordinate the expressions 
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they choose as a direct translation from one to the other. Misapplying these shared schemata is 

a possible explanation for the findings by Wan et al. (2019). 

This work is limited by a number of factors, which provide obvious avenues for future 

research. First, this work is entirely concerned with expressions for probability. There are many 

other types of expressions that are commonly used in upper-division quantum mechanics, such 

as eigenequations and expectation values, that would benefit from further investigations into 

the symbolic forms students learn to apply when reasoning about these expressions. Second, 

the subject pool for this study is limited to students from a single institution using a spins-first 

curriculum. It is very likely that gathering data from other spins-first institutions and/or from 

wave functions-first institutions would expand the pool of symbolic forms students develop 

within their curriculum at their institutions and may even show distinctions due to the 

instructional approach. Third, the COVID-19 pandemic impacted every course studied within 

this work, and very likely affected individual students’ learning (and thus likely affected the 

number and/or type of symbolic forms that they were able to develop within the course). 

Fourth, COVID-19 also noticeably lowered interview participation rates, and thus this study is 

only representative of the symbolic forms developed by six students. It is likely that with a larger 

pool of participants, there would have been a larger pool of symbolic forms observed as well. 
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CHAPTER 4  

NETWORK ANALYSIS OF STUDENTS’ CONCEPTUAL UNDERSTANDING OF MATHEMATICAL 

EXPRESSIONS FOR PROBABILITY IN UPPER-DIVISION QUANTUM MECHANICS 

4.1 Introduction 

Physicists use mathematics for far more than simply computation: mathematical 

expressions and relationships are utilized to help them understand and reason about the world 

(Uhden, Karam, Pietrocola, & Pospiech, 2012). Due to its often non-intuitive nature, this is 

certainly the case in quantum mechanics (QM), where one needs to rely on mathematical 

reasoning to understand and make predictions for systems on the quantum scale. The level of 

abstraction and mathematical sophistication used in upper-division QM coursework has been 

shown to present many challenges to students, including when interpreting Dirac formalism 

(Singh, 2001), reasoning about possible wave functions both symbolically and graphically (Singh 

& Marshman, 2015), distinguishing between Euclidean and Hilbert spaces (Singh, 2008; Singh & 

Marshman, 2015), and studying time dependence and time evolution (Emigh et al., 2015; 

Passante, Schermerhorn, Pollock, & Sadaghiani, 2020; Singh, 2008; Singh & Marshman, 2015). 

Student understanding of representations of eigenequations has been studied by education 

researchers both in mathematics (Karakok, 2019; Thomas & Stewart, 2011; Wawro, Watson, & 

Zandieh, 2019) and physics (Wawro et al., 2017), as has the number of different notations that 

are frequently used and the varied mathematics that each notation requires (Gire & Price, 2015; 

Schermerhorn et al., 2019; Wawro et al., 2020). These notations typically include Dirac, vector-

matrix, and wave function notations—all of which require varied mathematical operations and 

understanding for fruitful application to QM systems. 
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One challenge when studying student understanding at the upper division in general is 

the smaller sample size when compared to introductory physics courses. Due to attrition and a 

transition away from a general education audience, the number of students taking upper-

division courses is naturally far smaller (Stewart, Hansen, & Burkholder, 2022); this typically 

manifests in research studies as a focus on more qualitative methodologies (clinical interviews 

being a classic example). While these methodologies are excellent opportunities for providing a 

deep view into individual students’ conceptual understanding, they often also lead to a loss in 

the generalizability of claims that can be made. This loss in generalizability applies both within a 

given course (unless every enrolled student is studied) as well as across equivalent courses at 

different institutions. One way to improve the generalizability of a study’s findings is to expand 

the data pool to include students at multiple institutions. This invites its own set of challenges, 

however: the amount of time and effort required to analyze the results of qualitative data 

collected from a large pool of participants and the difficulty of procuring IRB approval for a 

study at several institutions being two examples. 

A technique that has seen increased use within the physics education research (PER) 

community in recent years is that of network analysis. Network analysis encompasses any 

technique that focuses on connections between different actors. Historically, these techniques 

were developed to study transportation and information networks (Newman, 2010), but have 

since been used within the PER community to study social communities and interactions among 

students and instructors (Hopkins, Ozimek, & Sweet, 2017; Smith, Hayes, & Lyons, 2017; 

Thomas, 2000) and to assess conceptual inventories developed for physics courses (Brewe et al., 
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2016; Wells et al., 2019, 2020, 2021; Wheatley et al., 2021; Yang et al., 2020). In general, these 

techniques are useful whenever connections between actors are of interest. 

While prior work examining student understanding of the various notations used in 

quantum mechanics has been conducted, this has commonly been done only at individual 

institutions. Also, the ability to work and reason across multiple representations is important for 

success in QM. To better understand the ways in which students reason about expressions in 

multiple representations and to glean a more generalizable understanding of the same, we 

sought to answer the following research questions:  

1. How successfully can survey design be used in conjunction with network analysis 

techniques to efficiently collect and analyze data on students’ conceptual connections 

between different QM expressions for many students at multiple institutions? 

2. What can network analysis show about students’ conceptual connections in spins-first 

courses at multiple institutions? 

We will begin by laying out the work that has already been conducted in this space and 

providing a brief background on the relevant terms and concepts within network analysis that 

we will be using later. Then we will discuss the design of our survey and the ways our networks 

were generated, before discussing the results of our analyses. 

4.2 Background 

We begin our discussion of relevant prior research by discussing work on student 

understanding of different mathematical representations that are used within quantum 

mechanics courses. We then will provide a brief overview of prior work within PER that has 
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made use of network analysis techniques, before laying out an overview of the specific network 

analysis concepts we will be using by means of a toy model network. 

4.2.1 Prior Work with QM Representations 

While much education research has been conducted at the boundary of physics and 

mathematics, there has more recently been a focus on the mathematics found in upper-division 

QM courses. This is especially so for the three mathematical notations commonly used to 

describe identical or analogous physical phenomena or concepts in upper-division QM: Dirac, 

wave function, and vector-matrix notations. Gire and Price examined all three notations from an 

expert perspective, noting the affordances and limitations of each for the purposes of 

computation (Gire & Price, 2015). For example, they found that students elected to use Dirac 

notation as a medium for coordinating expressions in other notations, and attributed that 

preference to qualities of the notation, such as its compactness and symbolic support for 

computation. This framework was then modified by Schermerhorn et al. (2019) to capture 

student preferences when calculating expectation values; they found that both the 

compactness of a notation and its relative familiarity were the primary drivers for student 

preference. Wawro et al. (2020) similarly studied student judgements of vector-matrix and Dirac 

notations’ suitability for particular applications, and showed that a comprehensive 

understanding of both how similar expressions in these various notations interrelate and how to 

translate between them is crucial for a deep, cohesive understanding of QM (Wawro et al., 

2020). Additionally, incorrect translation between wave function and Dirac expressions has been 

shown to lead to difficulties when developing models for calculating probabilities (Wan et al., 

2019). Because of the importance of this skill, instructional materials to assist students in 



83 
 

working among and reasoning with multiple representations concurrently have been 

developed, including simulation-based tutorials utilizing multiple types of graphs, integrals, and 

algebraic expressions (Kohnle & Passante, 2017). We believe more work is necessary to 

understand how students reason about the ways in which expressions in these different 

notations interrelate, as this will allow better characterization of student thinking and ultimately 

allow for tailored pedagogy and instructional materials to improve this essential skill. 

4.2.2 Prior Work with Network Analysis in PER 

Network analysis techniques have been developed and used to study topics as diverse as 

physical real-world infrastructure, neural networks, and social behaviors among groups. These 

techniques have recently also seen extensive use in both physics education research and 

education research more generally. Community detection and cluster analysis techniques alone 

have been used to study response groupings for various conceptual inventories (Brewe et al., 

2016; Wells et al., 2019, 2020, 2021; Wheatley et al., 2021; Yang et al., 2020). These techniques 

have also seen recent use in interpreting results of Likert-style surveys (Dalka et al., 2022). 

These techniques have also been used extensively to study social communities and their various 

impacts, both among communities of educators (Hopkins et al., 2017; Smith et al., 2017) and 

students (Brewe, Kramer, & Sawtelle, 2012; Hopkins et al., 2017; Thomas, 2000), and to 

characterize how these social communities are affected by different active-learning pedagogies 

(Commeford et al., 2021). Recent work has even looked at how these social communities have 

been affected by remote physics courses (Sundstrom et al., 2022). 
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4.3 Network Analysis Primer 

Because network analysis is so broad and contains a multitude of terms with which the 

reader may be unfamiliar, a brief introduction to the specific terms and analysis methods that 

will later be applied to our data is merited. A toy model network is shown in Figure 4.1, with 

which different methods of our analysis will be demonstrated. For the purposes of our 

discussion, we will be using the terms as defined in Table 4.1. 

Table 4.1: Definitions and descriptions of relevant terms that will be used to discuss networks 
within this paper. For clarity, several of these terms are highlighted in Figure 4.1 for the toy 
model network. 
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Figure 4.1: A toy model network highlighting terms discussed in Table 4.1. (a) Network 
highlighting the geodesic between nodes 1 and 9. (b) The same network, with the edges shaded 
by their edge weights; the edges lying within the three communities were made to have more 
weight than those that cross between communities. (c) The network with the edges shaded by 
their edge betweennesses; the edges lying between communities tend to have high 
betweennesses, while those within communities tend to have lower betweennesses.  
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4.3.1 Community Detection Methods 

There are many ways to detect community structure within networks, including by 

maximizing a network’s modularity (Newman, 2006a, 2006b), agglomerative hierarchical 

clustering algorithms (Springuel, Wittmann, & Thompson, 2007), and using edge betweennesses 

to continuously subdivide a network (Newman & Girvan, 2004). These various methods each 

have their strengths and weaknesses, which often manifest as trade-offs between 

computational speed, granularity of results, and level of confidence that can be ascribed to the 

specific communities formed. Modularity maximization is relatively quick to compute but has 

limitations to its resolution of smaller communities (Fortunato & Barthélemy, 2007a). The latter 

two algorithms discussed above (hierarchical clustering and edge betweenness-based methods) 

both provide a much higher resolution of sub-communities by generating a hierarchical 

community structure, which can be visualized succinctly with a dendrogram (see Figure 4.2 for 

the dendrogram for our toy model from Figure 4.1). While hierarchical clustering algorithms 

typically start with every node disconnected and slowly cluster them together via some 

similarity (distance) measure, betweenness-based methods start with the larger network as a 

whole and separate it into smaller and smaller subdivisions. In terms of creating a dendrogram, 

one could view hierarchical clustering as building the dendrogram from the bottom up, and 

betweenness-based methods doing so from the top down. Both are computationally intensive 

for networks of even moderate size (for sparse graphs with n edges, completion times are, at 

best, O(n2) for hierarchical clustering and O(n3) for betweenness-based methods, respectively). 

While hierarchical clustering techniques are afforded some flexibility from their reliance on 

similarity measures between nodes—from which there are many options to choose—this also 
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means that different metrics can provide different clusters without an obvious way to know if 

one is more correct than the others (Fortunato, 2010). Additional drawbacks of hierarchical 

clustering are that even central members of communities can be left out of the communities 

they “should” belong within, and that it often leaves some peripheral members out as well 

(Newman, 2004b). Given the drawbacks of modularity maximization and hierarchical clustering, 

and the fact that the networks we will study are not overly large (at only n=20 nodes), we 

decided to use edge betweenness to determine how our expressions were clustered.1 

 

Figure 4.2: Dendrogram showing the community structure of the toy model network found using 
the edge betweenness method. The three expected communities (1-4, 5-9, and 10-15) are clearly 
visible, with the potential for the 5-9 community to be made from two sub-communities (5,7,8 
and 6,9). 

The way that our chosen algorithm works is by sequentially removing the edge within 

our network that has the highest betweenness. As can be seen from Figure 4.1(c), edges that 

have the largest betweennesses are most likely to connect communities (Newman & Girvan, 

2004). Once the edge with the highest betweenness is found, it is deleted, and the edge 

 
1 For the curious reader, Fortunato (2010) provides an excellent review of various community detection methods 
and their respective affordances and limitations. 
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betweennesses of the resultant network are recalculated; this process is repeated until every 

edge in the network is removed and all vertices are fully disconnected. This process will tend to 

separate a network into progressively smaller communities, saving the most tight-knit for last; 

the result can be visualized with a dendrogram (see Figure 4.2). 

In these dendrograms, the network begins with a single community, represented by a 

vertical line. As the algorithm runs its course, this single community splits into multiple 

branches containing fewer and fewer vertices. This is visualized in the diagram by moving down 

the diagram until every edge is removed from the network and every vertex is separated from 

every other at the bottom of the dendrogram. While originally conceived as a method for 

community detection in unweighted networks, Newman extended this procedure to include 

networks with weighted edges, as is the case both for our toy model and for our survey data 

(Newman, 2004a). 

4.3.2 Determining Community Robustness 

The relative height of a given vertical segment on these edge betweenness-based 

dendrograms is indicative of the number of edges that were removed between community 

divisions. Divisions with very little vertical space between them therefore occurred fairly close 

together during the community detection process. Before beginning analysis of these 

communities and drawing conclusions based on the order in which they are formed, some 

questions are worth asking: How robust is the community structure, in that small perturbations 

to the network would not produce a meaningfully different community structure? How 

confident can we be about these communities? Where should we “stop” along the vertical axis, 

to determine which community division or number of communities is “best”? There are 
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numerous possible methods to bring to bear to answer these questions, including determining 

which division has the largest modularity (Newman & Girvan, 2004) and various bootstrapping 

procedures (Fortunato, 2010). Due to the level of granularity and transparency afforded by the 

latter, we elected to utilize a modified bootstrapping procedure to determine which community 

configuration represents the overall data most effectively and is robust and stable to 

perturbations. 

In particular, we elected to use a technique based on statistical bootstrapping discussed 

by Fortunato (2010)  and Efron & Tibshirani (1993) and subsequently modified by Speirs (2020). 

The basic idea is to resample from the pool of student responses to generate multiple 

hypothetical datasets. For a data set of N student respondents, hypothetical datasets are 

created, each comprised of N responses drawn at random from the actual student responses. 

When creating a hypothetical dataset, some respondents’ data may be selected multiple times, 

and others’ not at all—otherwise the process would simply reproduce the original dataset. A 

network is then created from this hypothetical dataset and the community detection algorithm 

run. This process is then repeated many times, with the resulting dendrograms then being 

compared to see where significant deviations occur and what structure is common across all or 

most hypothetical datasets. 

4.4 Methods 

The discussion of our research methods begins with a discussion regarding our survey 

design and implementation, before then describing the creation of our networks from survey 

data. 
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4.4.1 Survey Design 

In an effort to be able to make more generalizable claims about students’ understanding 

of the representations used in upper-division QM, we developed and administered an online 

survey with two primary goals in mind: to collect and analyze responses from many students 

across multiple institutions in a way that would scale efficiently, and to create a dataset that 

allows for analysis of students’ conceptual understanding of mathematical expressions 

commonly used in QM—particularly those used to express probability concepts. Because both 

wave function and Dirac notations are used extensively in upper-division QM courses, and 

because there are equivalent expressions that look quite different between the two notations 

(e.g., ⟨𝐸𝑛|𝜓⟩ and ∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥) as well as similar-looking expressions that represent 

concepts with very subtle distinctions (e.g., |𝐸𝑛⟩ & ⟨𝐸𝑛|), we decided to focus on the conceptual 

interpretations that various commonly-used expressions shared. 

The first goal was tackled by reducing the number of free-response text entry questions 

as much as possible, both to reduce participant attrition and to help our analysis scale well to a 

large participant pool. This meant that the second goal—gleaning students’ conceptual 

connections between expressions—would need to be accomplished without explicit student 

reasoning. To this end, the survey tasks were designed as sorting tasks, where the students 

were presented with a list of expressions commonly used in upper-division QM courses (Figure 

4.3(a)) and a single quantum mechanical concept. Students were tasked with selecting all of the 

expressions in the list that they felt represented that concept. In all, the survey consisted of 11 

different concepts (Figure 4.3(b)). This survey was given to students in upper-division QM 

courses at six different institutions (N=139); all courses were taught using a spins-first textbook 
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(McIntyre (2012) or Townsend (2000)). These courses typically begin by using the results of the 

Stern-Gerlach experiment to motivate the treatment of quantum states as vectors, often 

represented by Dirac notation bras and kets. After some time studying systems with discrete 

measurement outcomes in Dirac notation, including time evolution of these systems, these 

courses eventually transition to studying continuous systems, connecting the Dirac state vectors 

to their associated wave functions. The survey was distributed near the end of the course, after 

students had worked extensively with both Dirac and wave function notations. Courses using 

the spins-first approach were chosen for this study due to the increasing prevalence of this 

curricular style as compared to more traditional wave functions-first courses, which typically use 

the text by Griffiths (1995). 
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Figure 4.3: (a) example of a prompt in the online survey administered to students. (b) table 
showing the different concepts they were tasked with selecting expressions for. 

As a result of the survey design, student responses were entirely relational, forming 

expression-concept pairs and/or expression-expression pairs (for those expressions that were 

selected simultaneously for the same concept, i.e., dragged into the same box). Given this 

nature of the survey responses and our interest in how and whether students view these 

expressions as conceptually connected, we decided to make use of network analysis techniques 

to analyze our survey responses. In particular, we implemented the edge betweenness 

community detection method discussed in Section 4.3. 
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4.4.2 Creating Our Network 

To turn our survey results into a network that can be analyzed to gather information 

about how these expressions are related conceptually, we first collapsed individual students’ 

responses into their own networks. In these networks, the nodes were the 20 different 

expressions provided on the survey; a connection was placed between two nodes if the student 

declared those two expressions as representative of the same concept, i.e., placed those two 

expressions in the same concept box. Also, even if a student selected both expressions for 

multiple concepts, each pair of expressions was only counted once per student. This 

“unweighting” of individual student response networks was done to avoid overweighting any 

connections that may be due to similar concepts given on the survey. For example, if a student 

selected ⟨𝐸1| and |𝐸2⟩ simultaneously for the concepts “vector,” “basis vector,” and 

“eigenvector,” those two expressions would be connected by an edge of weight one for that 

student. While we wanted the granularity of these different types of vectors for other analyses, 

we didn’t want to overweight the strength of those connections simply because there were 

more distinct vector concepts on the survey than there were variations of other concepts (e.g., 

those related to probability or quantum states) while constructing these students’ individual 

networks. These links then served to connect expressions that students believed both can 

represent the same concept. For N respondents, this process resulted in N unweighted 

networks of 20 nodes each. These N networks were then superimposed to generate the full 

weighted network (see Figure 4.4), with a maximum possible edge weight of N if all respondents 

selected the two expressions connected by that edge simultaneously at least once on the 

survey. This network is rather complicated, with myriad low-weight edges that make it difficult 



94 
 

to interpret. One way to cut through this visual clutter and help meaningful information rise to 

the surface is to find the clusters or communities within the larger network as a whole. To this 

end, we implemented the edge betweenness community detection method discussed in Section 

4.3. 

 

Figure 4.4: The expression-concept network generated from 139 student survey respondents. 
The nodes represent the different expressions on the survey. Edges between nodes show that 
students selected those two expressions simultaneously for at least one concept. The edge 
weights represent the number of students that used the two expressions simultaneously, and is 
shown by the shading applied to the edges. The shading of the nodes is not a part of our 
analysis here, but is representative of the nodes’ degree (the number and weight of the edges 
connected to each node). 

4.5 Results and Discussion 

We begin the discussion of our results by first running a community detection algorithm. 

We then discuss the reliability of the detected communities as well as the communities’ 

implications for student understanding of mathematical representations within this context. 
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4.5.1 Running the Betweenness Algorithm and Determining its Limits 

The dendrogram generated by the edge betweenness method for our network is shown 

in Figure 4.5. Cutting horizontally across this dendrogram at any point is representative of a 

snapshot of the betweenness algorithm—it represents the set of communities that exist at any 

given point during the procedure. 

 
Figure 4.5: Dendrogram showing the community structure of the network in Figure 4.4 after 
implementing the edge betweenness community detection algorithm. 

As discussed in Section 4.3.2, community divisions that are separated by relatively small 

vertical segments on the dendrogram occurred relatively close together during the 

betweenness algorithm. Given the importance of the order in which these divisions occur for 

our analyses, a determination of the community divisions that can be considered robust is of 

great importance. To this end, we implemented the statistical bootstrapping-based method 

discussed in Section 4.3.2 to determine the robustness of these community divisions. In 

particular, we ran the edge betweenness community detection algorithm on 1000 bootstrapped 

networks. Figure 4.6 shows the number of dendrograms that have identical community 
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structure at a given number of communities (level of the dendrogram). Each bar on this plot 

represents a specific number of communities—from one community (with every node included) 

to twenty (with every node separated into their own communities at the end of the 

betweenness procedure). Each differently-shaded section of a bar represents how many of the 

1000 hypothetical (bootstrapped) networks have the exact same set(s) of communities, i.e., 

these communities have the same sets of nodes. Note that each end of the plot has only one 

bar, which makes sense: there should only be one possible structure with one community—with 

all nodes connected—and one with twenty (i.e., all) communities—each node as its own 

community. One interesting aspect of these types of figures can be seen by observing the 

second and third bars on this plot. The second bar shows that the 1000 bootstrapped networks 

showcase three different initial divisions of the networks into two communities: 525 networks 

result in one common pair of communities, 343 in another distinct pair, and 132 divide a third 

way. Upon dividing once more and reaching a three-community division of the bootstrapped 

networks, however, more than 750 of the bootstrapped networks share identical communities. 

This consolidation effect is due largely to variability in the order of the early community 

divisions, as the first two divisions visible in Figure 4.5 frequently swap their order among the 

bootstrapped networks. The number of communities for which there are very few different 

community structures, evidenced by a small number of stacked bars, are thus indicative of high 

agreement among bootstrapped networks at that level of their respective dendrograms, and 

vice versa. With this in mind, Figure 4.6 shows where there is high and low agreement among 

the bootstrapped dendrograms, and thus we can look for the level of the community detection 
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algorithm for which the community structure is most stable under perturbations.

 

Figure 4.6: Stacked bar chart showing the relative proportions of different community structures 
at each level across the bootstrapped dendrograms. Each individual bar represents a specific 
community structure that is shared among some portion of the bootstrapped networks at a 
given level of the edge betweenness algorithm. 

As can be seen in Figure 4.6, some variation occurs within the 2-5 community range, but 

100% of the bootstrapped networks have an identical community structure once they are 

broken into six communities. For more than seven communities, the stability swiftly devolves, 

before ultimately agreeing strongly again once nearly every vertex is separated for all of the 

bootstrapped networks (as should be expected—there is only one way for 20 nodes to be 

separated into 20 communities). One finding to take from this is that while there is minor 

variability in the relative order of the first four divisions of our network (the four highest splits 

on the dendrogram in Figure 4.5), we can be very confident that the fifth division of the network 

(into the six communities seen in Figure 4.7) happens before any of the ones below it on the 

dendrogram, suggesting that these six communities are highly stable. 
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4.5.2 Interpreting Community Structure 

Separating our initial network into the first six communities determined by the edge 

betweenness algorithm gives us the network seen in Figure 4.7. Two of the communities consist 

of �̂�𝑧 and 𝑓(𝑥) individually (labeled SZ and FX in Figure 4.7, respectively), which shows that 

students did not think of either of these expressions as especially conceptually similar to the 

other 18 expressions. The Dirac bras, kets, and generic vector expressions �⃗� and 𝑗̂ were found to 

form their own community (DV), as were the wave function expressions (WF). The expressions 

for inner products, including a generic dot product �⃗⃗� ∙ �⃗�, were also separated into a community 

(IP), as were the expressions for the complex squares of inner products (IS). 
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Figure 4.7: The network built from student survey responses as in Figure 4.4, grouped into the 
six stable communities as determined by the results of the bootstrapping procedure shown in 

Figure 4.6. FX contains only the generic function 𝑓(𝑥); SZ contains only the spin-Z operator �̂�𝑧; 
DV contains Dirac bras, kets, and generic vector expressions �⃗� and 𝑗̂; WF contains the wave 
function and its conjugate (𝜓(𝑥) and 𝜓∗(𝑥)), as well as the wave function and conjugate wave 
function expressions for eigenstates (𝜑3(𝑥) and 𝜑4

∗(𝑥)); IP contains inner product expressions, 
including a generic dot product in both Dirac and wave function notation; IS contains complex 
squares of inner products in both notations. 
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IP and IS’s separation suggests a conceptual distinction between inner products and the 

squares of inner products (in QM, this is often a distinction between probability amplitudes and 

probabilities). Similarly, the separation of communities WF and DV suggests a meaningful 

distinction between wave functions and Dirac bras and kets and generic vector expressions. 

Looking closer at the earlier divisions of the network seen in the dendrogram in Figure 

4.5, there are two larger-grain-size communities: that of IP+IS, and that of WF+DV (and 

potentially SZ as well). A simplified version of this dendrogram is shown in Figure 4.8, where the 

divisions beyond the resolution limit determined by the bootstrapping procedure are 

eliminated. The combination of this larger-scale (IP+IS and WF+DV) community structure and 

our survey design leads us to the conclusion that the expressions in WF and DV are viewed as 

conceptually more similar to each other than to the remaining expressions; the same is true for 

the expressions in IP and IS. While the edges connecting these subcommunities together 

represent conceptual connections for our students, the connections within each subcommunity 

are stronger than those connecting the subcommunities to each other. 
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Figure 4.8: Simplified dendrogram showing the stable communities from the bootstrapping 
procedure. Color coded and labeled to match Figure 4.7. 

For the larger WF+DV community, we can also look at the conceptual make-up of these 

connections to obtain a deeper understanding of which specific concepts connect these 

expressions. To this end, we can separate the expressions within this larger group into three 

different groups, by notational style: one for Dirac bras and kets (|𝜓⟩, ⟨𝜓|, |𝐸2⟩, and ⟨𝐸1|), one 

for the generic individual vector expressions (�⃗� and 𝑗̂), and one for the wave function 

expressions (𝜓(𝑥), 𝜓∗(𝑥), 𝜑3(𝑥), and 𝜑4
∗(𝑥)). We can then look at the concepts that connect 

these different types of expressions together according to the students. Like we did with the 

expressions themselves, we can also largely break down the concepts used by students to 

connect these types of expressions into three camps: vectors (“vector,” “eigenvector,” “unit 

vector,” and “basis vector”), quantum states (“quantum state” and “eigenstate”), and wave 

functions (just “wave function”). We can then break down the proportions of each type of 
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concept that connected the various types of expressions, both within a given expression type or 

between different expression types. We will focus on a subset of these conceptual connections 

between expression types, shown in Figure 4.9. 

 

Figure 4.9: Histogram comparing the types of concepts used to link Dirac bras and kets with 
generic vector expressions and wave function expressions, as well as the types of concepts that 
connect Dirac bra and ket expressions to each other and wave function expressions to each 
other. 

By examining these conceptual breakdowns, we can see that the concepts for which 

students used both a Dirac bra or ket (|𝜓⟩, ⟨𝜓|, |𝐸2⟩, or ⟨𝐸1|) and a generic vector expression (�⃗� 

or 𝑗̂) (i.e., concepts represented by the connections between those two subsets of nodes) are 

almost entirely vector concepts. This is noticeably distinct from the distribution of concepts that 

consistently linked the Dirac bras and kets to the wave function expressions on the survey 

(𝜓(𝑥), 𝜓∗(𝑥), 𝜑3(𝑥), and 𝜑4
∗(𝑥)), more than half of which were those related to quantum 

states. Taken in combination with the stable and distinct WF and DV communities as seen in 

Figure 4.7 and Figure 4.8 (i.e., that these vector-Dirac connections were stronger than the Dirac-

wave function connections), this suggests that the vector-like identity of the Dirac bras and kets 
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was stronger for these students than either their quantum state- or wave function-like 

conceptualizations. Also, the edges connecting the Dirac bras and kets to each other are split 

between vector and quantum state concepts, while the connections between wave function 

expressions are split between wave function and quantum state concepts. This would seem to 

suggest that while Dirac bras and kets share a strong identity as representing vector-like 

concepts and wave function expressions share a strong identity as representing wave function 

concepts, they both appear to represent quantum state concepts. This can be seen more 

explicitly by looking at a network composed of the expressions students used simultaneously as 

representing the quantum state concept, shown in Figure 4.10. This figure shows the strong 

connectivity between bras, kets, functions, and conjugate functions, evidence that these are all 

treated by these students as representing quantum states, despite the more siloed 

interpretation of bras and kets representing vectors (and not so much wave functions) and of 

wave functions representing wave functions (and not so much vectors). 
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Figure 4.10: Network showing spins-first students’ connections between different expressions 
when prompted to select expressions representative of “quantum state.” Edges are sized 
proportional to and colored according to their weight (i.e., the number of students that selected 
the pair of expressions for this concept). Nodes are similarly sized proportional to and colored 
according to their vertex degree (i.e., the sum of the weights of all edges that connect to them). 

These findings are to be expected from the curricular focus of the courses in which these 

students were enrolled. Spins-first quantum mechanics courses begin by introducing Dirac 

notation in two-dimensional spin-1/2 bases, and lean heavily on familiar vector interpretations 

to help students understand the mathematical operations at play. Probability amplitude inner 

products in the beginning of the course are very much treated as geometric dot product 

projections, with state vectors having components along the different eigenstates’ “directions.” 

This analysis suggests that these curricular goals have been successful in getting these students 

to think about Dirac bras and kets as simultaneously representative of both vectors and 

quantum states. That �⃗⃗� ∙ �⃗� is included within the IP community likewise suggests that these 

students see this connection between inner products (both as Dirac brackets and wave function 
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integrals) as sharing conceptual backing with dot products—another common instructional goal 

within these courses. 

4.6 Conclusions and Future Work 

Prior studies have shown that each notation used in QM has certain aspects that make 

them more suited for certain tasks (Gire & Price, 2015; Schermerhorn et al., 2019), and that the 

ability to effectively and efficiently translate and work between notations is a crucial skill for 

students to develop (Wawro et al., 2020). In our study, network analysis techniques were used 

to investigate the strengths of students’ conceptual connections between common expressions 

in upper-division quantum mechanics. We found that Dirac bras and kets and their associated 

wave functions both have distinct shared conceptual identities as vectors and wave functions, 

respectively, but they also both represent quantum state concepts to the participants in our 

study. It is possible that this shared quantum state identity aids students by serving as a 

touchstone when translating from one notation to the other, or that this could serve as a 

starting point for curriculum or pedagogy aimed at improving this skill. 

We also found from our community detection analysis that Dirac bras and kets were 

considered more conceptually similar to generic vector expressions than they were to their 

equivalent wave function representations. An implication of this result is that Dirac bras and 

kets bear a strong association with vector-like concepts—even more than with 

conceptualizations they share with wave functions, such as both being representations for 

quantum states. The strength of this association with vector-like concepts is perhaps to be 

expected due to the curricular structure of these courses, as all of these spins-first courses 

begin by first drawing attention to the discrete vector-like nature of bras and kets before 
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eventually connecting them to continuous wave function interpretations. While a lack of 

resolution prevents us from looking closer at the connections between the expressions within 

the inner product community (IP in Figure 4.7), that the generic dot product remains a part of 

that community suggests a seemingly dot product-like understanding of even the wave function 

inner product integrals. This is an encouraging finding, as the conceptual connections between 

discrete and continuous inner products are important to develop and can often prove elusive. 

Overall, we have shown that with novel use of online survey design and network analysis 

techniques, an investigation of student understanding of mathematical expressions in quantum 

mechanics and their interrelated conceptual interpretations is feasible for a large number of 

students at multiple institutions. We believe that the scalability of this methodology can allow 

for greater generalizability of findings. Also, while much work has been done with network 

analysis and community detection algorithms within the PER community, there has been 

relatively little work done in examining the relative stability and robustness of the communities 

that have been studied. As illustrated by Figure 4.6, taking small grain-size community structure 

at face value can be fraught with potential errors. As the resolution of any community detection 

algorithm is limited, the use of bootstrapping or similar techniques to help determine the 

resolution of a given community structure may be necessary for making community-based 

claims about network structure. 

Our next step is to extend this work to include students enrolled in the more traditional 

wave functions-first courses. We suspect that while many of the broader findings from 

community detection for respondents in wave functions-first courses may be similar to those 

seen here, there may be quite different findings when it comes to the vector-like interpretations 
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of the more quantum mechanical expressions due to the relative lack of focus on linear 

algebraic interpretations in such courses. Similarly, a comparison of the expressions chosen to 

represent individual concepts may be of interest, particularly vector-like concepts due to the 

lessened focus on linear algebra-based reasoning in the beginning of wave functions-first 

courses. 
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CHAPTER 5  

COMPARATIVE ANALYSIS OF SPINS-FIRST AND WAVE FUNCTIONS-FIRST STUDENTS’ 

UNDERSTANDING OF EXPRESSIONS IN QUANTUM MECHANICS 

5.1 Introduction 

As was shown in Chapter 4, network analysis of survey data can be used to gain an 

understanding of when and, to some extent, how strongly students understand mathematical 

expressions to be conceptually related, so long as the survey is designed to elicit such 

connections. It was shown that students in spins-first courses tend to view Dirac bras and kets 

as broadly similar to both generic expressions for vectors and expressions for quantum 

mechanical wave functions. Similarly, these students tended to view Dirac brackets, quantum 

mechanical inner product integrals, and an expression for a generic vector dot product as 

conceptually similar. However, the students connected Dirac bras and kets more closely with 

the expressions for generic vectors than with the expressions for wave functions. Moreover, 

the concepts that they used to connect the Dirac expressions to each other were more often 

vector-like concepts than those associated with quantum states. This vector-heavy conceptual 

understanding could be at least partially explained by the curricular focuses of a spins-first 

quantum mechanics course. This raises two questions: 

1. Given the different instructional emphasis of a wave functions-first quantum mechanics 

course, what might one expect from a similar analysis of students enrolled in wave 

functions-first courses?  

2. How, if at all, do any differences align with the different emphases of the courses? 

This chapter aims to answer these questions. 
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5.2 Research Design and Methodology 

To answer these research questions, the same survey discussed in Section 4.4.1 

(reproduced in Figure 5.1 for convenience) was distributed to students enrolled in wave-

function first upper-division quantum mechanics courses at four institutions around the US 

(N=55). The survey was taken near the end of the course, after students had used and become 

comfortable with both Dirac and wave function notation. Given the somewhat idiosyncratic 

notational choices of the various texts and instructors used in these courses, the expressions 

seen in the survey were tweaked to most closely reflect the equivalent expressions used in the 

text for each course. For example, an energy eigenfunction was expressed as either 𝜓3(𝑥) or 

𝜑3(𝑥), depending on the textbook used (𝜓3(𝑥) for Griffiths and Townsend, and 𝜑3(𝑥) for 

McIntyre, (Griffiths, 1995; McIntyre, 2012; Townsend, 2000)). 



110 
 

 
Figure 5.1: Online survey administered to students (McIntyre notation version). (a) Example of a 
prompt with all expressions and one concept. (b) List of concepts for which participants were 
asked to select expressions. 

The same methodology described in Section 4.4.2 was used for translating these 

students’ survey responses into networks. That is, individual student networks were formed 

with 20 nodes, each representing one of the expressions used in the survey. A link was created 

between two expressions if the student ever dragged those two expressions into the same 

concept box, thus demarcating a shared conceptual understanding for the student. This resulted 

in 𝑁 individual unweighted networks, which were summed together to form a single weighted 

network (e.g., if 45 students had an edge connecting 𝜓(𝑥) and |𝜓⟩, the cumulative network 
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would have a single edge connecting those two nodes, with an edge weight of 45). Both the 

larger cumulative networks and the individual student networks were used in analysis. 

5.3 Data Analysis Methods 

Multiple analyses were conducted on the survey data, both from spins-first courses and 

wave function-first courses. The first analysis of these is that of detecting community structure 

within the networks generated from the survey results from each type of institution. We used 

edge betweenness-based methods to do so, as discussed in Section 4.3. In short, an edge’s 

betweenness is representative of its likelihood to lie between two different communities. As 

such, the edge-betweenness community detection algorithm sequentially removes whichever 

edge has the highest betweenness within the network, and thus slowly pares out the 

“connective tissue” between communities within the network. This process terminates once 

every edge is removed, and thus once all nodes are disconnected into their own individual 

communities. As the algorithm starts with the network fully intact and ends with the network 

fully separated, meaningful community separations occur during the procedure and can be 

determined by observing the relative order of community separation (wherein those 

communities that separate later on are more closely connected). The question of which number 

of communities is “best” for a given network (i.e., in our context, when during the edge-removal 

procedure is it no longer meaningful to keep separating communities) can be answered several 

ways, as was discussed in Section 4.5.1. A modified bootstrapping procedure has been shown to 

be effective at answering this exact question (Speirs, 2020), and it is this method that we chose 

for our analysis. This bootstrapping procedure is described in detail in Section 4.5.1, but in short 

is a method of generating a large number of slightly different variations on an original network 
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by resampling from the pool of individual student networks. The edge-betweenness community 

detection algorithm can then be run on each of these slightly different networks, and where 

there is large agreement between their community structures, claims can be made about those 

community divisions being robust, while the point at which they start largely disagreeing is the 

point at which the communities should be divided no further. 

Another analytical lens that was applied to these survey results was to compare the two 

populations’ conceptual interpretations of the various expressions present on the survey. To do 

this, statistical analysis was conducted on the number of students from each curriculum that 

selected a given expression for each concept. By determining which expression-concept pairs 

showed statistically significant differences between the curricula, differences in the conceptual 

interpretations of these expressions were found. These comparisons, as well as simply the 

fraction of students that paired various concepts and expressions within a given curriculum, 

offered insight into the conceptual understanding of students in each curriculum as well as the 

cases where their interpretations differ. These conceptual interpretations can then be discussed 

in the context of the curricular structure and pedagogical focus of each curriculum. 

A principal component analysis (PCA) was also used to see what the primary causes of 

variance among student survey responses were, using a technique invented for conducting PCAs 

on network-based data (Wolf et al., 2012). In this way, individual student responses can be 

compared and primary differentiators between them can be determined a posteriori. This 

process requires the selection of a “distance” metric between student networks—essentially, a 

way to assign a number that tells how different two networks are. Numerous distance metrics 

have been invented for various purposes (Tantardini et al., 2019). Wolf et al. (2012) elected to 
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use a very simple distance metric, which was effectively just a count of how many edges would 

need to be added/removed from one network to make it identical to another. One benefit of 

this technique is that it is quite efficient to calculate, as many distance metrics can become very 

inefficient for comparing networks with a large number of nodes. Because the individual 

student networks generated from their survey responses is limited to 20, we chose a more 

nuanced distance, known as DeltaCon (Koutra et al., 2016). This distance metric was chosen 

because it takes into account structural differences between two networks (Koutra et al., 2016), 

and thus is useful for our purposes, as the community structure (i.e., which expressions are 

commonly conceptually linked together) is relevant to our analysis. Essentially, the distances 

between every pair of students can be treated as an 𝑁 × 𝑁 matrix 𝐷, where element 𝑑𝑖𝑗 is the 

distance between student 𝑖 and student 𝑗. A singular value decomposition can then be applied 

to this distance matrix, which effectively applies a change of basis to the matrix, where the most 

variation within the data is captured in the first principal component (PC1), the second-most 

variation within the second principal component (PC2), and so on. The data can then be 

projected onto only the first few principal components, to allow for a visualization of only the 

most influential components. Once this procedure has been conducted, the traits that these 

abstract primary principal components correspond to within the networks can be determined a 

posteriori. 

5.4 Results and Discussion 

The discussion of our results is broken down by the analysis methods discussed above. 

First, the community structure determined by network analysis of students’ responses are 

compared between the students enrolled in courses using the two instructional approaches. 
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Then, the conceptual interpretations of the expressions selected by students are compared to 

see where the two instructional approaches differ and agree. Finally, a principal component 

analysis of each individual student’s survey responses is used to determine which factors 

explain the greatest variance between student responses. 

5.4.1 Community Detection Comparison 

As was discussed in Section 4.5.1, upon running the edge betweenness algorithm and 

the bootstrapping procedure, the network generated from the spins-first student responses was 

best divided into six communities, as shown in Figure 5.2a. The requirement for this division 

was for at least 70% of the 1000 bootstrapped networks to agree on a specific community 

division. Upon performing the same bootstrapping procedure on the cumulative network 

created from the wave functions-first students’ survey responses (and requiring the same >70% 

agreement among bootstrapped networks), the community divisions shown in the dendrogram 

in Figure 5.2(b) were found to be stable.  
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Figure 5.2: Dendrograms showing the relative order of community divisions, determined by the 
bootstrapping process, of (a) the spins-first network and (b) the wave functions-first network. 
Community divisions only appear if there is >70% agreement among bootstrapped networks. 

 Upon inspection, the community structures are largely very similar. There is one major 

difference between the two dendrograms shown in Figures 5.2(a) and 5.2(b), however. In the 

dendrogram for the spins-first students (Figure 5.2(a)), the wave function terms (𝜓(𝑥), 𝜓∗(𝑥), 

𝜑3(𝑥), and 𝜑4
∗(𝑥)) split off from the community containing both the Dirac bras and kets (|𝜓⟩, 

⟨𝜓|, |𝐸2⟩, and ⟨𝐸1|) and the generic individual vector expressions (�⃗� and 𝑗̂). The opposite occurs 

in the dendrogram for the wave functions-first dendrogram (Figure 5.2(b)), where the generic 

vector expressions split off from the community containing the Dirac bras and kets and the wave 

function terms. This difference in community structure suggests that the Dirac bras and kets are 

thought of slightly differently by the students in these different types of courses. In the spins-

first courses, while the connections between the Dirac bras and kets and their associated wave 

functions are certainly present—as these expressions take quite a while for their communities 
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to separate—the bras and kets are more closely connected to expressions the students think of 

almost exclusively in geometric vector terms. This is counter to the structure present in the 

wave functions-first students’ network, where the conceptual connections between the Dirac 

bras and kets and their associated wave functions are stronger than the connections between 

either of these types of expressions and the generic individual vector expressions. This suggests 

that these different curricula have indeed affected the way that students conceptualize the 

meanings of both Dirac bras and kets as well as wave functions, or at the very least that they 

have affected the ways that these two types of expressions are viewed as conceptually 

connected. 

5.4.2 Comparing Expressions’ Conceptual Interpretations 

In analyzing the conceptual understanding of each expression individually, the survey 

responses for each concept can be broken down to see which expressions were chosen as 

representations for a given concept by student. This section goes through the responses for 

concepts that are exemplary of common trends; discusses which expressions were commonly 

chosen, where the two populations significantly differed in the expressions they chose; and 

discusses potential reasons for these differences. Due to the categorical nature of these data, 

comparisons were conducted on an expression-by-expression basis, and statistical significance 

was determined using the Fisher’s exact test. This was necessary (rather than a simple χ2 test) 

due to the low number of students that selected some expressions for a given concept. 

Discussion will include interesting expression-concept pairs where the two curricula agreed, as 

well as where they were proven to disagree (𝑝 < 0.05 is shown, as are the situations where 𝑝 <

0.01). Appendix C and Appendix D contain the charts for each concept, the p-values for every 
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comparison of expressions for each concept, as well as the 𝜙-values (effect sizes) for those with 

statistically significant p-values. For the purposes of data visibility and ease of comparison 

between populations with different 𝑁, figures will show the fraction of respondents that 

selected each expression for each concept rather than the raw numbers. 

5.4.2.1 Expressions Chosen for Vector-Like Concepts 

The breakdown of student responses for expressions they viewed as representing a 

vector is shown in Figure 5.3. This concept was chosen due to it showcasing common trends 

among various vector-like concepts, particularly basis vector and eigenvector. As can be seen, 

both populations largely agreed that �⃗� and 𝑗̂ are representative of vectors. Given these 

expressions’ non-quantum mechanical nature, this is to be expected and is an indication that 

these students have similar backgrounds. There are a few different categories of expressions 

with consistently statistically significant differences that suggest a theme here. The first is that 

𝑓(𝑥), 𝜓∗(𝑥), and 𝜑3(𝑥) were all statistically more likely to be selected as representing vectors 

to students enrolled in wave functions-first courses, suggesting that students enrolled in wave 

functions-first courses were more commonly interpreting functions as potentially representative 

of vectors than students enrolled in spins-first courses. It is worth noting that while these 

functions were statistically significantly selected for this concept more by wave functions-first 

students, this was not the case for 𝜓(𝑥) or 𝜑4
∗(𝑥), suggesting that while this was a consistent 

pattern, it was nonetheless not a terribly strong one (as can be attested by the effect sizes). The 

second group of expressions worth discussing is that |𝜓⟩ and ⟨𝐸1|, both of which were 

statistically more likely to be selected as representing vectors to students enrolled in spins-first 

courses, which suggests that students enrolled in spins-first courses were more likely to 
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conceptualize Dirac bras and kets as representative of vectors than students enrolled in wave 

functions-first courses. As with the prior discussion of the wave function expressions, this 

should be tempered somewhat by the lack of a statistically different difference between the two 

curricula regarding ⟨𝜓| and |𝐸2⟩. Nonetheless these differences could be explained by the 

students’ respective curricula. It would appear that the fundamental expression unit of 

whichever notation the students learn first (Dirac bras/kets or wave functions) is more likely to 

be viewed as representative of vector concepts than that of the notation they learn later. It is 

possible that students turn to vector interpretations early in their coursework due to their 

familiarity with vectors from prior coursework, and perhaps this conceptualization aids in 

interpreting inner products in their respective notation. Once a new notation system is 

introduced later in the course, perhaps this vector identity simply remains most closely tied to 

the notation they began using. It is also of interest that students in wave functions-first courses 

were more likely to consider the spin-Z operator �̂�𝑧 as representing a vector, likely due to a 

combination of a lack of familiarity due to spending significantly less time studying spin-1/2 

systems within a wave functions-first course, and a notational association of the “hat” 

commonly used to denote unit vectors. 
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Figure 5.3: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “vector” 
concept. The gray-shaded bars represent a statistically significant difference between the two 
populations’ responses to a p-value of <0.05, while the black-shaded bars represent a 
statistically significant difference between the two populations’ responses to a p-value of <0.01. 
All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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5.4.2.2 Expressions Chosen for the Wave Function Concept 

The frequencies of the two populations’ choices for expressions as representative of the 

wave function concept is shown in Figure 5.4. Both populations generally agreed that the 

various wave function expressions (𝜓(𝑥), 𝜓∗(𝑥), 𝜑3(𝑥), and 𝜑4
∗(𝑥)) were representative of 

wave functions, which is to be expected. What is particularly interesting is that the wave 

functions-first students were consistently more likely to consider Dirac bras and kets as 

representing wave functions, particularly in the case of ⟨𝐸1| and |𝐸2⟩ (p<0.01, with a medium 

effect size (0.3<ϕ<0.5)). This can perhaps be explained by the different curricular structures, as 

wave functions-first courses learn to think of a wave function as the fundamental object in 

quantum mechanics, and thus perhaps view Dirac bras and kets in those terms, referring to 

them as such. Conversely, in spins-first courses, wave functions are introduced later on in the 

course after students have perhaps already developed a vocabulary for Dirac bras and kets as 

state vectors, eigenvectors, etc., and so perhaps this term is not viewed as strongly as a blanket 

term by the time they begin to use wave functions later in the semester. That more students in 

the spins-first course selected the wave function notation versions of inner products as 

representative of wave functions is less explicable, aside from a potential interpretation of the 

prompts as asking for any expression involving a wave function that occurred more often with 

spins-first students. 
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Figure 5.4: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “wave 
function” concept. The gray-shaded bar represents a statistically significant difference between 
the two populations’ responses to a p-value of <0.05, while the black-shaded bars represent a 
statistically significant difference between the two populations’ responses to a p-value of <0.01. 
For ⟨𝐸1| and |𝐸2⟩, 0.3<𝜙<0.5 (medium effect size), and the other statistically significant 
differences have 0.1<𝜙<0.3 (small effect size). 
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5.4.2.3 Expressions Chosen for Quantum State-Like Concepts 

As an exemplary case of the trends seen regarding student choices for representing 

quantum states, see Figure 5.5 for the expression breakdown of eigenstate. Here we see a 

similar effect as we did for vector in Section 5.4.2.1, where the different curricula each are 

consistently more likely to select expressions in the notation they learned first in their course as 

representative of eigenstates. This suggests that students better understand expressions they 

are more familiar with, or perhaps that they are more confident in selecting them on a survey. 

Regardless of curriculum, ⟨𝐸1| and |𝐸2⟩ were selected more than ⟨𝜓| and |𝜓⟩, and 𝜑3(𝑥) and 

𝜑4
∗(𝑥) were selected more than 𝜓(𝑥) and 𝜓∗(𝑥). This suggests that students were cuing on the 

difference in letter or presence of a subscript when determining which expressions correspond 

to eigenstates. These are normatively the markers used to distinguish between an eigenstate 

(eigenvector/eigenfunction) of an observable (operator) and a general (unspecified) or 

superposition quantum state’s state vector or wave function. The consistent preference for kets 

and non-complex conjugate functions over bras and complex conjugate functions is also of note, 

as this suggests that students more think of the kets/wave functions as quantum states more 

than they do bras/complex conjugate wave functions. This is likely due to a lack of experience 

with dual vectors and functions, as was consistently observed in our interviews (see Chapter 3). 
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Figure 5.5: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“eigenstate” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bars 
represent a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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5.4.2.4 Expressions Chosen for Probability-Like Concepts 

Finally, we will discuss the differences in the expressions chosen as representative of 

probability-like concepts, using the results for the probability amplitude concept as an example 

(see Figure 5.6). Interestingly, unlike the divides between the curricula discussed in the previous 

sections, the divisions here are not along notational boundaries. Where before the curricula 

were seen to generally select expressions that they either learned earlier or later in the course 

as representative of various concepts, here the spins-first students selected some Dirac 

expressions more often and some wave function expressions more often, depending on the 

concept, and vice versa for the wave functions-first students. The factor that instead appears to 

primarily distinguish the populations is whether the function has a complex square or not. 

Spins-first students were more likely to select |∫ 𝜑2
∗𝜓𝑑𝑥|2 or |⟨𝐸4|𝜓⟩|2 than the wave functions-

first students, and the wave functions-first students were more likely to select ∫ 𝜓∗𝜓𝑑𝑥 and 

⟨𝜓|𝜓⟩ than the spins-first students. It is worth noting that the wave functions-first students 

selected most expressions including quantum mechanical inner products with fairly similar 

frequency, and that the primary cause for the differences between the populations is the 

consistent preference for terms with a complex square among the spins-first students. This 

suggests that students in spins-first courses may have developed a stronger expectation that 

probability-like expressions use complex squares than students in wave functions-first courses 

do. This could be due to the students in spins-first courses developing a symbolic form tied to 

probability concepts that includes a complex square in the symbol template (see Chapter 3), 

while perhaps students in wave functions-first courses do not develop a symbolic form with that 

requisite component, or do not develop it as strongly or consistently. 
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Figure 5.6: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“probability amplitude” concept. The gray-shaded bars represent a statistically significant 
difference between the two populations’ responses to a p-value of <0.05, while the black-shaded 
bars represent a statistically significant difference between the two populations’ responses to a 
p-value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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There are two potential alternative explanations for these findings: that perhaps the 

spins-first students were more likely to misinterpret the question as asking for probability than 

probability amplitude (hence the focus on complex-square expressions), or that the pattern 

present is instead that wave functions-first students selected expressions with matching 

symbols (∫ 𝜓∗𝜓𝑑𝑥 and ⟨𝜓|𝜓⟩) as representing probability amplitudes and that spins-first 

students selected expressions with different ones (|∫ 𝜑2
∗𝜓𝑑𝑥|2 and |⟨𝐸4|𝜓⟩|2). These can 

generally be refuted by additionally looking at the expressions chosen for the probability 

concept, as shown in Figure 5.7. The general trends observed within Figure 5.6 still hold here, 

despite this prompt asking for probability. This suggests that students may not see a very clear 

conceptual distinction between probability and probability amplitude. This difficulty 

distinguishing between these related concepts was noted during our interviews (see Chapter 3), 

and has been observed before by other studies of students’ conceptual understanding in 

quantum mechanics (Marshman & Singh, 2017). This suggests that even if they were 

misinterpreting probability amplitude as probability, the observed trends still hold. It can also 

be observed from Figure 5.7 that the wave functions-first students’ larger preference for 

expressions without complex squares holds, even for expressions that do not have matching 

symbols within the inner product. This taken in conjunction with the previous point about the 

seeming ambiguity between probability and probability amplitude suggests that this preference 

is real, and thus lends credence to the potential for more-strongly-developed symbolic forms 

containing complex squares for these concepts for spins-first students. The strength of these 

symbol templates could potentially be explained by these students starting with Dirac notation, 

which has high levels of compactness and symbolic support for computation when it comes to 
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inner products, according to Gire and Price’s structural features framework (Gire & Price, 2015). 

Potentially, these features of the notation they began the course using allowed for a symbol 

template such as |⟨ | ⟩|2 (see Chapter 3) to form, aspects of which (e.g., the | |2) they may 

then carry forward as an expectation for symbolic forms within other notations but with similar 

conceptual schemata. 
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Figure 5.7: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“probability” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bars 
represent a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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5.4.3 Principal Component Analysis 

A principal component analysis was performed to determine the primary differentiators 

between students’ survey responses. To this end, DeltaCon distances were calculated for every 

pair of students’ individual survey response networks and tabulated into an 𝑁 × 𝑁 matrix. A 

singular value decomposition was then applied to this matrix to change bases and allow for an 

examination of principal components. The student data projected onto the first two principal 

components (i.e., the two that explained the most variation between the students’ individual 

survey response networks) is shown in Figure 5.8(a), and the cumulative percentage of variance 

between the individual student networks explained by the first several principal components is 

shown in Figure 5.8b. As can be seen in Figure 5.8(b), PC1 explains the vast majority (~97%) of 

the variance between the student networks, and the first two together encompass 

approximately 99% of the variance. Because the subsequent principal components add 

incrementally to the variance, we will focus on the first two. It is then our task to find a 

posteriori what traits correspond to these primary principal components, and thus which 

aspects of each student’s network vary the most across all students.  
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Figure 5.8: (a) Principal component analysis plot of students’ survey response networks, 
projected to show the first two principal components along the two axes. Each point is shaded 
based on the total number of edges within each students’ network. The values along either axis 
come from a transformation of the DeltaCon distances used to create the plot, and thus have no 
inherent meaning themselves. (b) A plot of the cumulative percentage of the variance between 
student networks that can be explained by each principal component for the first ten principal 
components. 

5.4.3.1 Characterizing the Principal Components 

Each point on the plot in Figure 5.8(a) represents a student’s individual network and is 

colored by the total number of edges that lie within each network. It may seem obvious from 

inspection that PC2 is likely a measure of the number of edges within each network (the data 

points seem to become more red the higher up on the graph they appear). This can be 

determined more quantitatively by plotting the number of edges within a given student’s 

network vs. that student network’s value for PC2, as seen in Figure 5.9(a). These variables were 

found to correlate strongly (Pearson’s correlation coefficient 𝑟 = 0.75). The least-squares fit line 

is overlayed on the plot in Figure 5.9(a), and the standardized residuals are shown in Figure 

5.9(b). The second principal component, then, is effectively separating students by the number 

of expressions they selected as representative of different concepts on the survey. While this is 

potentially a measure of students’ levels of interconnectedness between various expressions 



131 
 

and concepts, it is also likely representative of different students’ online survey-taking 

preferences. 

 
Figure 5.9: (a) Plot of student networks’ number of edges vs. their calculated values of PC2. 
Overlaid is the least-squares line of best fit, showing the linear correlation between the two 
variables (r=0.75). (b) Standardized residuals for the plot, showing the variance away from the 
line of best fit for each data point. This shows that a linear fit is appropriate. 

Determining what trait PC1 corresponds to (and thus what trait explains the vast 

majority of the variance in student response networks) is somewhat less straightforward. To get 

an idea of what this could be measuring, we treat the student networks with the highest and 

lowest PC1 scores—more specifically, the networks among the first and fourth quartiles of PC1 

scores—as separate populations. Superposing the individual networks within these populations 

will emphasize any consistent structural features, which can then be compared between the 

two populations. This is similar to how the initial cumulative network of all student survey 

results was constructed, except only the students’ networks within the upper 25% and lower 

25% of PC1 scores are superposed to form a 1st quartile network and a 4th quartile network, 

respectively. These networks are shown in Figure 5.10, with exemplary individual student 

networks from the upper and lower quartile of PC1 (with very similar PC2 scores) shown in 

Figure 5.11. 
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Figure 5.10: The networks formed by the superposition of the individual student networks with 
(a) the lowest quarter of PC1 values and (b) the highest quarter of PC1 values. The edge weights 
represent the number of students that used the two expressions simultaneously, and is shown by 
the shading applied to the edges. 
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Figure 5.11: (a) Example student individual network from (a) the lowest (first) quartile of scores 
for PC1 and (b) the highest (fourth) quartile of scores for PC1. Both networks had similar values 
for PC2. There is a much clearer community structure present within (a), whereas (b) has nodes 
connected much more randomly. 

There appears to be a clear structural difference between student networks with high 

and low values of PC1. In particular, students’ networks with low values of PC1 (Figure 5.10(a)) 

appear to consistently have three fairly distinct communities: a community of Dirac bras and 

kets, wave functions, and generic vector expressions; a community of inner products; and a 

community of the squares of inner products. These all showed up as clear communities within 

the community detection dendrograms in Section 5.4.1 (Figure 5.2). The network formed from 

students with high values for PC1 (Figure 5.10(b)) shows much less of that community structure. 

This also manifests in the distribution of edge weights for the two networks, as seen in Figure 

5.10. While many edges within both networks have relatively small edge weights—meaning not 

many students within that population made the same connections—the distribution is 

somewhat bimodal for those within the first quartile of PC1, with a large number of edges with 

much higher weights. This can be seen on the networks in Figure 5.10; while both networks 
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have many low-weight edges, the stronger communities present in the first quartile network 

manifests as a selection of edges with abnormally high edge weights respective to the rest of 

the network. The lower quartile network lacks a group of edges with abnormally-large edge 

weights. This is representative of students that do not have as clear a shared predilection for 

connecting certain expressions together. PC1 therefore would seem to be an inverse measure of 

a student’s likelihood to connect the expressions seen in the communities in Figure 5.11(a) 

together. Given that the expressions within these communities share quite a bit of conceptual 

meaning, and the survey prompts effectively ask participants to sort expressions by their 

conceptual meaning, lower values of PC1 may correlate with more normative conceptions of 

the expressions present on the survey. 

 
Figure 5.12: Histograms showing the distribution of edge weights among the edges present in 
the networks for the lower (left) and upper (right) quartiles of PC1. 

5.4.3.2 Comparing Principal Components Across Curricula 

Now that the two primary principal components have been characterized, it is 

worthwhile to see whether students in spins-first and wave functions-first curricula are 

separable along either of these principal components. Normalized distributions of PC1 and PC2 

values for both curricula are shown in Figure 5.13. Neither of the curricula appear to be 
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significantly higher or lower in either of these metrics. Based on our findings for PC2, this 

suggests that students in both curricula have similar survey-taking behavior, in that the numbers 

of students that selected many expressions simultaneously and that selected very few 

expressions simultaneously were in roughly equal proportions, irrespective of curriculum. This is 

to be expected, as survey-taking behavior is not likely to depend on the type of quantum 

mechanics course one is enrolled in, and in fact should be independent of both content and 

conceptual understanding. While the distributions for PC1 may suggest that wave functions-first 

students may have a slightly higher average PC1 score (and thus slightly less expert-like 

connections between conceptually similar expressions), this is not a statistically significant 

finding. While there is potential that collecting more data from wave functions-first courses may 

make this trend statistically significant, currently there does not appear to be a difference 

between the two curricula when it comes to this general community-like behavior. This inability 

to differentiate the two populations by this metric that correlates with rough community 

structure does align with the dendrograms and community structures discussed in Section 5.4.1 

if viewed with a larger grain size, as the three larger communities observable higher up on the 

dendrograms do appear in the data from both curricula. 
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Figure 5.13: Normalized distributions of students’ scores for PC1 and PC2, separated by 

curriculum. 

5.5 Conclusions 

In summary, while students in spins-first and wave functions-first courses share many 

similarities in the ways they conceptualize common expressions in quantum mechanics, there 

are some interesting differences that point to potential curricular effects. 

Community detection of expression networks suggests that the initial focus of spins-first 

courses on linear algebra and geometric interpretations of Dirac expressions causes students to 

conceptualize Dirac expressions more strongly in vector-like terms than students enrolled in 

wave functions-first courses. 

Examining the conceptual interpretations of the various expressions on the survey also 

highlighted some interesting differences between the curricula, with potential pedagogical 

explanations. One of the biggest distinguishing factors between the two populations was their 

conceptualization of Dirac bras and kets. While Sections 5.4.2.1 and 5.4.2.3 showed that 

students in spins-first courses tended to view these expressions as more representative of 

vectors and quantum states than the wave functions-first students did, Section 5.4.2.2 showed 

that wave functions-first students thought of bras and kets far more as representing wave 
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functions than the spins-first students did. These interpretations all have merit, of course, as 

Dirac bras and kets are vectors, do represent quantum states, and can contain the same 

information as (and more than) wave functions. That students in these different curricula each 

view them in all of these terms is encouraging, though the degree to which these 

interpretations are salient to the students is seemingly affected by their curriculum. The 

prevalence of wave functions-first students treating Dirac bras and kets as representing wave 

functions is reasonable, given their text’s preference for discussing kets as representative of 

functions as seen in Section 2.1.4. 

It was also seen in Section 5.4.2.4 that students in both curricula seemed to view 

“probability” and “probability amplitude” as somewhat synonymous—or at the very least 

conceptually ambiguous—as evidenced by their responses for the expressions representative of 

both concepts being largely similar. It was also noteworthy that spins-first students selected 

inner product expressions with complex squares as representative of these concepts more often 

than wave functions-first students, while the opposite was true for inner products without 

complex squares. This is potentially evidence of different symbolic forms having been developed 

in the different curricula, as Chapter 3 showed that spins-first students develop strong symbol 

templates containing complex squares as representing probability concepts. 

Our principal component analysis was a means to determine the primary causes of 

variability among students’ survey responses. While student networks generally varied 

significantly, the primary causes of their variability appear to be due to general survey response 

behavior differences (which transcend curriculum), and general levels of normative conceptual 

understanding (which also transcends curriculum). While on an individual level, the principal 
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component analysis of individual student networks caught onto larger variables, once 

aggregated as in Sections 5.4.1 and 5.4.2 the summative differences hidden within the “noise” 

of survey response behavior and level of general conceptual understanding could emerge as 

general trends throughout the larger student populations. Overall, it can be seen that curricular 

focuses do in fact influence students’ conceptualizations of different symbolic representations. 

It appears that each curriculum strengthens students’ conceptual interpretations in different 

ways, and so a choice on a curriculum should come down to instructor preference as to which 

conceptions of the various expressions they wish their student to best understand and 

internalize. Spins-first courses appear to make students think of Dirac bras and kets as 

representing vectors and quantum states more than wave functions-first courses do, while wave 

functions-first courses (perhaps unsurprisingly) appear to make them more strongly connect 

bras and kets to wave functions, and not as strongly to vector-like concepts. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

Quantum mechanics is a notoriously challenging topic for students, and the abstract 

mathematics required is no small contributor to that challenge (Gire & Price, 2015; B.P. 

Schermerhorn et al., 2019; Singh, 2001, 2008; Singh & Marshman, 2015; Wawro et al., 2020). 

The goal of the work presented in this dissertation was thus to better understand the ways that 

students understand the two primary mathematical notations used in upper-division quantum 

mechanics: Dirac notation and wave function notation. For the purposes of this dissertation, we 

limited our focus to expressions (and pieces of expressions) that are used to calculate 

probabilities; in a quantum mechanical context, this means we studied inner product 

expressions (and their components) in both Dirac and wave function notation. While these two 

notations share analogous or equivalent expressions and can be used interchangeably for many 

tasks, each has its strengths and weaknesses (Gire & Price, 2015) and thus each is more efficient 

for some tasks than the other (Schermerhorn et al., 2019). Unsuccessful or incomplete 

translation between notations has been shown to cause students to struggle when generating 

expressions for quantities such as probabilities (Wan et al., 2019). 

To better understand the ways that students interpret and use expressions in these two 

notations, we conducted think-aloud interviews and administered surveys to hundreds of 

students at several institutions around the US. The breadth of the coverage afforded by our 

surveys also allowed for a comparative study of the two predominant curricular styles of upper-

division quantum mechanics courses. This is of particular interest for this project because the 

primary difference between these two curricular styles is the order in which the two notations 
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in question are introduced. To examine the student interviews (all of which were conducted at 

an institution that taught Dirac notation first and wave function notation later), we found 

Sherin’s symbolic forms framework (Sherin, 2001) to be a good fit for this analysis, as the 

different notations each share analogous expressions, and so it may be expected for conceptual 

schemata to be applied to different symbol templates, depending on the notation used. We also 

deemed this a useful framework for the quantum mechanical context in particular, due to the 

multifaceted possible conceptualizations of many expressions used within this topic. For 

example, Dirac bras and kets are treated mathematically as vectors—with all of the rules and 

features belonging to that type of mathematical object—while representing quantum 

mechanical systems. The symbolic forms framework thus proved helpful in distinguishing the 

different concepts that students could view quantum mechanical expressions as representing. 

Within this chapter, we recapitulate the primary conclusions of this work and discuss the 

broader ideas these conclusions inform as well as how they relate to prior research in the field. 

We will conclude by discussing potential avenues for continuing this work in the future. 

6.1 Summary of Conclusions 

Symbolic forms analysis of students’ think-aloud interviews while constructing 

expressions for probability revealed numerous normative symbolic forms, within both Dirac and 

wave function notations. This included interpretations of bras, kets, and functions as 

representations of vectors and quantum states, and both Dirac brackets and inner product-style 

integrals as vector dot products and probability-related concepts. One interesting result of this 

analysis is the strong connection students made between a complex square and a probability. 

This requirement for a complex square in symbolic forms for probability did on occasion lead 



141 
 

students astray when a complex square is implicit, such as with ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥. While there 

was generally agreement that a complex square should be present, there was some confusion 

when determining what quantity was squared. For example, when calculating the probability for 

measuring a particle within an energy state, students expressed confusion as to whether the 

wave function expression should be |∫ 𝜑𝑛
∗ (𝑥)𝜓(𝑥)𝑑𝑥|2 or ∫|𝜑𝑛

∗ (𝑥)𝜓(𝑥)|2𝑑𝑥. One interesting 

point to note is that the two complex square-based instances of confusion generally manifested 

more often for expressions written in wave function notation. While this could be due to a lack 

of expertise using this notation in a spins-first curriculum, the students had been using this 

notation extensively for several weeks before the interviews were conducted. We believe it is 

more likely that this is an example of Dirac notation’s higher degrees of individuation and 

symbolic support for computation (Gire & Price, 2015). In essence, the notation lends itself 

toward viewing inner products (and thus the squares of inner products) as an elemental, easy-

to-recognize form. Within the symbolic forms framework, this could be interpreted as students 

being more readily able to recall and recognize the symbol templates (and thus the symbolic 

forms) for the Dirac versions of these expressions.  

The nature of these identified symbolic forms also helps to explain aspects of our results 

of network analysis of the conceptual connections survey administered in both spins-first and 

wave-functions-first courses. We found that students with a spins-first background conceptually 

connected Dirac bras and kets, generic vector expressions, and wave function expressions. This 

is explainable due to the shared conceptual schemata associated with the symbolic forms 

identified for Dirac bras and kets and functions, in particular the ket/bra as quantum state, 

ket/bra as vector, function as state, and function as vector symbolic forms. Interestingly, upon 
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applying community detection methods, the Dirac expressions were found to connect more 

strongly with the generic vector expressions than with the wave function expressions. This 

suggests a number of possibilities regarding the prevalence of these different symbolic forms. 

For example, it is possible that the bra/ket as vector symbolic form is more common and/or 

more strongly instantiated than bra/ket as quantum state, and/or that wave function as vector 

is less common and/or less strongly instantiated than wave function as state. It is likely that 

several of these (or other) potential explanations combined to cause the Dirac bras and kets to 

be more strongly conceptually connected to the generic vector expressions than to their 

physically analogous wave function expressions for spins-first students. 

This strong association between Dirac bras and kets and vector ideas is likely due in part 

to the spins-first background of these students, as the community structure observed in the 

data from wave functions-first courses was different. For these students, the Dirac bras and kets 

were more closely connected to their wave function analogs, with the generic vector 

expressions being more weakly related to both. Looking at the conceptual breakdown of the 

different expressions provides a potential explanation for these different community structures 

as well, as spins-first students selected bras and kets as representative of vector concepts more 

often than wave functions-first students; while both populations of students chose wave 

function expressions as representative of wave function concepts, the wave functions-first 

students were more likely to select the bras and kets as representative of wave function 

concepts as well. One potential explanation for this prevalence of wave function terminology 

being used to describe Dirac bras and kets is that due to their courses beginning with the 

Schrödinger equation and using wave functions to describe quantum states, students in these 
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courses came to closely tie the concepts of “quantum state” and “wave function,” and thus 

every different representation of a quantum state that was introduced later in the semester was 

then also connected to their conception of wave functions. This extra “connective tissue” 

between bras, kets, and wave functions for wave functions-first students and between bras, 

kets, and vector expressions for spins-first students likely helps to explain this difference in their 

community structure. These conceptual structures are not absolute, of course—recall Bilbo (a 

spins-first student) referring to wave functions as representing vectors—but they are 

nonetheless generally the case. 

In general, one common distinguishing factor between the two populations was a 

seeming preference for selecting expressions in the notation that was used first in their 

curriculum for many concepts present on the survey. In other words, spins-first students tended 

to select Dirac notation expressions more frequently than wave function expressions for 

concepts related to vectors and quantum states, and vice versa. This suggests a level of comfort 

or perhaps simply better conceptual understanding of the notation with which the students 

have worked the longest. Some concepts did buck this trend, however, such as the “wave 

function” concept, where very few spins-first students selected Dirac expressions, but many 

more wave functions-first students did. Marshman and Singh (2017) had previously found some 

evidence of students struggling to distinguish the different “flavors” of probability concepts (i.e., 

probability vs. probability amplitude vs. probability density), and our survey responses seem to 

corroborate and support this finding. Many students appeared to treat “probability” and 

“probability amplitude” similarly on the survey, suggesting that this difficulty in parsing these 
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admittedly nuanced distinctions between these concepts is a general challenge that affects 

students regardless of curriculum.  

Another conclusion from these results is that while the survey was successful in teasing 

out differences between students in spins-first and wave functions-first curricula through 

network analysis techniques conducted on their respective cumulative networks, other factors 

that were independent of curriculum (such as variance in student’ survey-taking behaviors and 

levels of expert-like thinking) dominated the comparative analysis of individual students’ 

networks conducted via principal component analysis (PCA). In other words, while the 

populations differed when taken as a whole, the resolution of a PCA was not sufficient to detect 

the signals distinguishing the two populations through the noise of domain-general properties. 

While our symbolic forms analysis relied on interview data that was only collected within 

a spins-first context, it is possible to speculate as to the symbolic forms that may have 

developed by wave functions-first students based on the curriculum, our findings from spins-

first students, and our survey results. It is reasonable to assume that, due to the difference in 

curricular focus and notational usage, some of the differences observed between curricula in 

our survey data are attributable to differences in symbolic forms developed within a wave 

functions-first curriculum (via either different symbolic forms entirely or differences in the 

relative prevalence of the forms discussed in Chapter 3). One example of a symbolic form that 

may arise from an analysis of interview data with wave functions-first students would be 

potential ket/bra as (wave) function symbolic forms, wherein the symbol templates | ⟩ and 

⟨ | are paired with conceptual schemata that capture some specific property of wave functions 

that may be specific to students in wave functions-first courses. Whether this wave function 
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concept is a distinguishable concept from that of a quantum state for this population is an 

interesting question in its own right, as was discussed above. Also, it is possible that the 

(conjugate) function as vector symbolic forms would be observed more often or with more 

coherence with wave functions-first students, as our survey data showed a statistically 

significantly larger portion of wave functions-first students selecting wave function expressions 

when prompted for vector concepts. It would be interesting to see if these speculations based 

on our analyses would bear out in a symbolic forms-based analysis on students within wave 

functions-first curricula. 

In general, this research suggests that students successfully developed many normative 

symbolic forms throughout a spins-first quantum mechanics course, and thus learned how to 

generate and interpret expressions representing quantum states and probabilities written in 

both Dirac and wave function notation. There does appear to be some difficulty when it comes 

to generating and interpreting expressions for probability in wave function notation, often 

relating to the presence or location of a complex square. It would be interesting to see whether 

this difficulty persists in a wave functions-first context, in which the students would potentially 

be more comfortable and skilled with that notation, and whether they would instead find 

working with expressions in Dirac notation more challenging.  

Network analysis techniques were shown to be useful in determining the relative 

strengths of conceptual connections between expressions for students in different curricula, 

and for distinguishing those curricula by the differences in the strength of these conceptual 

connections. As may be expected, students in these curricula with very different notational 

focuses do appear to learn to interpret expressions in these notations differently as well. As 
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these differences in conceptual interpretations of these notations are quite prevalent, this 

difference in understanding should be a factor in determining which approach an instructor 

chooses to teach. 

6.2 Thoughts on the Use of Network Analysis Techniques 

To our knowledge, we adapted and made use of standard network analysis techniques in 

a unique way in this study. While network analysis has seen extensive use in the study of social 

communities in discipline-based education research (among other uses, as discussed in Section 

2.5), this study represents the first attempt to use these techniques to probe students’ 

representational understanding. As such, much of our work was in determining which 

techniques were appropriate for a study of this kind—this section will hopefully serve as a 

helpful record of this process, such that future work can build on this work more expediently. 

Due both to the number of analogous expressions across wave function and Dirac notation as 

well as the prevalence of expressions with very subtle distinctions within each notation, we 

determined that community detection techniques would prove useful in analyzing how 

expressions in these two notations relate. Our desire both to measure these connections along 

conceptual lines and to do so for a large number of students at multiple institutions with 

different curricular focuses gave cause for the creation of the card-sorting survey described in 

Section 4.4.1. 

A multitude of options for community detection methods have been developed within 

network analysis research (Fortunato, 2010), and in fact we originally made use of a different 

method than the betweenness-based method used in our final work. We initially made use of a 

modularity maximization-based method (Newman & Girvan, 2004), which was helpful in that it 
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determines the number of communities that are “best” as well as which nodes should belong 

within each community. This avoids the need for a separate procedure for doing so yourself—in 

our case, our modified statistical bootstrapping procedure discussed in Section 4.3.2. 

Unfortunately, this method proved troublesome for networks of our size, as modularity 

maximization has an inherent limitations on its resolution for communities of a small number of 

nodes (Fortunato & Barthélemy, 2007b). Other techniques such as those based on hierarchical 

clustering were passed over as well due to the reasons discussed in Section 4.3.1, and we 

eventually settled on our combined betweenness-bootstrapping method for determining the 

best communities for our networks. Unless the networks in question are much larger than ours, 

we would suggest others studying similar types of networks adapt the methods we used to 

avoid spending too much time testing out several different methods. If the networks and the 

communities of interest are much larger than the networks studied here, we would suggest the 

use of modularity maximization techniques instead. This is primarily due to the computation 

time for betweenness-based methods scaling aggressively with the number of nodes and edges 

within a network and become unfeasible for very large networks, as was discussed in Section 

4.3.1. 

While the PCA based on network distance metrics adapted from Wolf et al. (2012) and 

discussed in Section 5.4.1 did allow for discussion of the primary causes for variability among all 

survey participants’ networks, the high levels of variability in student survey-taking behavior 

dominated much of the analysis. The second principal component did allow for a potential 

categorization of students based on expert-like thinking, though after PC1 it accounted for much 

less of the variability among participants’ survey responses. As such, applying a PCA to survey-
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based network data in this way is perhaps most advisable if the high level of variability in the 

number of answer selections seen in our data can be mitigated by survey design. If this can be 

done, then this approach would be very illuminating as to the primary distinctions among 

survey participants. This would be especially useful if used for a similar purpose to that in 

Section 5.4.3, when comparing two different student populations that could be expected to 

respond differently for a given data collection apparatus. 

Overall, a significant portion of the work conducted throughout this project concerned 

determining appropriate methods for analyzing the unique type of networks our survey results 

generated. Not every method used yielded definitive results—modularity maximization and our 

PCA being two examples—but it proved instructive. We hope that our discussion of the various 

techniques available will prove useful for future research, as every method has a dataset for 

which it will be the best option. We determined that the methods described in Chapters 4 and 5 

were the optimal approaches for our data, given the number of students, the size of our 

networks, and the specific questions we were asking. 

6.3 Future Work and Implications for Instruction 

While this work answered many questions concerning students’ representational 

understanding in quantum mechanics, it raised many more in the process, all of which suggest 

fruitful ground for future studies. First, while we limited our investigation to Dirac and wave 

function notation, Gire and Price (2015) and Schermerhorn et al. (2019) included vector-matrix 

notation expressions in their work. We are not familiar with any prior symbolic forms analysis of 

matrix notation expressions, but as it is another way to symbolically express physical 
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relationships, students likely develop symbolic forms for these expressions as well in a linear 

algebra context, and perhaps different symbolic forms within a quantum mechanical context. 

Additionally, while our investigation was wholly concerned with expressions 

representing probabilities and their constituent expressions, there are many other expressions 

that students must grapple with in this context. In particular, expressions for outer products, 

expectation values, and eigenvalue equations in quantum mechanics all are worthy of study. 

Students likely need to develop entirely new symbolic forms to interpret all of these expressions 

within this context, as several of them are most likely entirely novel to the students (e.g., outer 

products and expectation values expressed as ⟨𝜓|�̂�|𝜓⟩ or ∫ 𝜓∗(𝑥)�̂�𝜓(𝑥)𝑑𝑥) or require an 

entirely novel interpretation (e.g., eigenvalue equations, as discussed by Dreyfus et al. (2017) 

and Pina et al. (2023)). We also believe that a comparative analysis between spins-first and 

wave functions-first students would likely highlight substantive differences in their 

interpretations and comfort levels with these expressions as well. 

While collecting and analyzing more survey data would also potentially assist in gaining 

further clarity in our comparative analysis between students in different curricula, another 

fruitful avenue would be to extend this survey to instructors of these courses. This would allow 

for an analysis of experts’ conceptual interpretations of these expressions, and even for a 

potential “expert” network that could be compared to individual students. There are several 

ways analysis of these results could be illuminating, the first of which would be determining the 

variance between experts’ responses, and whether any variance could be explained by 

instructional approach and/or the multiple interpretations of quantum mechanics concepts. 

Another interesting potential outcome of this extension of our work would be as a potential 
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diagnostic tool. For example, students’ or whole classes’ collective response networks could be 

compared to the “expert” network as a means of determining how successful a course has been 

in developing expert-like conceptions of these expressions. 

The network analysis techniques as adapted for this project could also be used to 

investigate conceptual connections between mathematical entities well beyond this context. For 

example, these techniques could be used to study the ways students interpret mathematical 

relationships both in symbolic and graphical forms, or to study interpretations of physical laws 

and whether they vary depending on the way they are written. For example, a similar survey 

could be designed with each question proposing a graph with several different symbolic 

algebraic expressions or physical scenarios that they would select as potentially being 

represented by the graph. Relatedly, recent work has been done by chemistry education 

researchers to attempt to adapt the symbolic forms framework into explaining students’ 

developing a vocabulary of graphical curves, fittingly named graphical forms (Rodriguez, Bain, & 

Towns, 2020). Within PER, some preliminary work has found that while expert physicists display 

a command of such a vocabulary of graphical functional forms—often stating that a physical 

behavior “goes like” some of these common functions (e.g., linear, quadratic, sinusoidal 

relationships)—students have not been shown to develop such a collection of familiar graphical 

relationships (Zimmerman et al., 2020). A potential survey and resultant network analysis could 

thus study the shared conceptual nature of various “graphical forms.” The community detection 

methods described in Chapter 4 would be useful anytime one is curious about whether two 

things (be it expressions, graphs, etc.) are viewed as potentially connected by a shared concept 

or context. As such, we believe that there is much room for this or similar methods to be used 
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to study such conceptual or contextual connections. Also, these methods represent a small 

foray into the broad and growing field of network analysis, and thus it is likely that future 

studies could greatly improve and iterate on this design and implementation. 

We would like to conclude with some implications our results suggest regarding 

quantum mechanics instruction. In general, we found that spins-first and wave functions-first 

curricula both appear to have merit insofar as each appears to promote students’ 

representational understanding of expressions for probability concepts. The primary 

differentiator between the two curricula appears to be the relative level of familiarity with the 

notation in their respective courses, as one could expect. Wave functions-first students appear 

to treat wave functions as the fundamental concept and physical/mathematical construct, while 

spins-first students appear to treat state vectors (especially when represented as kets) in this 

way. An instructor should thus take this difference into account when choosing a curricular 

focus for their course. If the goal for the course is to prepare students for graduate study in 

physics, we might suggest using a spins-first curriculum, as much of graduate-level quantum 

mechanics makes extensive use of Dirac notation, and thus increased familiarity and comfort 

with this notation may prove helpful for students that continue on to graduate study. One more 

concrete suggestion for instructors of spins-first courses, based on our interview findings, is to 

emphasize the appropriate use and placement of complex squares when calculating 

probabilities, particularly when using wave function notation. This was a difficult task for 

students in our interviews; our interview data is likely representative of students with above-

average understanding of the coursework due to the inherent selection bias of asking for 

volunteers. Thus, if the proper placement of the complex square for these expressions proved 
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challenging for our interviewees, it is likely that this difficulty is even more prevalent for the 

average student. The fact that Dirac expressions are so individuated and supportive of 

computation due to the symmetry of the notation itself (Gire & Price, 2015), we would also 

suggest that leveraging these benefits and emphasizing translating expressions for probability 

from Dirac into their equivalent wave function notations may be helpful. Overall, we wish to 

emphasize that the notations and expressions used in upper-division quantum mechanics 

courses are rife with nuanced distinctions and subtle variations, and thus great care should be 

taken to assist students in developing the conceptual schemata that they will learn to apply to 

the various expressions in these courses. 
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APPENDIX A: COMPARISON OF NOTATION INTRODUCTIONS BETWEEN SPINS-FIRST AND WAVE 

FUNCTIONS-FIRST TEXTBOOKS 

This appendix will discuss the ways in which Dirac and wave function notation are 

introduced in spins-first and wave functions-first courses. 

A.1 Spins-first Introduction of Dirac Notation 

There were two spins-first texts used by the students in this study: Quantum Mechanics 

by McIntyre (2012) and A Modern Approach to Quantum Mechanics by Townsend (2000). The 

majority of the spins-first students studied used McIntyre’s text (all interviewees used McIntyre, 

and 182 McIntyre students participated in the online survey vs. 81 Townsend students), so we 

will focus on the language and notation used by McIntyre in this section, though Townsend’s 

notational choices are broadly similar. These courses begin by using the results of the Stern-

Gerlach experiment to motivate the fundamental postulates of quantum mechanics while 

simultaneously introducing students to Dirac notation. After first explaining the Stern-Gerlach 

experiment and the requisite classical physics, the text introduces Dirac kets in the following 

way: 

In [Error! Reference source not found.], the input and output beams are labeled w

ith a new symbol called a ket. We use the ket |+⟩ as a mathematical 

representation of the quantum state of the atoms that exit the upper port 

corresponding to 𝑆𝑧 = +ℏ/2. The lower output beam is labeled with the ket |−⟩, 

which corresponds to 𝑆𝑧 = −ℏ/2, and the input beam is labeled with the more 

generic ket |𝜓⟩. The kets are representations of the quantum states (McIntyre, 

2012, p. 4). 
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Figure A.1: Schematic from Figure 1.2 in McIntyre (2012), showing results from a Stern-Gerlach 
experiment. On the left is the oven releasing silver atoms described by the ket |𝜓⟩, in the middle 
is the Stern-Gerlach apparatus oriented in the 𝑧-direction, and on the right are the counts of 
silver atoms detected to have 𝑆𝑧 = +ℏ/2 and 𝑆𝑧 = −ℏ/2, described by the kets |+⟩ and |−⟩, 
respectively. 

Once the author has discussed all of the various configurations of the Stern-Gerlach 

experiments—and thus showcasing the incompatibility of 𝑆𝑥, 𝑆𝑦, and 𝑆𝑧 states—he describes 

the mathematics governing these kets. He does this by drawing analogies to spatial vectors: 

“These kets are abstract entities that obey many of the rules you know about ordinary spatial 

vectors. Hence they are called quantum state vectors” (McIntyre, 2012, p. 10). He then draws 

direct analogies to Cartesian unit vectors, introducing ideas such as normalization, 

orthogonality, and completeness, summarizing them as 

�̂� ∙ �̂� = 𝒋̂ ∙ 𝒋̂ = �̂� ∙ �̂� = 1 normalization 

�̂� ∙ 𝒋̂ = �̂� ∙ �̂� = 𝒋̂ ∙ �̂� = 0 orthogonality 

𝑨 = 𝑎𝑥 �̂� + 𝑎𝑦𝒋̂ + 𝑎𝑧�̂�  completeness 

and stating that 

we require that these same properties (at least conceptually) apply to quantum 

mechanical basis vectors. For the 𝑆𝑧 measurement, there are only two possible 

results, corresponding to the states |+⟩ and |−⟩, so these two states comprise a 
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complete set of basis vectors. […] The completeness of the basis kets |±⟩ implies 

that a general quantum state vector |𝜓⟩ is a linear combination of the two basis 

kets: |𝜓⟩ = 𝑎|+⟩ + 𝑏|−⟩ (McIntyre, 2012, p. 11). 

Once he has defined kets in analogy to Cartesian spatial vectors and discussed how 

completeness appears in Dirac notation, the author moves on to explain the other two features, 

combined together into orthogonality, which inherently required use of dot products for the 

Cartesian unit vectors discussed prior. Before discussing orthonormality, however, he first 

discusses complex numbers—as the 𝑎 and 𝑏 in the quote above are described as complex scalar 

numbers—and draws an analogy to vectors that show up in electromagnetism: 

When using complex numbers to describe classical vectors like electric and 

magnetic fields, the definition of the dot product is generalized slightly, such that 

one of the vectors is complex conjugated. A similar approach is taken in quantum 

mechanics. The analog to the complex conjugated vector of classical physics is 

called a bra in the Dirac notation of quantum mechanics. Thus corresponding to a 

general ket |𝜓⟩, there is a bra, or bra vector, which is written as ⟨𝜓|. If a general 

ket |𝜓⟩ is specified as |𝜓⟩ = 𝑎|+⟩ + 𝑏|−⟩, then the corresponding bra ⟨𝜓| is 

defined as ⟨𝜓| = 𝑎∗⟨+| + 𝑏∗⟨−|, where the bras ⟨+| and ⟨– | correspond to the 

basis kets |+⟩ and |−⟩, respectively, and the coefficients 𝑎 and 𝑏 have been 

complex conjugated (McIntyre, 2012, pp. 11-2). 

Here McIntyre defines the Dirac bra in direct analogy to a simple complex conjugate of a vector 

in classical physics. He then immediately moves on to discuss the scalar product of a bra and ket 

and discusses normality in analogy to Cartesian unit vectors once more: 

The scalar product in quantum mechanics is defined as the product of a bra and a 

ket taken in the proper order—bra first, then ket second: (⟨𝑏𝑟𝑎|)(|𝑘𝑒𝑡⟩). […] 

[this] is written in shorthand as ⟨𝑏𝑟𝑎|𝑘𝑒𝑡⟩. […] So how do we calculate the inner 
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product ⟨+|+⟩? We do it the same way we calculated the dot product �̂� ∙ �̂�. […] So 

the normalization of the spin-1/2 basis vectors is expressed in this new notation 

as ⟨+|+⟩ = 1 and ⟨−|−⟩ = 1 (McIntyre, 2012, p. 12). 

With normality covered, he then immediately moves on to discuss orthogonality, again 

in analogy to Cartesian spatial vectors: 

The spatial unit vectors �̂�, 𝒋̂, and �̂� used for spatial vectors are orthogonal to each 

other because they are at 90° with respect to each other. That orthogonality is 

expressed mathematically in the dot products �̂� ∙ 𝒋̂ = �̂� ∙ �̂� = 𝒋̂ ∙ �̂� = 0. For the 

spin basis kets |+⟩ and |−⟩, there is no spatial geometry involved. Rather, the 

spin basis kets are orthogonal in the mathematical sense, which we express with 

the inner product as ⟨+|−⟩ = 0. […] Though there is no geometry in this 

property for quantum mechanical basis vectors, the fundamental idea of 

orthogonality is the same, so we use the same language—if a general vector 

“points” in the direction of a basis vector, then there is no component in the 

“direction” of the other unit vectors (McIntyre, 2012, p. 12). 

The final step to laying out the relevant formalism for our purposes is the discussion of 

the probabilistic interpretation of Dirac expressions. He first lays out the postulate that the 

complex square of the inner products ⟨+|𝜓⟩ and ⟨−|𝜓⟩ are the “[probabilities] that the state 

|𝜓⟩ is found to be in the [states] |+⟩ [and |−⟩] when a measurement of 𝑆𝑧 is made, 

[respectively]” (McIntyre, 2012, p. 14). We will end this discussion of a spins-first approach at 

introducing Dirac notation with McIntyre’s discussion of Dirac brackets being probability 

amplitudes: 

Because the quantum mechanical probability is found by squaring an inner 

product, we refer to an inner product, ⟨+|𝜓⟩ for example, as a probability 

amplitude or sometimes just an amplitude; much like a classical wave intensity is 
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found by squaring the wave amplitude. Note that the convention is to put the 

input or initial state on the right and the output or final state on the left: 

⟨𝑜𝑢𝑡|𝑖𝑛⟩, so one would read from right to left in describing a problem (McIntyre, 

2012, p. 15). 

We would like to draw attention to the way that the author discusses these expressions 

by providing a sort of literal translation or way to read inner product expressions aloud. We now 

will discuss the way that these spins-first texts (using McIntyre as an example) introduces wave 

function notation and its analogous expressions. 

A.2 Spins-first Introduction of Wave Function Notation 

When first introducing expressions in wave function notation, McIntyre directly connects 

them to their Dirac notation analogs: 

The spatial functions we use to represent quantum states are called wave 

functions and are generally written using the Greek letter 𝜓 as 𝜓(𝑥). The wave 

function is a representation of the abstract quantum state, so we can use our 

representation notation to write |𝜓⟩ =̇ 𝜓(𝑥). We call this representation the 

position representation, which means that we are using the position eigenstates 

as the preferred basis […] For clarity, we will use the Greek letter 𝜓 when 

referring to generic quantum states and other Greek letters to denote specific 

eigenstates. For example, in the case of the energy eigenstates, we write the 

wave functions representing them as |𝐸𝑖⟩ =̇ 𝜑𝐸𝑖
(𝑥) to distinguish them as 

specific eigenstates (McIntyre, 2012, p. 111). 

The ”representation notation” he describes is in reference to using the =̇ symbol as 

meaning “is represented by,” rather than “is equivalent to.” This convention was introduced 

earlier in the text, and is used here because while 𝜓(𝑥) is the analog to |𝜓⟩ in wave function 

notation, they are not equivalent. When attempting to more rigorously define the position wave 
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function, he draws parallels to representations of the ket |𝜓⟩ as a column vector in various 

bases, including a discrete (but infinite-dimensional) energy basis: 

|𝜓⟩ =̇ (

⟨𝐸1|𝜓⟩

⟨𝐸2|𝜓⟩

⟨𝐸3|𝜓⟩
⋮

). 

In analogy to this, he represents the ket |𝜓⟩ as a column vector in a discretized position basis: 

|𝜓⟩ =̇ (

⟨𝑥1|𝜓⟩

⟨𝑥2|𝜓⟩

⟨𝑥3|𝜓⟩
⋮

), 

where ⟨𝑥𝑖|𝜓⟩ is “the probability amplitude for the state |𝜓⟩ to be measured in the position 

eigenstate |𝑥𝑖⟩” (McIntyre, 2012, p. 113). He then goes on to describe the necessary leap from 

discrete bases to continuous bases: 

Experiment tells us that the physical observable 𝑥 is not quantized. Rather, all 

values of position 𝑥 are allowed. […] For a continuous variable like position, the 

column vector representation is not convenient because we cannot write down 

the infinite number of components. Even if the number were infinite but large, 

say 100, then we would find a column vector cumbersome. Instead, we might 

choose to represent the 100 discrete numbers ⟨𝑥𝑖|𝜓⟩ as points in a graph, such 

as shown in [Figure A.2(a)]. However, because the position spectrum is 

continuous, there is an infinite continuum of the probability amplitudes ⟨𝑥|𝜓⟩, 

and the natural way of to represent such a continuous set of numbers is as a 

continuous function, as shown in [Figure A.2(b)]. This function is what we call the 

quantum mechanical wave function 𝜓(𝑥). The wave function is the collection of 

numbers that represents the quantum state vector in terms of the position 

eigenstates, in the same way that the column vector used to represent a general 

spin state is a collection of numbers that represents the quantum state vector in 

terms of the spin eigenstates (McIntyre, 2012, p. 113). 
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Here McIntyre uses column vector representations of the |𝜓⟩ ket to lead to an understanding of 

the wave function 𝜓(𝑥) being a collection of inner products ⟨𝑥|𝜓⟩ for every value of position 𝑥. 

 

Figure A.2: Plots used by McIntyre (Fig. 5.4) to show the leap from (a) a representation for 
probability amplitudes for a discrete basis, and (b) a plot of probability density amplitude for a 
continuous basis. 

In determining the appropriate expression for probabilities in wave function notation, 

McIntyre again returns to analogies in Dirac: 

Continuing with the analogy to the [discrete examples used prior], we expect 

that the probability of measuring a particular value of position is obtained by 

taking the absolute square of the projection ⟨𝑥|𝜓⟩, as was done […] for spin and 

energy representations. However, because the projection ⟨𝑥|𝜓⟩ is the continuous 

wave function 𝜓(𝑥), the absolute square yields a continuous probability function 

(actually a probability density, as we’ll find in a moment), which we write as 

𝒫(𝑥) […] In wave function notation, this new probability function is 𝒫(𝑥) =

|𝜓(𝑥)|2 (McIntyre, 2012, p. 114). 

He eventually uses the normalization condition for a continuous basis to show that 𝒫(𝑥) is 

necessarily a probability density, and thus introduces the probability for a particle within a (one-

dimensional) region from 𝑎 → 𝑏 as 𝒫𝑎<𝑥<𝑏 = ∫ |𝜓(𝑥)|2𝑑𝑥
𝑏

𝑎
. He then explicitly connects the 

Dirac and wave function expressions for the normalization conditions by rewriting the wave 
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function version to “look more like the bra-ket form” (McIntyre, 2012, p. 115): ⟨𝜓|𝜓⟩ = 1 and 

∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞
= 1, emphasizing the visual parallels between the two notations. Perhaps 

controversially, he then introduces four “rules” for translating Dirac expressions into wave 

function notation, as seen in Figure A.3. He uses these rules to generate the wave function 

equivalent of the probability of a particle to be measured with a single value of an observable: 

Using the rules for translating bra-ket notation to wave function notation, a 

general state vector projection or probability amplitude expressed in wave 

function language is ⟨𝜙|𝜓⟩ = ∫ 𝜙∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞
. The square of this probability 

amplitude is the probability that the state 𝜓(𝑥) is measured to be in the state 

𝜙(𝑥),  

𝒫𝜓→𝜙 = |⟨𝜙|𝜓⟩|2 = |∫ 𝜙∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞

|

2

. 

Technically, we should say that this is the probability that the system prepared in 

state 𝜓(𝑥) is measured to have the physical observable for which 𝜙(𝑥) is the 

eigenstate, because we measure observables, not states. But the looser language 

is common and does not create any ambiguity in the calculation (McIntyre, 2012, 

pp. 116-7). 

Here McIntyre is attempting to substantiate a visual logic for translating familiar (Dirac) 

expressions in from earlier in the course into their wave function notation equivalents. 
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Figure A.3: The four rules laid out by McIntyre for translating a Dirac expression into its wave 
function equivalent. 

McIntyre does notably also caution about the similarities between the expression for the 

probability of measuring a single discrete eigenvalue (𝒫𝜓→𝜙 = |∫ 𝜙∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞
|

2
) and the 

probability of measuring a particle to be within a range of positions (𝒫𝑎<𝑥<𝑏 = ∫ |𝜓(𝑥)|2𝑑𝑥
𝑏

𝑎
): 

Note that [𝒫𝑎<𝑥<𝑏 = ∫ |𝜓(𝑥)|2𝑑𝑥
𝑏

𝑎
] and [𝒫𝜓→𝜙 = |∫ 𝜙∗(𝑥)𝜓(𝑥)𝑑𝑥

∞

−∞
|

2
] look 

similar but have important differences. In [𝒫𝑎<𝑥<𝑏 = ∫ |𝜓(𝑥)|2𝑑𝑥
𝑏

𝑎
] we integrate 

the probability density (wave function complex squared) over a finite range of 

position in order to sum the probabilities of measuring many different positions. 

In [𝒫𝜓→𝜙 = |∫ 𝜙∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞
|

2
] we integrate the product of two wave 

functions over all space to determine their mutual overlap, and then we complex 

square that result to get the probability of measuring a single result (McIntyre, 

2012, p. 117). 

This confusion about the similarities between these two different types of probability should be 

noted here, as it will appear within student data in the following chapters. 

 As can be seen by reading the excerpts above, McIntyre very much chooses to leverage 

the vector-like identity used for Dirac expressions in his introduction to wave function notation, 

including treating the wave function as a column vector containing elements and relating the 
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inner product integral to ideas of projection. We will now look at the ways that the common 

text used in wave functions-first courses introduces these two notations, starting with its 

introduction to wave function notation. 

A.3 Wave Functions-first Introduction of Wave Function Notation 

The most ubiquitous text for wave functions-first courses is undoubtedly Griffiths’ 

Introduction to Quantum Mechanics (Griffiths, 1995). This text begins by first discussing the way 

that classical mechanics would determine the position of a particle constrained to move along 

the 𝑥-axis while subject to some force, 𝑥(𝑡), by drawing upon Newton’s second law (for 

conservative systems), 𝑚
𝑑2𝑥

𝑑𝑡2 = −
𝜕𝑉

𝜕𝑥
. He contrasts this with quantum mechanics: 

Quantum mechanics approaches this same problem very differently. In this case 

what we’re looking for is the particle’s wave function, Ψ(𝑥, 𝑡), and we get it by 

solving the Schrödinger equation: 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑡2 + 𝑉Ψ. […] The Schrödinger 

equation plays a role logically analogous to Newton’s second law: Given suitable 

initial conditions (typically Ψ(𝑥, 0)), the Schrödinger equation determines 

Ψ(𝑥, 𝑡) for all future time, just as, in classical mechanics, Newton’s law 

determines 𝑥(𝑡) for all future time (Griffiths, 1995, pp. 1-2). 

As can be seen with this excerpt, Griffiths immediately begins his book by analogizing the 

Schrödinger equation to Newton’s second law, and the wave function as the solution to this 

foundational equation. He then goes on to describe the wave function, at least insofar as its role 

for determining probabilities for position ranges: 

But what exactly is this “wave function,” and what does it do for you once you’ve 

got it? After all, a particle, by its nature, is localized at a point, whereas the wave 

function (as its name suggests) is spread out in space (it’s a function of 𝑥, for any 

given time 𝑡). How can such an object represent the state of a particle? The 
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answer is provided by Born’s statistical interpretation of the wave function, 

which says that |Ψ(𝑥, 𝑡)|2 gives the probability of finding the particle at point 𝑥, 

at time 𝑡—or, more precisely,  

∫ |𝜓(𝑥)|2𝑑𝑥
𝑏

𝑎
= {probability of finding the particle between 𝑎 and 𝑏, at time 𝑡.} 

Probability is the area under the graph of |Ψ|2 (Griffiths, 1995, p. 2). 

This introduction to the wave function and probabilities for position ranges is markedly different 

from the way spins-first courses introduce wave function notation—it is based entirely on 

positing rules and equations and observing the mathematical effects of those rules and 

equations. Of course, this mirrors much closer the way that spins-first courses introduce Dirac 

notation—whichever notation is introduced first is in the unfortunate position of needing to be 

explained without having another (quantum mechanical) description to compare it to, after all. 

While spins-first courses were able to use the nature of vectors and geometry to analogize the 

Dirac formalism, wave function notation does not have as obvious a supportive analogy, aside 

from an understanding of solutions to differential equations. 

A.4 Wave Functions-first Introduction of Dirac Notation 

After spending a chapter discussing wave function solutions to various potential wells 

and their allowed energy levels, Griffiths begins to draw parallels between these solutions and 

describe general mathematical properties of quantum physics: 

Quantum theory is based on two constructs: wave functions and operators. The 

state of a system is represented by its wave function, observables are 

represented by operators. Mathematically, wave functions satisfy the defining 

conditions for abstract vectors, and operators act on them as linear 

transformations. So the natural language of quantum mechanics is linear 
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algebra. But it is not, I suspect, a form of linear algebra with which you are 

immediately familiar. In an 𝑁-dimensional space it is simplest to represent a 

vector, |𝛼⟩, by the 𝑁-tuple of its components, {𝑎𝑛}, with respect to a specified 

orthonormal basis: 

|𝛼⟩ → 𝒂 = (

𝑎1

𝑎2

⋮
𝑎𝑁

) 

The inner product, ⟨𝛼|𝛽⟩, of two vectors (generalizing the dot product in three 

dimensions) is the complex number, ⟨𝛼|𝛽⟩ = 𝑎1
∗𝑏1 + 𝑎2

∗𝑏2 + ⋯ + 𝑎𝑁
∗ 𝑏𝑁. […] But 

the “vectors” we encounter in quantum mechanics are (for the most part) 

functions, and they live in infinite-dimensional spaces. […] We define the inner 

product of two functions, 𝑓(𝑥) and 𝑔(𝑥), as follows: ⟨𝑓|𝑔⟩ ≡ ∫ 𝑓(𝑥)∗𝑔(𝑥)𝑑𝑥
∞

−∞
 

(Griffiths, 1995, pp. 93-5). 

Griffiths initially defines what look to be expressions in Dirac notation in the context of 

discretized vector spaces, but immediately moves to describe these expressions (not yet 

referred to as kets or brackets) as relating to functions. 

He also very briefly touches on the coefficients of expansion of the wave function into 

the eigenfunctions for a given potential well being related to probability when first discussing 

the wave function solutions for the infinite square well potential. He returns to fully discuss 

probabilities of measuring values of observables other than position here, now that he has 

introduced inner products. 

If you measure an observable 𝑄(𝑥, 𝑝) on a particle in the state Ψ(𝑥, 𝑡), you are 

certain to get one of the eigenvalues of the Hermitian operator �̂�(𝑥, −𝑖ℏ𝑑/𝑑𝑥 ). 

If the spectrum of �̂� is discrete, the probability of getting a particular eigenvalue 

𝑞𝑛 associated with the orthonormalized eigenfunction 𝑓𝑛(𝑥) is  
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|𝑐𝑛|2,   where   𝑐𝑛 = ⟨𝑓𝑛|Ψ⟩. 

If the spectrum is continuous, with real eigenvalues 𝑞(𝑧) and associated Dirac-

orthonormalized eigenfunctions 𝑓𝑧(𝑥), the probability of getting a result in the 

range 𝑑𝑧 is 

|𝑐(𝑧)|2𝑑𝑧   where   𝑐(𝑧) = ⟨𝑓𝑧|Ψ⟩ (Griffiths, 1995, p. 106). 

After some discussion of the completeness and orthonormality of these eigenfunctions, 

Griffiths then discusses the coefficients 𝑐𝑛, writing the wave function as a (discrete) weighted 

sum of the eigenfunctions as Ψ(𝑥, 𝑡) = ∑ 𝑐𝑛𝑓𝑛(𝑥)𝑛 . He then recapitulates the expression for 

the coefficient and discusses its probabilistic interpretation: 

𝑐𝑛 = ⟨𝑓𝑛|Ψ⟩ = ∫ 𝑓𝑛(𝑥)∗Ψ(𝑥, 𝑡)𝑑𝑥 

Qualitatively, 𝑐𝑛 tells you “how much 𝑓𝑛 is contained in Ψ,” and given that a 

measurement has to return one of the eigenvalues of �̂�, it seems reasonable that 

the probability of getting the particular eigenvalue 𝑞𝑛 would be determined by 

the “amount of 𝑓𝑛” in Ψ. But because probabilities are determined by the 

absolute square of the wave function, the precise measure is actually |𝑐𝑛|2 

(Griffiths, 1995, p. 107). 

It isn’t until later in this chapter that Griffiths directly discusses Dirac notation, and later 

still that he introduces the terms “bra” and “ket.” He first introduces the state vector: 

[The state of a system in quantum mechanics] is represented by a vector, |𝒮(𝑡)⟩, 

that lives “out there in Hilbert space,” but we can express it with respect to any 

number of different bases. The wave function Ψ(𝑥, 𝑡) is actually the coefficient in 

the expansion of |𝒮⟩ in the basis of position eigenfunctions: 

Ψ(𝑥, 𝑡) = ⟨𝑥|𝒮(𝑡)⟩, 
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(with |𝑥⟩ standing for the eigenfunction of �̂� with eigenvalue 𝑥) […] Or we could 

expand |𝒮⟩ in the basis of energy eigenfunctions (supposing for simplicity that 

the spectrum is discrete): 

𝑐𝑛(𝑡) = ⟨𝑛|𝒮(𝑡)⟩ 

(with |𝑛⟩ standing for the 𝑛th energy eigenfunction of �̂�) […] but it’s all the same 

state; the function Ψ […] and the collection of coefficients {𝑐𝑛} contain exactly 

the same information—they are simply three different ways of describing the 

same vector (Griffiths, 1995, p. 119). 

Interestingly, in a footnote, Griffiths discusses his earlier description of Hilbert spaces as 

the set of square-integrable functions as being “too restrictive, committing us to a specific 

representation (the position basis). I want now to think of it as an abstract vector space, whose 

members can be expressed with respect to any basis you like” (Griffiths, 1995, p. 119). 

It is later that he introduces the terms “bra” and “ket”: 

Dirac proposed to chop the bracket notation for the inner product, ⟨𝛼|𝛽⟩, into 

two pieces, which he called bra, ⟨𝛼|, and ket, |𝛽⟩ […] The latter is a vector, but 

what exactly is the former? […] In a function space, the bra can be thought of as 

an instruction to integrate: 

⟨𝑓| = ∫ 𝑓∗[⋯ ] 𝑑𝑥, 

with the ellipsis [⋯ ] waiting to be filled by whatever function the bra encounters 

in the ket to its right. In a finite-dimensional vector space, with the vectors 

expressed as columns, 

|𝛼⟩ = (

𝑎1

𝑎2

⋮
𝑎𝑛

), 
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the corresponding bra is a row vector: 

⟨𝛼| = (𝑎1
∗ 𝑎2

∗ ⋯ 𝑎𝑛
∗ ). 

The collection of all bras constitutes another vector space—the so-called dual 

space. The license to treat bras as separate entities in their own right allows for 

some powerful and pretty notation (though I shall not exploit it in this book) 

(Griffiths, 1995, p. 122). 

As the author highlights in that closing parenthetical, this is essentially the extent to which Dirac 

notation is used in his text (and thus presumably the extent to which Dirac notation is used in 

wave functions-first courses). It is not used much for the rest of the text. 

It is notable that, much like spins-first courses use Dirac notation and its vector-like 

interpretation to help their students transition to using wave functions, Griffiths first describes 

inner products (with the appearance of Dirac brackets but without the name at that point) in 

terms of wave functions and overlap integrals. Understandably, both texts seek to leverage the 

knowledge and notational understanding developed over the first several chapters to interpret 

and make sense of the newly introduced notation. Aside from a very quick dalliance in treating 

kets (again, not named as such initially) as vectors, they are largely taught as representing 

functions. It is not until the very end of the chapter aimed at discussing and introducing Dirac 

formalism that bras and kets are named—and in the case of bras, that they are discussed at all. 
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APPENDIX B: QUANTUM MECHANICS TEXTBOOK CONTENTS 

Below are pasted the tables of contents for the three texts used by students surveyed. 

First is the table of contents for the text by McIntyre, then Townsend, then Griffiths. 

 

Figure B.1: Table of contents for the textbook by McIntyre (McIntyre, 2012). 
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Figure B.2: Contents of chapters 1-3 of Townsend’s text (Townsend, 2000). 
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Figure B.3: Contents of chapters 4-6 of Townsend’s text (Townsend, 2000). 
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Figure B.4: Contents of chapters 7-9 of Townsend’s text (Townsend, 2000). 
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Figure B.5: Contents of chapters 10-13 of Townsend’s text (Townsend, 2000). 
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Figure B.6: Contents of chapter 14 and the appendices of Townsend’s text (Townsend, 2000). 
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Figure B.7: Contents of chapters 1-5 of Griffiths’ text (Griffiths, 1995). 
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Figure B.8: Contents of chapters 6-10 of Griffiths’ text (Griffiths, 1995). 
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Figure B.9: Contents of chapters 11, 12, and the appendices of Griffiths’ text (Griffiths, 1995). 
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APPENDIX C: CONCEPT-EXPRESSION CHARTS ACROSS CURRICULA 

 

 

Figure C.1: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “vector” 
concept. The gray-shaded bars represent a statistically significant difference between the two 
populations’ responses to a p-value of <0.05, while the black-shaded bars represent a 
statistically significant difference between the two populations’ responses to a p-value of <0.01. 
All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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Figure C.2: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“quantum state” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bars 
represent a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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Figure C.3: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “inner 
product” concept. The black-shaded bar represents a statistically significant difference between 
the two populations’ responses to a p-value of <0.01. The statistically significant difference here 
has 0.1<𝜙<0.3 (small effect size). 
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Figure C.4: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “dot 
product” concept. 
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Figure C.5: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “unit 
vector” concept. 
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Figure C.6: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “basis 
vector” concept. The gray-shaded bars represent a statistically significant difference between 
the two populations’ responses to a p-value of <0.05. All statistically significant differences here 
have 0.1<𝜙<0.3 (small effect size). 
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Figure C.7: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the “wave 
function” concept. The gray-shaded bar represents a statistically significant difference between 
the two populations’ responses to a p-value of <0.05, while the black-shaded bars represent a 
statistically significant difference between the two populations’ responses to a p-value of <0.01. 
For ⟨𝐸1| and |𝐸2⟩, 0.3<𝜙<0.5 (medium effect size), and the other statistically significant 
differences have 0.1<𝜙<0.3 (small effect size). 
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Figure C.8: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“eigenvector” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bar 
represents a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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Figure C.9: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“eigenstate” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bar 
represents a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 



195 
 

 
Figure C.10: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“probability amplitude” concept. The gray-shaded bars represent a statistically significant 
difference between the two populations’ responses to a p-value of <0.05, while the black-shaded 
bars represent a statistically significant difference between the two populations’ responses to a 
p-value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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Figure C.11: Bar charts showing the fraction of respondents from spins-first (left) and wave 
functions-first (right) courses that selected various expressions as representative of the 
“probability” concept. The gray-shaded bars represent a statistically significant difference 
between the two populations’ responses to a p-value of <0.05, while the black-shaded bars 
represent a statistically significant difference between the two populations’ responses to a p-
value of <0.01. All statistically significant differences here have 0.1<𝜙<0.3 (small effect size). 
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APPENDIX D: FISHER’S EXACT SCORES AND EFFECT SIZES COMPARING EXPRESSIONS CHOSEN FOR CONCEPTS ACROSS CURRICULA 

Table D.1: Data table containing the p-values calculated from the Fisher’s Exact test comparing the two curricula’s expression 
selection for each concept. Cells containing p-values less than 0.05 are shaded, and include the 𝜙-values (effect sizes) in parentheses 
beneath the p-values for those cells. 𝜙 > 0.5 is representative of a large effect size, 0.3 < 𝜙 < 0.5 is a medium effect size, and 0.1 < 𝜙 < 
0.3 is a small effect size. 

 

 Vector 
Quantum 

State 
Inner 

Product 
Dot 

Product 
Unit 

Vector 
Basis 

Vector 
Wave 

Function 
Eigenvector Eigenstate 

Probability 
Amplitude 

Probability 

�⃗⃗⃗� 0.133 1 N/A 1 0.412 0.845 N/A 1 0.433 N/A N/A 

𝒋 ̂ 0.625 1 N/A 0.315 0.433 0.134 1 0.391 1 N/A N/A 

�̂�𝒛 
0.003 
(0.17) 

0.14 N/A 0.532 0.067 0.061 N/A 
0.022 
(0.15) 

0.492 N/A 1 

𝒇(𝒙) 
0.002 
(0.2) 

1 1 N/A 0.172 0.138 0.48 0.138 0.205 1 0.138 

|𝝍⟩ 
0.025 
(0.13) 

0.034 
(0.12) 

0.433 N/A 0.625 0.144 
<0.001 
(0.22) 

0.63 0.743 0.078 1 

⟨𝝍| 0.073 0.554 0.532 1 1 0.647 
<0.001 
(0.22) 

0.24 0.545 1 1 

|𝑬𝟐⟩ 0.075 0.455 0.532 1 0.683 
0.037 
(0.12) 

<0.001 
(0.41) 

0.017 
(0.14) 

0.048 
(0.12) 

0.433 N/A 

⟨𝑬| 
0.037 
(0.12) 

1 0.532 N/A 0.476 0.332 
<0.001 

(0.4) 
0.017 
(0.14) 

0.038 
(0.12) 

1 1 

𝝍(𝒙) 0.068 0.176 1 1 0.385 0.684 0.292 0.098 
0.027 
(0.14) 

0.492 0.433 

𝝍∗(𝒙) 
0.012 
(0.15) 

0.747 0.595 1 0.63 
0.037 
(0.14) 

0.762 0.101 0.236 0.684 0.315 

𝝋𝟑(𝒙) 
0.03 

(0.13) 
0.013 
(0.15) 

0.608 1 0.15 0.238 1 
0.002 
(0.22) 

<0.001 
(0.22) 

1 1 

𝝋𝟒
∗ (𝒙) 0.066 0.168 0.595 1 0.63 0.165 1 

0.012 
(0.13) 

0.035 
(0.13) 

0.595 0.315 
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Table D.1 Continued. 

�⃗⃗⃗� ∙ �⃗⃗⃗� 1 0.315 0.296 0.715 0.507 0.507 0.172 0.41 0.172 0.433 N/A 

⟨𝝍|𝝍⟩ 0.608 1 
0.001 
(0.2) 

0.655 0.478 0.221 0.684 0.188 0.225 
0.002 
(0.19) 

<0.001 
(0.25) 

⟨𝑬𝟑|𝝍⟩ 0.359 0.389 0.071 0.55 1 0.705 1 1 0.435 0.847 
0.031 
(0.13) 

∫ 𝝍∗𝝍𝒅𝒙 0.433 0.142  0.657 0.078 0.532 0.433 
0.01 

(0.14) 
0.433 0.142 

0.032 
(0.12) 

0.02 
(0.14) 

∫ 𝝋𝟏
∗ 𝝍𝒅𝒙 N/A 0.385 0.179 0.196 1 1 

0.004 
(0.15) 

0.433 0.385 0.583 0.314 

|⟨𝑬𝟒|𝝍⟩|𝟐 1 0.729 0.275 0.381 1 1 1 0.63 0.699 
0.002 
(0.18) 

<0.001 
(0.22) 

|∫ 𝝍∗𝝍𝒅𝒙|
𝟐

 1 
0.009 
(0.18) 

0.593 1 0.359 1 0.143 0.433 
0.016 
(0.16) 

0.179 0.654 

|∫ 𝝋𝟐
∗ 𝝍𝒅𝒙|

𝟐

 N/A 
0.005 
(0.19) 

0.787 0.744 1 N/A 
0.032 
(0.12) 

1 0.63 
0.018 
(0.13) 

0.456 
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APPENDIX E: INTERVIEW PROTOCOLS 

Below is an example of the interview protocols used for the in-person interviews. The 

tasks used for the virtual interviews are shown in full in Section 3.3.1. 

 

Prompt: “How would you express the probability for an electron within a potential well to be 
measured as having the ground state energy of that well?” 

 

 A1: |⟨𝐸1|ψ⟩|2 

  Q1: And why that?  What do the 𝐸1 and ψ represent? 

   A1: The 𝐸1 is the state with the ground state energy, and the psi is the initial state. 

    Q1: Why did you write them like that?  What are the angles on the sides, or the  
    lines in the middle/on the sides?  Why is it squared? 

     A1: The angles show that it is an inner product between the two states, 𝐸1  
     and psi, and the square is because we want a probability. 

   A2: It’s an inner product between the two states, 𝐸1 and psi. 

    Q1: What do you mean by “states”? 

     A1: 𝐸1 is the state of a particle in the ground state, and psi is the actual state  
     of the electron. 

    Q2: What do you mean by “inner product”? 

     A1: Like a dot product, where you do the projection of one along another. 

      Q1: I see.  Dot products usually are done with vectors.  Is that the case  
      here? 

       A1: Yeah, in QM we treat different quantum states as vectors, and  
       the inner products between them are probabilities. 

    Q3: What do you mean by the “states” 𝐸1 and psi? 

     A1: Like, if the particle were measured with the ground state energy, it  
     would be in the 𝐸1 state, and before we know what state it is in, we call it psi. 
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  Q2: What are the angles on the sides, or the lines in the middle/on the sides?  Why is it  
  squared? 

   A1: The angles show that it is an inner product between the two states, 𝐸1   
   and psi, and the square is because we want a probability. 

 

 A2: ⟨𝐸1|ψ⟩ 

  Q1: And why that?  What do the 𝐸1 and ψ represent? 

   A1: The 𝐸1 is the state with the ground state energy, and the psi is the initial state. 

    Q1: Why did you write them like that?  What are the angles on the sides, or the  
    lines in the middle/on the sides?  Why is it squared? 

     A1: The angles show that it is an inner product between the two states, 𝐸1  
     and psi, and the square is because we want a probability. 

   A2: It’s an inner product between the two states, 𝐸1 and psi. 

    Q1: What do you mean by “states”? 

     A1: 𝐸1 is the state of a particle in the ground state, and psi is the actual state  
     of the electron. 

    Q2: What do you mean by “inner product”? 

     A1: Like a dot product, where you do the projection of one along another. 

      Q1: I see.  Dot products usually are done with vectors.  Is that the case  
      here? 

       A1: Yeah, in QM we treat different quantum states as vectors, and  
       the inner products between them are probabilities. 

    Q3: What do you mean by the “states” 𝐸1 and psi? 

     A1: Like, if the particle were measured with the ground state energy, it  
     would be in the 𝐸1 state, and before we know what state it is in, we call it psi. 

 

 A3: |∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥|2 

  Q1: And why that?  What do the 𝜑1
∗(𝑥) and 𝜓(𝑥) represent? 
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   A1: 𝜑1
∗(𝑥) is the state with the ground state energy, and 𝜓(𝑥) is the initial state. 

    Q1: Why are they in an integral? 

     A1: Because that’s just how it works? 

     A2: Because that’s what inner products look like in position. 

 

A4: ∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥 

 

A5: �̂�|ψ⟩ 

 

A6: �̂�|𝐸1⟩ 

 

A7: ⟨𝐸1|�̂�|ψ⟩ 
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Prompt: “Let’s say we have an electron in a potential well—perhaps an infinite square well.  If 
we know that it has an even 33% chance of having any of the three lowest possible 
measurable energy values for that well, how could you express its current quantum state 
mathematically?” 

 

A1: |𝝍⟩ =
𝟏

√𝟑
|𝑬𝟏⟩ +

𝟏

√𝟑
|𝑬𝟐⟩ +

𝟏

√𝟑
|𝑬𝟑⟩ 

 Q1: Why are you adding these together? 
 

A2: 𝝍(𝒙) = √
𝟐

𝟑𝑳
𝒔𝒊𝒏 (

𝝅𝒙

𝑳
) + √

𝟐

𝟑𝑳
𝒔𝒊𝒏 (

𝟐𝝅𝒙

𝑳
) + √

𝟐

𝟑𝑳
𝒔𝒊𝒏 (

𝟑𝝅𝒙

𝑳
) 
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Prompt: Let’s say we have a particle in an infinite square well (“particle-in-a-box”) potential.  
It is currently in the superposition state described by (for McIntyre/Townsend students): 

|𝜓⟩ =
1

2√2
(√3|𝐸1⟩ + |𝐸2⟩ + 2|𝐸3⟩) 

for Griffiths students: 

|Ψ⟩ =
1

2√2
(√3|𝜓1⟩ + |𝜓2⟩ + 2|𝜓3⟩) 

PROMPT 1: How would you go about finding the probability of measuring that particle to be 
in the left half of the square well? 

 

A1: 𝜓(𝑥) =
1

2√𝟐
(√3 sin

𝜋𝑥

𝐿
+ sin

2𝜋𝑥

𝐿
+ 2 sin

3𝜋𝑥

𝐿
)    →    ∫ |ψ(𝑥)|2𝑑𝑥

𝐿/2

0
 

 

A2: 𝜓(𝑥) =
1

2√𝑳
(√3 sin

𝜋𝑥

𝐿
+ sin

2𝜋𝑥

𝐿
+ 2 sin

3𝜋𝑥

𝐿
)    →    ∫ |ψ(𝑥)|2𝑑𝑥

𝐿/2

0
 

 

A3: 𝜓(𝑥) =
1

2√𝟐
(√3 sin

𝜋𝑥

𝐿
+ sin

2𝜋𝑥

𝐿
+ 2 sin

3𝜋𝑥

𝐿
)    →    ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥

𝐿/2

0
 

 

A3: 𝜓(𝑥) =
1

2√𝑳
(√3 sin

𝜋𝑥

𝐿
+ sin

2𝜋𝑥

𝐿
+ 2 sin

3𝜋𝑥

𝐿
)    →    ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥

𝐿/2

0
 

 

A4: 𝜓(𝑥) =
1

2√𝟐
(√3 sin

𝜋𝑥

𝐿
+ sin

2𝜋𝑥

𝐿
+ 2 sin

3𝜋𝑥

𝐿
)    →    |∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥

𝐿/2

0
|

2

 

 

A5: 50%, because half of the well 

 

PROMPT 2: How would you go about finding the probability of measuring that particle to be 
in the lowest energy state? 
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A1: |⟨𝐸1|ψ⟩|2 = 3
8⁄ = 37.5% 

 

A2: ⟨𝐸1|ψ⟩ =
√3

2√2
 

 

A3: |∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥|2 

 

A4: ∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥 
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Prompt: Let’s say we have a particle in an infinite square well (“particle-in-a-box”) potential.  
The particle is described by the following wave function (for McIntyre/Townsend students): 

𝜓(𝑥) =
4

√5𝐿
sin3 (

4𝜋𝑥

𝐿
) 

For Griffiths students: 

Ψ(𝑥) =
4

√5𝐿
sin3 (

4𝜋𝑥

𝐿
) 

PROMPT 1: How would you go about finding the probability of measuring that particle to be 
in the lowest energy state? 

 

A1: |∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥|2 

 

A2: ∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥 

 

A3: |⟨𝐸1|ψ⟩|2  →  |∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥|2 

 

A4: ⟨𝐸1|ψ⟩  →  ∫ 𝜑1
∗(𝑥)𝜓(𝑥)𝑑𝑥 

 

PROMPT 2: How would you go about finding the probability of measuring that particle to be 
on the left half of the square well? 

 

A1: ∫ |ψ(𝑥)|2𝑑𝑥
𝐿/2

0
 

 

A2: ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥
𝐿/2

0
 

 

A3: |∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥
𝐿/2

0
|

2
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Bonus Prompt: How would you write the wave function 𝝍(𝒙) in Dirac Notation?  

Bonus Prompt: How would you write the state vector |𝛙⟩ in the position representation? 
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APPENDIX F: SURVEY TASK 

Below is a screenshot of a single question asked on the online surveys. All other 

questions were identical to this, with the only differences being that the order of the 

expressions were randomized and the concepts would differ, also being asked in random order 

throughout the survey. The first two images are screenshots of the first two blocks on the 

survey, which consisted of an informed consent slide and a slide to explain the structure of the 

questions used on the survey. After that, we will list example questions from the three slightly 

different versions of the survey. The first example is from the survey used for students enrolled 

in a course using the McIntyre text, the second with the Townsend text, and the third with the 

Griffiths text. The only difference between these three surveys were the exact formulation of 

the expressions—we attempted to most closely match the texts’ choices for representations of 

the expressions chosen. 



208 
 

 

Figure F.1: Informed consent slide used for all online surveys. 
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Figure F.2: Second slide on the online survey, informing participants about the tasks they will be 
responding to throughout the survey 
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Figure F.3: Example of a survey question given to participants enrolled in courses using 
McIntyre’s textbook (McIntyre, 2012). 
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Figure F.4: Example of a survey question given to participants enrolled in courses using 
Townsend’s textbook (Townsend, 2000). 
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Figure F.5: Example of a survey question given to participants enrolled in courses using Griffiths’ 
textbook (Griffiths, 1995). 
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APPENDIX G: COMPUTER CODE FOR NETWORK ANALYSIS 

Pasted below is a link to a GitHub repository where examples of the code used are 

accessible for the curious reader. Due to the number of similar files used to analyze data from 

multiple institutions or curricula, there is only one file from each institution/curriculum, to avoid 

overwhelming the reader with almost identical files. The goal with sharing this code is to assist 

anyone who wishes to replicate or utilize our methods in their own work. The code is all in 

Mathematica, and is fairly well-commented. If the reader has questions about the code used in 

this analysis beyond what can be gleaned from the comments in the code, the author is more 

than willing to assist if reached out to. 

https://github.com/WillRiihiluoma/Riihiluoma_Dissertation_Code 

https://github.com/WillRiihiluoma/Riihiluoma_Dissertation_Code
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