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Research on novel biomaterials to address current limitations associated with bone grafting is 

currently of high demand. Current treatment options for bone regeneration are facing challenges such as 

donor site morbidity and limited availability, immune rejection, and disease transmission. Research 

conducted on natural polymers to mimic Extracellular matrix (ECM)structure of bone tissue demonstrated 

their strong potential to spur bone regeneration. Engineered scaffolds that are inspired by oriented 

collagen/Hydroxyapatite (HA)structure in natural bone are promising biomaterials that can provide an 

ECM like structure for primitive mesenchymal cells to grow and differentiate to the bone cells. Cellulose 

nanofibril (CNF) is a natural and biocompatible polymer that is widely used in tissue engineering and 

wound healing. CNF has the same size features of collagen and due to its biocompatibility and anisotropy 

is a potential candidate to recapitulate bone microstructure. Hydroxyapatite (HA) is the major mineral 

compound of the bone which improves bioactivity and tissue integration attributes of implanted 

biomaterials. Current study suggests a methodology to induce fiber alignment in CNF/HA nanocomposites 

and evaluates the potential of oriented CNF/HA nanocomposite material to support cell growth and 

redirect pre osteoblasts as precursors to osteocytes. This study lays the foundation for the development 

of synthetic bone mimic scaffolds with affordable cost and relatively simple method
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CHAPTER 1 

AN INTRODUCTION TO BONE REGENERATION 

1.Introduction  

 

Bone grafting is among the most performed procedures in several therapeutic areas including but not 

limited to Orthopedics, Traumatology, and Oral surgery. The goal of this approach is to develop new 

bone tissues at the area of injury like skeletal deficiency or atrophy area. Each year, approximately half a 

million patients need bone grafting procedures, in US. The estimated costs associated with bone 

fractures and orthobiologics are at $4.7 billion[1]. The global financial burden of bone repair is 

estimated to be around $17 billion per year[2]  

` Osteoinduction is defined as a phenomenon that induces osteogenesis during the bone healing 

process and osteoinduction means cellular differentiation towards bone tissue due to the 

physicochemical effect or contact with another tissue.  The methods used in bone repair interventions are 

categorized into following groups: autografts, allografts, xenografts, and artificial scaffolds. Given their 

favorable osteoinductive and osteoinductive attributes, the Autograft is labeled as gold standard 

treatment , however, it faces challenges like donor-site morbidity and limited availability [3, 4] While 

allografts and xenografts do not have autograft’s  limitations, they are susceptible to trigger immune 

response and disease transmission.  Additionally, their osteoinductive properties is frequently weakened 

by disruptive processing [3, 5] . Each of these treatment options and their drawbacks are further discussed 

in section 1.3 in this chapter.  

Despite the fact that a significant number of bone grafts and substitutes are available, the 

effective reconstructive treatment entails several challenges. The major challenges include  scalability, 

high cost of production  and safety issues related to biological substances[6, 7]. 
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Bone Tissue Engineering (BTE) science works towards addressing challenges by optimizing 

material engineering and biological science resources with the goal of improving bone regeneration. Bone 

engineering looks to find inspiration from bone structure, fracture healing process, and bone’s natural 

formation process during the embryonic development phase. Materials like polymer, ceramics, or 

combination of them are considered as critical components in most of the BTE strategies. These materials 

offer application flexibility and could be applied in several forms, for example, membranes and 3D 

scaffolds. These structures are being referred as extracellular matrix(ECM)  mimic, meaning that they help 

with cell attachment, proliferation, and differentiation by serving as mechanical support and creating 

favorable environment for cells[8]. There are two ways for cells inclusion in the system: Seeding cells onto 

the material system before implementation or utilizing the cells from surrounding tissues after in-vivo 

implementation[9]. 

While inclusion of biological components like growth factors are deemed beneficial, there are 

several cost and regulatory challenges in place that limits the use of biologics in bone-tissue engineering 

[9] Clinical translation and commercialization strategies appreciate the materials-only approaches that 

employs body’s own cells to help with bone regeneration and exclude biological factors [5, 10-12]. During 

bone regeneration process, an oriented ECM is crucial to regulate cell response while maintaining the 

mechanical support for cells to grow and proliferate[13]. Previous studies have shown that the aligned 

nanofibers can effectively  promote osteoblasts proliferation and migration resulting in better tisue 

regenaeration performance compated to random structures [14-17]. Given the potential of aligned ECM 

mimics to spur bone regeneration, characterizing cellular morphology and proliferation on this type of 

biomaterials is crucial. Current biomaterial solutions for bone regeneration lack the desired characteristics 

to replace autologous. Therefore, next generation of bone regenerative biomaterials should include 

engineered ECM mimics that replicate aligned nanostructure of natural bone while possessing bioactivity 

for tissue integration. Given the rising interest in using natural polymers such as nanocellulose with 
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distinguished properties for bone regeneration[18, 19], current study evaluates the potential of aligned 

cellulose nanofibril (CNF) composites to support cellular alignment and proliferation. 

 

1.1. Bone microstructure 

 

Bone is a composite material in which its core components are matrices of collagen fibrils associated 

with approximately equal volumes of minerals, where calcium phosphate is the dominant solid mineral 

phase[20, 21].  The mature mineral matrix is a cross-fibrillar mineralization that originates at the nanoscale 

where organized layers of mineral units align and span laterally across adjacent collagen fibrils[20].This 

cross-fibrillar mineralization structure contributes to the structural integrity of bone which relates to how 

the mineral composition can affect  chemical and physical properties, such as  density, hardness, and 

growth morphology[22, 23]. Bone mineral is known to possess compositional and structural similarities 

with synthetic stoichiometric hydroxyapatite (HA), Ca10(PO4)6(OH)2. However, bone mineral is structurally 

disordered and compositionally nonstoichiometric due to the presence of a substantial amount of anionic 

and cationic species, as well as ion vacancies in the crystal lattice[24]. The low degree of crystallinity and 

small crystal size are closely related to the higher solubility of biological apatite compared to 

stoichiometric hydroxyapatite (HA). 

 A schematic of bone hierarchical structure is represented in Figure 1.1. At nanoscale, collagen and 

HA form the backbone of Lamela structure. This oriented matrix maintains the structural stability of the 

bone tissue and regulates cells response. Engineered biomaterials intended to be used for bone 

regeneration need to maintain an oriented matrix that induces proper cellular function including 

adhesion, orientation, proliferation, and differentiation[25-27]. 
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Figure 1. 1representative image bone microenvironment [20] 

 

1.4. Bone defects  

 

Bone regeneration is a complex physiological process of bone formation involving coordinated work 

by several cell types which can be observed during normal fracture healing, as well as during skeletal 

development and continuous remodeling throughout adult life[28, 29]. In the case of injury, bone heals 

by generating new bone being eventually indistinguishable from the adjacent uninjured bone[30].  

Fracture healing is assumed to happen in chronological order. Although categorizing healing 

mechanism into different stages is beneficial to understand underlying biology, however these phases 

occur simultaneously in multiple sites and at different rates throughout the fractured callus[31]. These 

phases include hematoma formation and inflammatory response, proliferation/differentiation, matrix 

ossification and remodeling phase.   

The success of bone regeneration relies on the biological and mechanical environment.  There are cases 

of fracture healing in which bone regeneration is impaired. Individual risk factors that  can also contribute 
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to failure of bone regeneration include but not limited to age, diabetes and peripheral vascular 

disease[32]. 

At the final stage of bone regeneration, woven bone is deposited on the cartilage callus. A 

disruption in angiogenesis at this stage can produce a non-healing bone, which is typically referred to as 

a delayed union or non-union[33]. One study observed 41 trauma centers with 416 patients being treated 

for tibial shaft fractures. The results showed 13% of fractures occurring in the tibia being associated with 

delayed union or fracture non-union. Studies suggest that the severity of soft tissue injury is the most 

important factor determining bone healing[34]. Additionally, other circumstances in orthopedic, oral, and 

maxillofacial surgery require bone regeneration in large quantities, making it difficult for individuals to 

self-heal. Some examples include skeletal reconstruction of large bone defects created by trauma, 

infection, tumor resection, skeletal abnormalities, or cases in which the regenerative process is 

compromised, including avascular necrosis and osteoporosis[32].  

1.4. Bone grafting  

 

There is a variety of treatment options available for bone regeneration to replace, restore, or help 

manage many of these complex clinical situations. The “Diamond Concept” of Peter Giannoudis argues 

that there are four known factors contributing to bone restoration that should be provided equal 

acknowledgement; those factors include growth factors, osteoconductive scaffolds, mesenchymal stem 

cells, and the mechanical environment[35]. The autologous bone graft is the most reliable  method to 

induce  bone regeneration[3], However, concerns and limitations include the lack of sufficient 

transplantable materials, donor site morbidity, inflammation, and resorption of the implanted bone[5, 

36]. Alternative options such as the use of allografts or synthetic grafting materials address these 

limitations, but these alternatives are also limited by immunogenic responses or lack of osteoinductivity 

[36].  
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Allogeneic bone is available in a variety of shapes including demineralized bone matrix (DBM), 

morselized and cancellous chips, corticocancellous and cortical grafts, and whole-bone segments, 

depending on the needs of the patient. Each of the grafting materials’ biological properties vary, but 

overall, they lack in osteoinductive properties and do not have any cellular components because donor 

grafts are devitalized through gamma-irradiation or freeze-drying processing which weakens the 

mechanical properties of the bone and deactivates proteins that are normally found in healthy bones[37, 

38]. There are issues of immunogenicity and rejection reactions, possibility of infection transmission, 

laborious procedure, mechanical resistance, weak osteoinductive and osteogenic properties, and cost[37, 

39]. Xenograft bone substitutes originate from a species that is different from that of the recipient which 

can be freeze-dried or demineralized and deproteinized.  

Xenografts are typically only used as a calcified matrix and have been more successful in dentistry 

than in orthopedics. It also has the risk of disease transmission and is non osteoinductive[38, 39]. 

Previously mentioned drawbacks of these grafting methods have prompted the development of synthetic 

bone substitutes.  

 

 

Table 1.1. Advantages and limitations of grafting methods 

Type        Advantages Drawbacks 

 
 

Autograft 

• Osteogenesis  

• Osteoinductive:  

• Osteoconductive 

• Lack of immune response 

• No disease transmission 

• Donor site morbidity due to 
harvesting 

• Limited donor site: limited 
amount 

• Multiple incisions 

 
 

Allograft 

• Osteoinductive, 

• Osteoconductive 

• No second surgical site  

• No osteogenesis 

• Disease transmission 

• Dependent on donor’s 
bone state such as age 

 
Xenograft 

• No morbidity of donor site 

• Unlimited amount 

• Osteoconductive 

• No osteoinduction 

• Disease transmission 

• Non-resorbable in vivo 
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1.4. Bone Scaffolds 

 

Ideally a bone graft, scaffold, or substitute should provide similar osteoconductive and osteogenic 

properties as autogenous bone[40]. The scaffold is an engineered structure that aims to provide 

mechanical and physiological support to cells for in vitro tissue regeneration and in vivo implantation. It is 

vital that the micro and macro structures of the scaffold are designed properly and hold their position 

because their form directly affects the adhesion and differentiation of cells[41, 42]. In order to overcome 

the limitations of three grafting methods summarized in Table 1.1, a variety of biocompatible materials 

have been used. This includes natural polymers such as alginate, collagen, synthetic polymers such as 

polycaprolactone (PCL) and poly lactic-co-glycolic acid; as well as bio-ceramics such as hydroxyapatite and 

calcium phosphate[40, 41]. Although these substitutes are effective to some extent, however, limitations 

such as lack of bioactivity, low cell affinity, brittleness and hydrophobicity restrict their applications. 

Table1.2 summarizes the advantage and limitations of biomaterials used for bone grafting.  

 

Table1. 2. Advantages and disadvantages of current biomaterials used for bone grafting 

Biomaterial Advantage Drawback 

Natural polymers 
 
Collagen 
 

Similar to ECM 
Cytocompatibility 
Enzymatic biodegradability 
FDA approved 

Low mechanical strength  
Low thermal and chemical 
stability  
Difficult disinfection 
Difficult handling 
 

Chitosan Cytocompatibility 
Biodegradability 
Cell-binding, differentiation, and 
migration properties 
Antibacterial properties 
Mucoadhesive 
Easy properties tunability 

Poor mechanical strength and 
stability 
Rapid in vivo degradation rate 
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Alginate  Cytocompatibility 
Cytocompatibility 
Tunable properties 
Easy gelling 

Difficult to sterilize 
Low cell adhesion 

Cellulose  Hydrophilicity 
Cytocompatibility 
Bioactivity 
Mechanical strength 
Tunable properties 
Thermal stability 

Limited number of   in vivo 
studied to assess degradation 

Synthetic polymers  
Poly lactic acid (PCL)  

 
Cytocompatibility 
Biodegradability 
Slow degradation rate 

-Inflammatory caused by acid 
degradation products; Limited 
mechanical property; Slow 
biodegradability 
 
-Degrade too fast, Mild 
cytotoxicity 
 

Poly Lactic Acid (PLA) Cytocompatibility 
Biodegradability 
Slow degradation rate 

Hydrophobicity 
Low bioactivity 

Poly lactic co glycolic Acid(PLGA) Wide range of degradation rate 
Tunability 

Suboptimal mechanical 
properties 
Poor osteoconductivity 

Bioceramics 
Calcium Phosphates (HA, β-TCP) 
 
Bioactive glass 
 

- biocompatibility; Supporting cell 
activity; Good osteoconductivity 
 
- biocompatibility; Supporting cell 
activity; osteoconductive; 
Vascularization; Rapid gene expression; 
Tailorable degradation rate 

-Very brittle 
 
 
-No flexibility 
 
 

 

Table1. 2 Continued 
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Cellulose is the most abundant polymeric material found in nature. It possesses biocompatibility, 

protein binding sites on its surface, mechanical strength, and anisotropy. In addition, high density of 

reactive hydroxyl groups on its surface, facilitate the immobilization of cell adhesive proteins[41]. 

Cellulose nanofiber (CNF)  is flexible, degrades in vivo[43]  and  has size features similar to natural collagen 

fibrils [44]. Therefore, it has a great potential for tissue engineering[45] and bone regeneration 

applications.  Incorporating bioactive minerals, such as hydroxyapatite into CNF matrix can improve cell 

adhesion, cell differentiation, and osteoinduction making it a potential candidate for bone regeneration 

applications[46, 47] .  
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CHAPTER 2 

ONE STEP HYDROTHERMAL SYNTHESIS OF BIOLOGICALY RELEVANT HYDROXYAPATITE 

 

Contribution to the project 

 

The work presented in this chapter is the result of a collaborative project and my contribution 

include, Hydroxyapatite synthesis, FTIR analysis, SEM analysis, TEM analysis and co authoring the 

manuscript. Co authors include Mitchel Chesley, Reymond Kennard, Su Min Kim, Kora Kukka and Michael 

Mason 

2.1 Introduction  

Up to 70% of natural bone is comprised of hydroxyapatite (HA), which includes several sub-forms 

with trace metals and ions such as magnesium, carbonate ions, and acid phosphates, collectively 

described as bone material[48, 49]. Additionally, natural HA has disordered nanostructures[50] that help 

to improve bioavailability within applications such as bone implants, with relatively small crystalline 

domain sizes ~20 nm[49, 51] that have been shown to improve the promotion of cell growth[52]. 

Reportedly, this is in part due to the increased physical interaction between cells and the host material 

that arises as a result of the large surface-to-volume ratio of the nano-sized particles[53]. Although HA 

can be extracted from natural sources such as fishbone[54], eggshells[55] and bovine bones[56], these 

processes can be extremely time consuming and cost-prohibitive. 

Synthetic HA (formula of Ca5(PO4)3OH), is considered promising bone substitute due to its 

biocompatibility, osteoconductive and osteoinductive behavior, and ability to create a firm bond with 

bone tissue[57-61], but typically lacks many of the naturally prevalent ionic substitutions (e.g., F-, CO3
2-, 

Na+, Mg2+, Zn2+, and Sr2+). It has been proposed that synthetic HA material, intended as an implanted 

scaffolding system, would better promote the in vivo growth of mineralized bone with these 

substitutions[61, 62]. Synthetic HA has been created by different methods such as co-precipitation[63], 
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sol-gel[64], hydrothermal processing[65] and solid-state reaction methods[66]. Although these methods 

are effective in creating materials that are chemically analogous to natural HA, they are generally unable 

to produce HA materials with the desired submicron particle sizes. As such, a post-synthesis particle 

milling step is frequently applied to yield micron and nanometer-sized powders. Combined, these 

mechano-chemical methods can take more than 48 hours per batch[67]. In general, cost-efficient forms 

of synthetic HA with sub-micron particle size demonstrating the metabolic activity, dynamic response to 

the environment, and the immunogenic response of natural HA[51, 68] are not yet readily available.  

In this study, a simple hydrothermal method presented by Liu et al [62] was modified to develop 

an in situ one-step synthesis method capable of efficiently producing large quantities of biologically 

relevant HA suitable for use in biological applications and as a precursor for further modification to create 

chemically and morphologically biomimetic HA. This method presented here explores the use of an in-situ 

milling process to create mechanical shearing effects on the HA crystallites during synthesis to reduce and 

refine the size of final particulates. The simple method also avoids the need for continuous monitoring of 

pH and temperature that is prevalent in other HA synthesis approaches[63, 64, 66]. The resulting 

elemental stoichiometric ratios, and crystallite and aggregate sizes were compared to commercially 

available, biologically relevant HA. Fourier Transform Infrared spectroscopy (FT-IR) was used to determine 

the stoichiometric Ca:P ratios in the resulting powders to verify the production of HA, to determine the 

optimum reaction time, and to confirm that in situ and ex situ milling did not adversely affect the chemical 

composition of the synthesized HA. X-ray powder diffraction (XRD) was used to determine the crystallinity 

and primary crystallite size of the as-prepared samples. A Malvern Mastersizer along with scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize 

particle morphology, including the extent of aggregation and the size distributions of resulting aggregates. 
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2.2. HA synthesis 

 

A simplified hydrothermal synthesis method for HA developed by Liu et al.[62] was modified for 

the production of HA in this study. HA was synthesized using a ~200 g total powder mixture, with a 3:7 

stoichiometric ratio, of calcium phosphate monobasic to calcium hydroxide, respectively. The mixture was 

initially placed in the ball mill container along with zirconia milling media, in the ratio of 3:1 milling media 

to powder, by weight. Samples intended for ex situ processing were milled for 1 hour to ensure 

homogeneous mixing before being placed into the hydrothermal reactor with 2 L of DI water. Five 

different HA samples were synthesized varying the reaction time from 2-6 hours, in one-hour increments. 

The temperature was held constant at 109°C similar to a procedure done by Liu et al.[62], this was done 

for all reactions. The high pH (>10) of the resulting concentration of calcium ion of mixture required no 

other reducing agents for the synthesis of the HA[69]. The resulting solution was left undisturbed for 12 

hours allow the reactor to cool and for the HA particulates to settle. The as-synthesized precipitated 

product was then decanted to remove excess water. The remaining material was washed three times with 

deionized water to ensure the removal of any unreacted precursors. After washing, the product was oven-

dried, in air, at 100°C for 24 hours. The resulting powders were bright white in appearance, and clumpy 

in nature. BM was again implemented, ex situ, here to break apart the larger visible clumps, reduce 

particulate aggregation, and to refine the particle size distribution. Different milling times were explored 

and the effect on particle size determined. A simplified process flow diagram for the entire synthesis is 

presented in Figure 2.1 
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As stoichiometric ratio and (nanoscale) crystalline grain sizes are both critical for biologically 

relevant HA, synthesis methods that promote homogeneous reactant dispersion are of interest.  In situ 

methods involving the use of ultrasonic mixing have previously been implemented and shown to reduce 

reaction times and promote the production of smaller nano-crystalline particles[70]. This same work, 

performed by Poinern et al.[70], suggests that the use of ultrasound can alter the stoichiometric ratio of 

the product, which may not be desirable. This was mitigated with the use of high thermal post-treatment 

temperatures (400C), which affected nanoparticle shape. In order to avoid these effects, while still 

producing chemically and morphologically relevant HA, a simple low-cost in situ ball-milling method was 

investigated. This was achieved by securely fastening the hydrothermal reactor system into a fully 

enclosed Series 25 Incubator Shaker chest, which was operated in an isolated location. The hydrothermal 

reaction time and shaking frequency were held constant at 4-hours and 200 rpm, respectively. With 4 

different in situ milling variations; no milling media, 1-inch diameter steel milling media only, 0.5-inch 

 
Figure2. 1Process flow diagram for hydrothermal synthesis of 

 

 

 

HA. 
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diameter steel milling media only, and a ~50:50 mix by weight of 1 and 0.5-inch steel milling media. During 

the synthesis, pressure within the system was held at 50 kPa. Following the reaction, the vessel was 

allowed to cool to room temperature, safely reducing the internal pressure, as indicated by the external 

float valve. Residual pressure was relieved using the manual pressure relief valve before opening. The 

resulting HA samples were oven dried at 100C, and coarsely crushed using a ceramic mortar and pestle 

to break apart large clumps.  

2.3. Characterization of synthetic HA  

 

 Diffuse reflectance Fourier Transform Infrared (FT-IR) was used to analyze the chemical 

composition of the as-synthesized HA. Here FTIR spectra of each sample were recorded on an FTLA 

2000 spectrometer (ABB) using an EasiDrift accessory utilizing a sample to KBr ratio of 20 %w/w *(gain of 

1, resolution 4cm-1, 40 scans per spectrum). All diffuse reflectance spectra were converted to absorbance 

units the using Kubelka-Munk (K-M) model the resulting spectra were filtered using a Savitzky-Golay 

model to reduce the apparent noise fluctuations in the data to ease the comparison of more significant 

features between samples. For clarity and ease of comparison each spectrum was baseline corrected, 

normalized to the largest peak amplitude, and separated into two spectroscopic regions of interest. To 

facilitate the assessment of the chemical quality and biological relevance of the samples, a traceable, 

widely accessible HA spectrum was used as a reference and target spectrum throughout this study. This 

spectrum, reported by NIST, extracted from synthesized HA, has been shown to be mimetic, with the 

exception of the absence of known proteins associated with HA, of naturally occurring bone[69], including 

Ox femur[70], and fish bone[56]. Relevant spectral features of biological HA should include contributions 

from phosphate, carbonate, and hydroxyl ions. In contrast, typical high purity reagent grade HA, which is 

often chosen as a suitable reference, may demonstrate spectral characteristics not representative of HA 
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found in biology. Figure 2.2 shows the comparison of the HA IR spectrum reported by NIST, with the 

diffuse reflectance IR spectra of both a commercially available HA sample and a typical 4hr HA sample 

synthesized by the method presented here. The presence of the relatively weak band at 3570 cm-1 can be 

assigned to the primary absorption of OH- found within the HA lattice. The strongest absorption bands of 

phosphate are evident at 1092 cm-1 and 1030 cm-1, while the primary absorption bands of carbonate 

appear at 871 cm-1 and 1384 cm-1. Weaker carbonate peaks are also visible at 833 cm-1 and 1640 cm-1. The 

CO3
2- peak is known to result from small amounts of carbonated hydroxyapatite which occurs from PO4

3- 

reacting with CO2 in the air[66, 71] and is commonly viewed as an impurity in synthetic HA[62, 70]. In fact, 

as up to 8% of HA found in the naturally occurring bone is in this carbonated form, the presence of some 

 
Figure 2. 2. Spectra of hydroxyapatite from three sources, normalized by the 1092 cm-1 

phosphate peak following baseline correction. Sigma Aldrich HA (dashed), typical 4hr 
synthesized HA (black), NIST reported HA (grey). 
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carbonate is desired[49, 59, 63]. The resulting as-synthesized HA powder particle size distributions were 

initially investigated using a Malvern NanoZS dynamic light scattering instrument. However, due to 

significant sedimentation effects, results were not reliable. As such a Malvern instruments Mastersizer 

2000 (Model: APA2000) was used for size analysis of the dried HA. Particle morphology and possible 

aggregation was investigated by scanning electron microscopy (SEM) using both an AMRay 1820 and Zeiss 

NVision 40 Microscope. SEM micrographs were obtained at 500µm and 10µm scale using the AMRay 1820, 

(10kV, 40X and 1990X, magnification, respectively). Higher resolution SEM micrographs (500nm scale) 

were acquired at 2kV (20,160X magnification) using the Zeiss NVision 40.  

 

 X-ray Diffraction (XRD) was used to assess relative quality as well as identify the crystalline phases 

present in the as prepared samples. Diffraction data were obtained using a Panalytical Xpert Pro X-ray 

Diffractometer, with a parabolic mirror and PIXCEL 255 channel solid state detector. A 2θ range of 20-60 

was used. Crystalline domain sizes were calculated from the XRD data using the Debye-Scherrer equation. 

Yields were calculated using the mass of fully dried material (120-180 grams) compared to the total mass 

of precursor reagents and were between 60 and 80%.  The variation in yield was attributed to 

inconsistency during the wash steps, where some material loss was likely. 

2.4. Results and discussion  

 

 FT-IR spectra for samples synthesized with reaction times of 2-6 hours, in one-hour increments, 

were compared to determine the optimum hydrothermal reaction time. According to the previous work 

by Giraldo-Betancur et al.[69], naturally derived HA is chemically distinct from most synthetic forms of 

HA, having somewhat elevated hydroxyl levels as seen in the OH- region of Figure 2.2 The desired OH- 

contribution, arising specifically from incorporation in the material lattice, is visible as a narrow but 

relatively weak peak around 3570 cm-1. Separately, a broad OH- contribution resulting from adsorbed 
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water, except when aggressive drying or calcination methods are employed, is visible around 3375 cm-1. 

The relative OH- content can be quantified, for the purpose of optimization of a given sample, as the OH- 

/ PO4
3- ratio (R). Stoichiometrically, the OH- content of the material lattice, relative to PO4

3-, for idealized 

HA should be around 1:3 (R = 0.33) , but is expected to be significantly lower when extracted from IR 

spectra due to the relatively high absorptivity of OH- relative to PO4
3-. This disparity does not affect the 

utility of IR spectroscopy in identifying optimal parameters or the value of the NIST spectrum as a target 

for this optimization.   

In order to extract a meaningful value for the OH- / PO4
3- ratio (R), the IR spectra were first 

background subtracted (linear), and then normalized to primary phosphate peak at ~1092 cm-1, which was 

the only phosphate peak clearly resolved in all spectra. This normalization highlights differences in both 

the hydroxyl and phosphate regions of the spectra (Figure2. 2). R values could then be readily determined 

using the incorporated OH- peak at 3570 cm-1. A target R-value was determined using the NIST spectrum 

and is visible as the dashed horizontal line shown in Figure 2.3, having an R-value of 0.08. Extracted R-

values for all synthesized samples, as a function of hydrothermal reaction time, are shown in Figure 2. 3. 

In all cases, the resulting R-values are significantly above that of the target value, with a weak trend 

indicating that reaction times above 4 hours better approach the target value. Based on this result, and 

for the sake of process efficiency, further studies were performed using a fixed 4-hour hydrothermal 

reaction time.  
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Figure 2. 3. FTIR spectra of hydroxyapatite synthesized with a reaction time of 4 hours.  Each of the five 

samples were prepared under different milling conditions (unmilled, shaken, shaken with small media, 

shaken with large media, shaken with mixed media). An amplitude offset is used for clarity 
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Figure 2. 4. OH- relative to PO43- peak amplitudes vs reaction time. Target value indicated by dashed 

line. Experimental values, and corresponding variances, are shown as open squares  

 

To investigate the effects of different milling techniques, and to ensure they have no significant effect on 

chemical composition, several samples using different milling processes were produced, and FT-IR spectra 

were recorded. Wet and dry milling processes investigated were ex-situ dry ball milling, agitation/shaking 

during synthesis (as a control), shaking with wet in-situ small steel milling media, shaking with wet in-situ 

large steel milling media, and shaking with wet in-situ mixture of large and small steel milling media. The 

resulting spectra are shown in Figure 2.4. Predominant expected peak positions are indicated as vertical 

dashed lines for ease of comparison. While minor variations between spectra are visible, no significant 

differences are observed indicating that the use of milling can be explored to affect particle size without 

adversely altering the chemical composition of the HA. In addition to composition, biologically relevant 

HA frequently exhibits specific particle and crystalline grain (domain) sizes. As described previously, 
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accessible crystalline grain sizes on the order of a few tens of nanometers are desirable to promote cell 

growth. Previous work has reported that crystallinity  and grain size are affected by reaction conditions. 

As such, particle size distributions were obtained for each sample, prepared with different hydrothermal 

reaction times. The resulting volume weighted size distributions are shown in Figure 2.5.  To help quantify 

the effects of reaction time and milling resulting particle size, the size distributions were divided into three 

regions of interest, the second region (II) corresponding to the targeted size region (10-100 nm diameter). 

In general, the particle size distributions of the as-synthesized HA samples all exhibited polydispersity with 

significant volume fractions between 20 nm and 1000 µm, and multimodal with predominant sub-

populations centered around 20 nm and 300 nm. It is immediately evident that the 4 hour reaction time 

 
 

Figure 2. 5. Size distributions of unmilled HA with different hydrothermal reaction times 

 

 

Diameter(nm) 
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produces the largest volume fraction of material in the target size region. Interestingly, the targeted 

volume fraction (region II) increases initially with reaction time, then decreases for longer reaction times. 

This could be a result of continued crystallite growth, agglomeration, or both. 

 As it is difficult to distinguish between large individual crystallites and aggregates of smaller 

crystallites using dry particle sizing, a simple mechanical dry milling post processing step was implemented 

for each of the as-synthesized samples, in an attempt to break apart aggregates and further increase the 

volume fraction in the targeted size region. For this, the as-synthesized dried HA (4 hour hydrothermal 

reaction time) was placed in a ceramic rotary milling apparatus with a ratio of 2:1 zirconia ball media to 

hydroxyapatite powder, by weight. Dry milling was implemented under ambient conditions for durations 

ranging from 1 to 24 hours, after which dry particle size distributions were obtained. The volume fractions  

Table2. 1. Comparison of size distribution, by size region, for HA with different ex-
situ milling times 

Reaction (hrs) / 

Milling (hrs) 

Vol% (±1%) 

Region Ⅰ 

Vol% 

(±1%) 

Region Ⅱ 

Vol% (±1%) 

Region Ⅲ 

Total 

Vol% 

Region Ⅰ-

Ⅲ 

4 / 0 25 46 28 99 

4 / 1 26 53 19 98 

4 / 4 22 57 19 98 

4 / 24 21 38 30 89 
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for each size region were obtained by integrating the size distribution data. The results are shown in Table 

2.1.  

Qualitatively, as the duration of ball milling is increased, the target volume fraction (region II) 

appears to reach a maximum at four hours. This corresponds to a minimum in the volume fraction of 

region III. This would seem to suggest that, in fact, the larger particles are either aggregates of smaller 

particles or are effectively refined by the milling process. This is illustrated in Figure2. 6, where the ratio 

of the volume fractions of region II, relative to region III (R = Vol% II / Vol% III), are plotted as a function 

of milling duration. At much longer milling times (24 hours), this ratio is again reduced, suggesting that 

aggregation of smaller particles is significant, and may be induced by the milling process itself. This is 

 

 

 

 
Figure2. 6. Comparison the ratio of the volume fractions of region II, relative to region III (R = Vol% II / 

Vol% III), as a function of milling duration. 
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supported by a similar decrease in the smallest size region (region I) which also shows a decrease in the 

relative volume fraction at longer milling times.   

Based on the limited effect of the dry milling experiments on reducing the contribution of the 

largest volume fraction, an in-situ wet milling approach was developed based on the work of Kotake et 

al[72] This work compared the effects of dry and wet ball milling, including the size and shape distribution 

of the resulting particles. It is perhaps not surprising that this previous work concluding that wet ball 

milling conditions produced consistently smaller particle sizes. As such a one-step, one-pot hydrothermal 

synthesis method, which integrates in-situ mixing and milling of HA, was explored.  

In this approach, various sized milling media were introduced directly into the hydrothermal 

reactor which itself was affixed within a shaker chest providing the necessary periodic motion to achieve 

mechanical milling simultaneous with mixing (shaking). Due to their hardness and anti-corrosion 

properties, spherical stainless-steel media were used. The reactor was then affixed within a closed shaker 

table chest to provide simultaneous agitation during 4 hour hydrothermal treatment reaction.  

Different combinations of milling media sizes were explored, which included: large (1-inch 

diameter), small (0.5 inch diameter), and equal parts large/small media (by weight). Following 

hydrothermal treatment/reaction samples were decanted, washed and oven dried. These samples did not 

receive additional post reaction ex-situ milling. The size distributions for these samples are shown for 

comparison in Figure 2.7, while the resulting volume fractions, calculated by integrating across each size 

region, are presented in Table 2.2. 
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Figure2. 7. Particle size distribution for 4 hours of hydrothermal treatment with simultaneous shaking, 
with no ball bearings, all large, all small, and 50% small and large milling medium 

Diameter(nm) 
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The influence of constant shaking alone, during the 4-hour hydrothermal reaction, on the 

resultant particle sizes is evidenced by the significant decrease in the largest HA size fraction as compared 

to HA produced in a fixed reactor followed by ex situ milling (20% and 28%, respectively). When in situ 

milling is employed simultaneous with shaking, the results are varied. For samples prepared using large 

milling media, the milling process appears to be largely ineffective, as illustrated by the similarities in the 

size distributions shown in Figure 2.7 and in the integrated volume fractions of Table 2.2 When only small 

milling media is used, volume fraction of region I is increased, region II is reduced, and region III remains 

unchanged. Each of these results is consistent with conventional understanding that larger materials 

require the use of larger media for effective milling. The largest effect on the size distribution, resulted 

when equal parts of large and small milling media were used, where the volume fraction of region III 

decreased by 13%, and both regions I and II increased such that their combined fractions accounted for 

90% of the total material volume. In this case the mixed media may act in a kind of stepwise fashion with 

the large media first breaking apart the larger particles and aggregates, allowing the smaller media to  

 

Table2. 2.Comparison of size distributions, by size region, for 4 hour reaction time with 
simultaneous shaking and with with varying in-situ milling media 

 

Milling media Vol% (±1%) 

Region Ⅰ 

Vol% (±1%) 

Region Ⅱ 

Vol% (±1%) 

Region Ⅲ 

Total Vol% 

Region Ⅰ-Ⅲ 

no media 32 45 20 98 

small media 40 36 20 96 

large media 32 45 20 98 

large & small media 41 48 7 96 
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continue the refining process. While prolonged use of mixed media is generally not recommended as it 

can result in unwanted wear on the (smaller) media, this was not observed possibly due to the relatively 

short duration of the milling process employed here. Scanning electron microscopy (SEM) was used to 

help elucidate the makeup of the as produced and milled HA. Specifically, the extent to which the dried 

as-synthesized HA particles were aggregated, and the varied particle morphologies present were 

qualitatively investigated. Representative micrographs, across multiple size scales, are shown without 

modification in Figure 2.8 for unmilled (A, B, C), and in-situ milled (mixed media) (D, E, F), HA. The adhesive 

mounting media used to affix the HA powders is visible as the circular features in the largest area images 

of Figure2.8 (A and D). In these same images only the largest particles or aggregates are visible and appear 

similar in size regardless of whether ex situ or in situ milling was used. When viewed at higher 

magnification (10 µm scale, Figures 2.8, B and E respectively), some subtle changes in particle size and 

morphology start to appear. For example, more of the particles in the in situ milled materials (Figure2.8E) 

 

Figure 2. 8. SEM Images of HA particles with increasing magnification, left to right. A-C) 4 hr 
synthesis, ex situ ball milling only. D-F) 4hr reaction with in situ milling and shaking. 
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appear to be smaller, while there appear to be fewer very large particles. The ex-situ particles are also 

more crystalline in appearance. At the highest magnification (Figure2.8, C and F), particles with sizes on 

the order of tens of nanometers are clearly visible in both sample preparations. While there are qualitative 

differences in morphology and aggregation visible between the two samples, it is difficult to determine if 

this is sufficiently representative of the entire sample to warrant any significant conclusions.  

 

TEM micrograph of 4 hour in situ shaken HA no BM and mixed BM were taken to as a secondary 

morphology tool. Samples were sonicated in DI water for ~1 min. TEM images can be seen in Fig 2.9, with 

4-hour shaken no BM (A & B) and 4-hour shaken mixed BM (C & D). Due to agglomeration and platelets 

overlaying one another obtaining focus of the agglomerations was difficult as seen in (Figure 2.9 A & C). 

With individual particles being seen on the exterior of agglomerates which had better clarity of small 

platelets. In both images (Figure 2.9 B & D) individual particulates can be seen around 10–30 nm in 

diameter, with platelets of agglomerated particles achieving sizes above the 50 nm scale. 

Figure 2. 9. TEM micrograph of 4-hours in situ HA. (A and 
B No BM, C and D mixed BM) 
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X-ray diffraction data were obtained for all samples in order to assess the relative crystallinity of 

samples as well as determine the crystalline domain sizes. Unlike the dry particle sizing method, which 

cannot quantify nanoscale particles near or below the optical diffraction limit or distinguish between 

nanoparticles and aggregates of nanoparticles. Or SEM, which cannot differentiate between amorphous 

and crystalline materials, XRD can determine the size of the crystalline domains of the particles, 

unobscured by aggregation. Representative XRD data across all synthesized HA sample types is shown in 

Figure 2.10, compared to the commercially available control (Figure 2.10A), measured on our instrument. 

Typical HA peaks are indicated by H and a carbonated HA peak is indicated by C, resulting peaks for 

synthesized HA displayed some shifts in peak location, this may have raised from error with detection 

device or from residual strain in the crystal. Here the primary characteristic HA peaks lie between 25 and 

35° and are visible in all samples. Compared to the control, each of the as-synthesized HA samples (B-E)  
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exhibits relatively poor crystallinity as evidenced by the low overall XRD signal. The sample prepared with 

in situ milling (mixed media), Figure 2.10E, appears to have the lowest crystallinity, which can be explained 

in part by weaker peak within the sample. The crystallinity of this material can be improved by sintering, 

during which some of the amorphous surface atoms become part of the ordered lattice. This is illustrated 

in Figure 2.10F which shows an increase in the crystallinity of the aforementioned sample, following 

sintering (3 hours, 950°C) [73], at Bragg angle 37° there is a small peak corresponding to CaO that has 

been shown to be caused by the release of carbonated HA during sintering temperatures at 950°C and 

higher [74].   The predominant size of the particles (or crystalline domain sizes) in each of the HA samples 

was estimated directly from the XRD data as diffraction analysis is not as susceptible, as the other methods 

employed here, to the effects of aggregation on the determination. Here the Scherrer (S) equation (1) is 

employed, 

𝑙 =
𝐾∗𝜆

ß∗cos(𝛩)
               (1) 

 
Figure 2. 10. Comparison of XRD for HA samples. A) Sigma, B) 4-hour ex situ no 
BM, C) 24hr ex situ milling, D) in situ no BM, E) in situ mixed media, F) in situ 
mixed media followed by sintering. (H Hydroxyapatite, C Carbonated 
Hydroxyapatite, CO Calcium Oxide) 
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where K (shape factor) is assumed to be 1, λ is 1.54Å, ß is the line broadening coefficient, the actual peak 

width at half the maximum intensity (FWHM) at the Bragg angle, Θ. The selected Bragg angle in each 

sample is selected to correspond to well resolved and isolated peak positions, optimizing the confidence 

of the calculations. All Bragg angles as within the primary characteristic HA region. The Scherrer size  

 

analysis shows an average crystallite/grain size of 28 nm, across all sample types, with a standard 

deviation of 5 nm. The results for each sample are shown in Table 4. The largest sizes were for the Sigma, 

unmilled and 24 hr milled HA samples at 31, 27, and 32 nm, respectively. The smallest crystallite sizes 

were calculated for the shaken samples, with sizes for the in situ milled (mixed media) and media-free 

samples of 22 nm and 21 nm, respectively. For samples with milling processes a Williamson Hall (WH) plot 

was made using equation (2) to estimate size and crystal strain[75]. All variables are the same as Eq. (1) 

with the addition of ε strain. 

Table 1. Comparison of size distribution, by size region, for HA with different ex-situ milling times 

 

Sample / 

Milling conditions 

Bragg angle 

(2Θ 

Degrees) 

ß (FWHM) Particle 

size (nm) 

S 

Particle size 

(nm) 

WH 

Strain 

WH 

Sigma/ unmilled 26 0.3 31 NA NA 

4hr / ex situ 

unmilled 

26 0.3 27 NA NA 

4hr / 24 hr ex situ 

milled 

26 0.3 32 37 0.008 

4hr / shaken in situ 

mixed media 

26 0.4 22 36 0.007 

4hr / shaken but 

unmilled 

26 0.4 21 NA NA 

4 hr / shaken, in situ 

mixed media, 

sintered 

26 0.3 28 19 0.001 
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With WH, a plot can be created where the Y-intercept is correlated to particle size (l) while the 

slope is correlated to strain (ε). Due to the poor crystallinity of the as prepared crystals, the diffraction 

peaks were broad and weak, making precise determination of the FWHM difficult and resulted significant 

uncertainty in both the particle size and strain determination by the WH equation. The calculated size and 

strain of the milled specimens are displayed in Table 2.4. The presence of lattice strain, as a result of 

milling, is seen by the shifting of maximum diffraction peak angle of 2Θ from an indexed position of 25.79 

to 26.23. This has been previously observed by Aminatun et al. [75], where dry ball milling was 

implemented in the synthesis of HA. The results from these data may suggest that HA crystals formed 

during synthesis are relatively fragile. It may also indicate that simple agitation through shaking is an 

effective intermediate step for size reduction 

2.5. Conclusion 

The relatively simple and low-cost single pot method described in this chapter was used to 

produce synthetic but biologically relevant hydroxyapatite (HA) with scalable single batch sizes on the 

order of 200 grams, with typical yields of ~70%.  FT-IR spectroscopy of the as-synthesized dried powders 

confirmed that the as-produced HA exhibited chemical similarity to naturally occurring HA. Traditional 

post-synthesis (dry) milling methods were compared to an in situ (wet) milling approach which was 

combined with continuous slow agitation by shaking. Dry particle sizing, SEM, and XRD data all suggest 

that in-situ milling does effectively mechanically break down the HA, reducing the particle and individual 

crystallite sizes to ~ 22 nm, but at the same time promotes caking of these particles, forming larger 

aggregates. These HA aggregates may or may not be a concern based on the desired application of the 

𝛽 ∗ cos(𝜃) =
(𝑘𝜆)

𝑙
+ 2 ∗ 𝜀 ∗ sin⁡(𝜃)         (2) 
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material.  Generally, the samples prepared with in situ milling appear very similar by SEM, and of at least 

equivalent quality as the ex situ milled sample, mimicking the overall size and chemical composition of 

the natural bone mineral, but were produced in roughly half the required time and at a lower overall 

energy cost.     
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CHAPTER 3 

INDUCTION AND QUANTIFICATION OF FIBER ALIGNMENT IN CELLULOSE NANOFIBER THIN FILMS 

 

3.1. Introduction 

 Biopolymers are known to have superior biocompatibility compared to synthetic polymers and 

their nontoxic nature suits tissue engineering applications[76]. Cellulose is a primary component of every 

plant cell wall and is the most abundant polymer on earth. Cellulose nanofibrils (CNF) is a cellulose 

derivative which is primarily produced using chemical and mechanical treatments on wood pulp or 

agricultural waste. CNF can also be produced as an extracellular biosynthetic product from 

Komagataeibacter Xylinus, a gram-negative bacterium that belongs to acetic acid bacteria (AAB) 

family[28].  Aquatic organisms such as algae and tunicates are examples of marine sources of CNF[77, 78]. 

CNF offers a diverse range of properties including crystallinity, high specific area, anisotropy, barrier 

properties, and chemical reactivity. From a biological standpoint, it also benefits from critical features 

such as biocompatibility, biodegradability, and lack of toxicity as a biopolymer [79]. CNF is known for its 

outstanding mechanical properties and reinforcing characteristics [80]. The anisotropic character of CNF 

can lead to fiber orientation, impacting CNF’s modulus of elasticity and tensile strength.  In nature, 

cellulose fibrils are present in the outer cell wall layer of plants and are naturally aligned to create a strong 

and durable structure[81].  

CNF is widely used in biomedical applications and several reviews highlight current and potential 

biomedical applications of cellulose nanofibrils from various sources [82, 83]. Some of the major 

biomedical applications include: 1) tissue engineering [79] wound healing [84] and 3) drug delivery [85]. 

Creation of bone scaffolds is a particularly promising tissue engineering area due to the tunability of the 
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CNF mechanical properties to match mechanical properties of native human bone [86, 87]. The size-scale 

of CNF fibrils coupled with the ability to modify its bioactivity via surface chemistry [88] or the addition of 

other bioactive components such as hydroxyapatite in composite biomaterials [89] offer an exciting 

opportunity to mimic the extracellular matrix organization of bone tissue for the development of 

engineered bone scaffolds.  

Within tissue engineering applications, modulating the mechanical properties of the engineered 

scaffold are critically important. Controlling the degree of fiber alignment in CNF-based engineered 

constructs positively correlates with mechanical properties [90]. Beyond mechanical properties, cellular 

interactions such as cell polarity and cell elongation are directly influenced by fiber alignment of the 

contact surface[42]. For instance, CNF based tissue scaffolds fabricated by electro-spinning have 

demonstrated enhanced cell alignment leading to altered cell behavior including significantly affecting 

cell behavior including differentiation and adhesion [91]. Bone possesses a hierarchical and anisotropic 

structure composed of collagen fibers and Hydroxyapatite mineral. Currently, most bone regenerative 

treatments focus on increasing bone mass, while taking advantage of the native oriented structure in the 

bone scaffold.  The limited availability of suitable cadaver has inspired the exploration of engineered 

alternatives. Mimicking the oriented extracellular matrix (ECM) structure of natural bone remains 

challenging[13, 92].  Previous work has demonstrated that manipulating scaffold morphology leads to 

positive bone cell stimulation. Additionally, the inclusion of nanoparticulate HA has been shown to 

enhance bioactivity resulting in improved integration of implants with surrounding tissue [22][23].   

Fiber alignment can be achieved by various techniques including drawing technique[19], 

electromagnetic (EM) fields [20], and spinning induced alignment [21]. Although these methods are 

effective, the underpinning physics limit their applications. For example, electromagnetic methods restrict 

the development of composites as the additional material must have similar dipole characteristics as CNF 
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to avoid separation. This eliminates the possibility of adding mineral oxides with homogenous distribution 

for increased stiffness and biocompatibility. Similarly, hydrodynamic alignment methods require precise 

control of fluid viscosity and nozzle velocity and are generally not well suited for high concentration 

suspensions. In thin-film polymer science, it is common to dry films on an impermeable substrate. 

Furthermore, pinning opposite ends of an immobilized film on a substrate has been shown to result in 

CNF fiber orientation due to internal forces exerted on the individual fiber due to contraction caused 

during drying, but this method is barely tunable as  it only relies on internal forces[19]. Additionally, most 

of these methods were only applied to pure CNF and their feasibility for CNF composites are yet to be 

explored.  

One of the most sought after composites for bone regeneration is CNF/HA composites[93]. 

Hydroxyapatite makes up to 70% of the bone and its bioactivity promotes osteoconductive behavior and 

tissue integration in implants[94, 95]. Considering the oriented matrix of collagen fibers in bone 

microstructure , fiber alignment is an important prerequisite to spur bone regeneration[96]. To aid in the 

development and characterization of these composite engineered materials, a non-destructive technique 

with sensitivity of fiber alignment is required. The method described here is based on the application of a 

controllable unilateral elongational force applied via a deformable latex substrate during the CNF drying 

process to create orientated CNF films.  Additionally, reducing the water content of the starting CNF 

suspension increases the adhesion of the CNF slurry to the latex substrate enabling even greater 

transmission of the alignment force. The utility of this method for fiber orientation in more complex CNF-

composite films was also explored with up to 10% (dry basis) mineral additives (hydroxyapatite). Here, we 

used Polarization Light Microscopy (PLM) and the innate birefringence of CNF to spatially map the degree 

of fiber orientation using the Birefringence Orientation Index (BOI) in a custom ImageJ macro. Tensile 

tests were performed to evaluate internal fiber alignment after stretching and Scanning electron 



 
 

36 
 

microscopy (SEM) images of the network were acquired to visualize surface alignment of nanocellulose 

fibrils. 

3.2. Experimental section 

All films were prepared using CNF suspensions in water (3 wt.%), obtained from the University of Maine 

Process Development Center. The CNF was prepared from chemically bleached northern softwood pulp 

by mechanical refining, and the average fiber diameter is 20–500 nm[97]. Hydroxyapatite (HA) in water 

(15 wt.%) and particle size of less than 50 nm was purchased from Sigma Aldrich with the surface area 

≥80 m2/g and used without modification. Latex bands, used routinely for physical therapy (Thera-Band, 

4.6 lbf @ 100% elongation), were implemented without modification as the deformable substrates for 

this study. 

3.2.1 Thin film preparation  

The stock 3 wt.% CNF suspension was diluted to 1.5 wt.% solids in distilled water to decrease the 

viscosity and ease the spread of the CNF solution. Nine grams of the resulting CNF suspension was spread 

using a standard laboratory spatula on a 2 x 5-inch latex band. The latex band was taped on all edges to a 

hard flat rigid surface to ensure constant tension in the latex band and avoid dripping of the approximately 

1 mm thick CNF films. These samples were left to dry in ambient room conditions overnight and were 

labeled as “unstretched”.   

The “stretched” pure CNF films were prepared following the same deposition process as above 

but were placed under a box (STP) to reduce air flow for 3 hours to decrease the sample moisture content  
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Figure 3. 1. Schematic of the unilateral stretching force apparatus for aligning CNF samples using 
constant uniaxial force 

 

by approximately 30% (by weight). The reduction in moisture content increases adhesion sufficiently to 

allow for both the latex substrate and the CNF film to be stretched during drying.  At this stage, the latex 

band was stretched lengthwise by applying a controlled force to one end while the other end was fixed 

(Figure3. 1). The samples were left to dry at STP conditions under the hood overnight. The 

hydroxyapatite/CNF composite films were fabricated in the same way but with the addition of HA paste 

to the CNF suspension with a 1:10 weight ratio, followed by magnetic stirring at 200 rpm for 4 hours, to 

ensure adequate dispersion of the HA into the CNF network. Dried films were carefully peeled off the latex 

and stored in a dry place for characterization. In order to achieve the highest level of orientation and to 

determine the effect of an applied force on fiber alignment, a series of samples were prepared with 

applied forces ranging from 0 to 11.1 KN. 

3.2.2 Polarized light microscopy  

Polarized light microscopy (PLM) was used to map the fiber orientation of the prepared films. A 

standard Olympus IX73 inverted microscope, equipped with a 10X 0.4NA air objective and Amscope color 

(CMOS) camera, was used for imaging of all samples.  Two broadband linear polarizers were crossed above 

and below the sample stage thereby eliminating all light transmission.  A 530 nm full-wave retardation 

plate was fixed in a 360° rotation mount above the stage but below the first polarizer. Using this 
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configuration, commonly used in mineralogy [98], the 530 nm full wave plate introduces an optical path 

length difference of 530 nm for light of this same wavelength in the incident linearly polarized white light. 

These green photons (530 nm) therefore remain linearly polarized and are fully attenuated by the 

subsequent crossed polarizer, whereas all other wavelengths are elliptically polarized. As a result, all other 

wavelengths pass through the crossed polarizer combining to create magenta-red color using Newtonian 

color addition/subtraction. When a sample is introduced, the birefringence introduces a phase shift 

proportional to the interaction of the light relative to the optical axis of the birefringent material. This 

interaction results in either positive or negative interference when combined in the analyzer of the PLM 

microscope resulting in blue (additive) or yellow (subtractive) colors.  To acquire images, one of the eye 

pieces was replaced with the Amscope camera and the multichannel (RGB) color information of the CMOS 

channel was recorded. Three samples of each type were tested, where 8 areas of each sample were 

imaged. 

To obtain quantifiable isotropic information from the CNF films, control of the relative angles of 

orientation between the waveplate and the CNF sample orientation is required. Rectangular CNF films 

were fixed onto the microscope stage with the long axis (applied force axis, see Figure 2) parallel to the 

horizontal edge of the stage. RGB images are acquired at both +/- 45° rotation of the 530 nm full wave 

retardation plate with respect to the stage-mounted sample to be used in the BOI analysis.   

3.2.3 BOI analysis 

Birefringence imaging is routinely used to map inhomogeneities in lithographic samples [26]. 

More recently, this common technique has been adapted, where specific digital color channels are used 

to enhance and quantify birefringence contrast, referred to as the Birefringence Orientation Index 

(BOI)[27].  Specifically, the BOI index relates the relative intensity of the red and blue color channels to 

the positive or negative birefringence of the sample.  



 
 

39 
 

The BOI analysis was performed with a custom image processing algorithm using ImageJ 

software[28]. A schematic depiction of the step-by-step image analysis process is shown in Figure 3.2.  

Here, The RBG images, at both +45/-45°, were separated into their respective RGB color channels. The 

green channel images were used as a mask to reduce noise from the set-up due to the use of a 530 nm 

full wave retarder plate which extinguishes green wavelengths in the crossed polarizers in the absence of 

a sample. As a sample, CNF is a birefringent material, therefore when probed with linear polarization, the 

birefringence of CNF shifts the interfering wavefronts in the crossed analyzer resulting in either blue or 

yellow interference colors [29].  All BOI calculations used the blue channel images. The blue channel 

images were filtered using the green channel as a mask to remove noisy pixels and the 8-bit images. The 

masked images were rescaled 1-256 to eliminate 0 as a pixel value.  

The BOI map was generated by using equation 1 where b is the pixel intensity of the blue channel 

at -/+45°. Resulting BOI maps were smoothed using a median filter with a radius of 1. The histograms of 

Figure 3. 1.BOI calculation process flow chart. 
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each BOI image were recorded and normalized for direct comparison of BOI values. A BOI value close to 

zero indicates no minimum to no alignment whereas values of - 1 and 1 represent maximum orientation. 

 

BOI=
𝑏−45⁡⁡−⁡𝑏+45

𝑏−45⁡+⁡𝑏+45
                (1) 

3.2.4 Fiber Orientation Analysis  

Surface morphology and fiber directionality were investigated by Scanning Electron microscopy 

(SEM), using a Zeiss NVision 40 Microscope. Three SEM micrographs of each sample were obtained at 3 

KV with 500 X, 1KX and 5KX magnification. The characterization of the nanofibril orientation was 

performed using OrientationJ, a plug-in for ImageJ developed at the École Polytechnique Fédérale de 

Lausanne (EPFL)[99]. Gray scale SEM images were loaded in ImageJ. A Fourier transform function with 

Gaussian window of 1 pixel was used to make sure all fibers are taken into account. [30] The distribution 

of the nanofibril orientation generated by OrientationJ was centered around zero. In this analysis a 

Gaussian window size(σ) of 1 was used to perform the directionality analysis.   

3.2.5 Mechanical Properties evaluation 

Tensile tests were performed using an Instron universal testing machine (Model 5942, INSTRON 

Instruments, Norwood, MA, USA) with a 500 N load cell. 3 replicates of each sample type were cut into a 

dog-bone shape with the gauge length of 20 mm (20 mm width and 10 mm width of the neck-down). The 

crosshead motion speed was adjusted to 2 mm/min. Both tensile modulus and tensile strength of the 

samples were calculated from the load–deflection curves. 
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3.3 Results and discussion  

3.3.1.BOI calculation 

In this method, the alignment of fibers is directly affected by the longitudinal force applied to the 

deformable substrate. The force is applied to the sample once the solution is well adhered to the latex 

substrate (after losing 30% of its initial water content). The amount of force applied to stretch the wet 

sample was quantified by measuring the maximum longitudinal force required to fully stretch the band 

without breaking the sample. For each weight applied, the amount of BOI was calculated accordingly. 

Figure presents the BOI value of films corelated to the amount of force applied to latex band by a linear 

equation The results of the force optimization experiments indicate that the average BOI increased from 

0.1 to 0.82 at maximum force applied. When the longitudinal force exceeded 10.2 N, the sample failed to 

form a continuous film, fractured and delaminated from the latex support material.  

 

 

 

Table 3. 1Average BOI values (+/-standard deviation) achieved by 
applying different forces and corresponding elongation ratios. 
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Figure 3.4 demonstrates representative PLM images of unstretched and stretched samples by 

applying maximum force.  Unstretched samples had visual shifts in color due to CNF birefringence. The 

apparent color shift of the stretched CNF samples was generally dominated by a single color and appeared 

more uniform across the sample area indicating that the fibrillar structure of the CNF is more uniformly 

arranged.  

Figure 3. 2.Raw representative PLM image set. Images acquired at -45°(top) and +45°(bottom) for 
unstretched and stretched samples 
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Figure 3. 3. A linear regression of BOI as a function of applied force 

 

BOI maps, generated by method are shown in Figure 3.5.a. Here negative and positive 

birefringence are represented by black (-1) and white (+1), respectively. Both extremes indicate high fiber 

orientation whereas values closer to 0 indicate non-oriented samples. Highly oriented samples are 

expected to appear as dominantly black or white depending on the degree of positive or negative 

birefringence.  Figure 5.a shows that stretched samples have a black dominant BOI close to -1. 

Representative normalized BOI histograms are shown in Figure 4b and 4c. Comparison of the BOI 

histograms clearly illustrates that stretched CNF films have a BOI skewed towards -1; whereas the 

unstretched CNF samples lack any dominant BOI feature.  
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The average BOI value for stretched films was -0.80; whereas the average BOI of unstretched samples had 

a value of -0.11, suggesting a significant increase in birefringence, indicating greater fiber orientation. In 

order to demonstrate the robustness of this sample preparation method, HA was included in the initial 

slurry (10% by dry weight). The resulting PLM data suggest that the presence of HA did not significantly 

alter the BOI values relative to pure stretched CNF as demonstrated by both the BOI image Figure 3.5 and 

histogram Figure 3.5C The average BOI achieved for the stretched CNF/HA sample was -0.82, comparable 

to the value of -0.80 obtained for the pure CNF sample. 

To further support that the BOI method is sensitive to CNF fiber orientation SEM images at 

different magnifications were recorded. Figure 3.6 illustrates raw SEM images at 5KX and 10KX 

Figure 3. 4. a) Representative BOI maps of stretched and unstretched samples. b) Comparison of normalized BOI 
frequency distribution of stretched and unstretched CNF films. c) Normalized BOI frequency distribution of 

stretched composite CNF/HA vs. stretched pure CNF 
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magnifications.  Three SEM images of each film type (unstretched CNF, stretched CNF unstretched 

CNF/HA, and stretched CNF/HA acquired at 1KX magnification, were analyzed using the OrientationJ 

plugin in ImageJ to quantify the orientation of individual fibers.  Polar plots of OrientationJ calculated fiber 

angles are seen in Figure 3.7 C where the dominant fiber angle was normalized and centered at 0° for 

unstretched, stretched, and HA-doped stretched CNF films. These data clearly indicate that fiber 

alignment in both the CNF and CNF/HA composite films exhibit increased alignment compared to the 

unstretched film. Resulting representative hue-saturation-brightness (HSB) color maps of Unoriented and 

oriented samples are shown in Figure 3.7 a and b in which oriented fibers are apparent. To better quantify 

the individual image data, feature orientation polar diagrams were used. Figure 3.7 C is a polar plot of 

fiber angle normalized and centered at 0° of the unstretched CNF, stretched CNF, and HA-doped stretched 

CNF films. These data indicate that fiber alignment in both the stretched CNF and stretched CNF/HA 

composite films exhibit increased alignment compared to the unstretched film.  
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Fig 3.6. Representative SEM images acquired at 5KX (left) and 10KX (right) magnification of a-b) 
Unstretched CNF film, c-d) Stretched pure CNF film and e-f) Stretched CNF/HA film 
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Figure 3.8 represents modulus of elasticity and tensile strength values for the pure CNF and 

HA/CNF films. The results of the tensile test showed that the tensile modulus of both stretched pure CNF 

and stretched HA/CNF films significantly increased (p value < 0.05), which based on prior literature 

indicates internal alignment of fibers [100]. Tensile strength values showed that the addition of HA in both 

stretched and unstretched samples significantly reduces the tensile strength likely due to the HA 

 Figure 3. 7.OrientationJ analysis results:   Representative color-coded images of the surface of 
a) unstretched CNF film, b) stretched CNF/HA film and c) Polar plot of fibril distribution of 

angles normalized around 0° for stretched and unstretched CNF samples (n = 3). 



 
 

48 
 

nanoparticulate disrupting the hydrogen bonding between nanocellulose fibrils. Although the tensile 

strength decreased for the composite CNF/HA material, the tensile strength remains similar to the 

unstretched CNF. The elastic modulus is significantly increased for stretched CNF films and there was no 

significant difference between the modulus of elasticity of stretched CNF and stretched CNF/HA. This is in 

agreement with the previous data that both pure CNF and CNF/HA films had the same BOI value 

suggesting that they have same level of orientation. Collectively, the tensile strength and elastic modulus 

suggest application of longitudinal force results in internal alignment of CNF fibrils.  

 

Figure 3. 8.Tensile strength and modulus of elasticity of films 

3.4 Conclusion 

In this chapter, we developed and tested a novel, cost effective and tunable method to induce 

fiber orientation in CNF and CNF/HA films. A BOI index method was adapted to compare PLM data which 

showed that our method significantly increased fiber orientation in both pure CNF and hydroxyapatite 

incorporated CNF films. Mechanical testing showed that tensile strength and tensile modulus significantly 

improved by stretching implying internal alignment of fibers in stretched samples. SEM images were used 

a 
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to validate the BOI results and provide insight into the narrow orientation distribution for stretched 

samples compared to unstretched samples. Both PLM and SEM results showed that incorporating HA into 

the CNF matrix did not interfere with the fiber orientation or film consistency and they both showed fiber 

orientation. HA has been shown to improve bioactivity and biocompatibility of the films and its 

incorporation in a highly aligned oriented matrix achieved in this study can be particularly beneficial in 

bone regeneration studies.   
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CHAPTER 4 

CHARACTERIZING CELLULAR BEHAVIOR ON ANISOTROPIC CNF FILMS 

4.1. Introduction  

In tissue regeneration, the development of organ-specific architectures to replicate the original 

function is critical[101-103]. The extracellular matrix (ECM) regulates the cellular physiology, its structure 

facilitates cell adhesion and stimulates biophysical signaling cascades. Some types of human tissue such 

as connective tissue and vasculature require significant order and alignment in the ECM structure in order 

to function properly[104]. When this highly oriented ECM structure is disrupted, the cells will not be able 

to assemble their cytoskeleton to elicit the appropriate biochemical signals[105]  .   

Bone tissue has a hierarchical and anisotropic structure composed of hydroxyapatite and collagen 

fibers contributing to the unique mechanical properties of bone. Some pathological conditions such as 

osteoporosis and osteopetrosis [104] cause a disruption to this anisotropic ECM that eventually increases 

the risk of bone failure. During the regeneration process, bone needs to maintain its oriented 

microstructure in order to prevent fracture. Currently, most of the bone regenerative treatments 

exclusively focus on increasing bone mass, ignoring the necessity of oriented structure in bone tissue. 

Hence, restoring the bone tissue anisotropy remains a challenge yet to be overcome[106].The engineered 

scaffolds intended to be used in bone regeneration applications require to be architected in a way that 

replicates anisotropic ECM structure of bone microenvironment. Proper topography of scaffold will 

stimulate bone cells to proliferate as they do in native tissue.  

As a sustainable source of material, CNF is a potential collagen replacement considering its 

inherent biocompatibility and fibrillar structure. Unique mechanical properties of CNF that makes it a 

potential candidate for connective tissue repair. The intermolecular hydrogen bonding between the fibers 
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significantly increases the mechanical properties of CNF.  The mechanical properties and surface 

chemistry of CNF can be adjusted to suit different applications.  

 HA is a type of  bio ceramic with a crystalline structure similar to the mineral part of the bone 

with outstanding bioactivity along with being resorbable and osteoconductive [107]. HA is a great 

candidate for bone regeneration , however its brittle nature has limited its application to non-load  bearing 

materials[107]. Combination of HA and collagen in bone structure gives bone the perfect balance between 

strength and toughness.  In an effort to emulate bone structure ,HA have been used as an additive to 

different types of organic polymers such as alginate[108], gelatin[109] , collagen[110] , chitosan[111] , 

and bacterial cellulose[112] . However, these efforts have been facing challenges such as  biomechanical 

and biological properties, insufficient intrinsic incorporation, and sometimes masking of an inorganic 

component by an organic one[113], alongside with a poor dispersion of the HA  in a polymer matrix. Thus, 

the need to achieve an advance composite structure that resembles bone tissue remains a challenge. In 

this chapter, we used the thin films attained by the procedure explained in chapter 3 to evaluate the 

osteoblast (MC3T3E1) cell response to the microenvironment that this material provides.  

4.2. Methods  

4.2.1. In vitro cytocompatibility  

The cytocompatibility of the films was investigated using mouse pre osteoblast cells (MC3T3E1) 

cells. Preosteoblasts are precursor to osteoblast production that leads to construction of bone matrix.  

MC3T3E1 cells were cultured in complete media consisted of MEM Alpha 1X with 10% FBS and 1% 

penicillin/streptomycin. Cells were trypsinized at 80% confluency to be used for cytotoxicity assay.  

Four different sample types (3 replicates of each) including pure unstretched CNF, pure stretched 

CNF, unstretched HA /CNF and stretched HA /CNF films were punched into circular shape to fit into a 96-
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well plate. Samples were sterilized by UV light for 1 hour. Then, 100 μL of complete MEM Alpha media 

was added to each well and the plate was transferred to incubator for 1 hour. The media will soften the 

films and prevents cells from slipping off the films. After 1 hour, the media was removed and 200 μl of the 

cell suspension with a density of 100,000 cell per ml was added to the sterilized films. 3 empty wells were 

filled with 200 μl of cell suspension and labeled as control. The plates were incubated in a humidified 

atmosphere of 5% CO2 at 37 °C for 24 , 48 and 72 hours. After the incubation period, cell media was 

removed and replaced with 100 μl fresh media and 10 μl of the 12mM MTT stock solution was added. 

After labeling the cells with MTT, as described above, 85 μL of medium was removed from the wells and 

added 50 μL of DMSO to each well and mixed thoroughly with the pipette. Then, the samples were 

Incubated at 37°C for 10 minutes and mixed again. A microplate reader was used to read the absorbance 

(OD) at 540 nm.  

4.2.2. Live/Dead cell staining (FDA/PI)  

In order to confirm the MTT results and compare cell viability and cell adhesion of the stretched 

and unstretched samples, cell viability test was performed.  In this experiment, Propidium iodide (PI) and 

Fluorescein diacetate (FDA) were used as the live/dead fluorescent staining agents. 4 different sample 

types including pure unstretched CNF, pure stretched CNF, unstretched HA /CNF and stretched HA /CNF 

films were investigated. 3 wells with no films were used as control. Films were punched into circular shape 

to fit into a 12 well plate sterilized using UV light for one hour. After the sterilization, 1 mL of complete 

media was added to each well and then placed into the incubator for 1 hour. After one hour of incubation 

in media cells were trypsinized from their flasks and seeded onto the films and controls at a density of 

150,000 cells/mL and culture dish was incubated for two different time periods of 24 and 72 hours.  

The staining solution was prepared fresh by mixing stock solutions of 5 mg/mL FDA in acetone 

and 2 mg/mL PI in PBS.  8 µL of FDA and 50 µL PI solution were added to 5mL MEM Alpha 1X media without 
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FBS.  At 24- and 72-hour time point, the culture dish was taken out of the incubator and the media was 

removed. Next, 1 ml the staining solution with FDA and PI was added to each and left to incubate at room 

temp for 5 minutes with the hood lights turned off. Next, the staining solution was removed, and each 

well was washed with 2 mL of PBS. After removing the PBS, 2 ml of MEM Alpha 1X media (without FBS) 

was added to each dish. Then, Films were imaged on the Leica wide field fluorescence microscope with a 

5X objective. Each sample was imaged using a grid-based approach and 3 different areas were selected to 

acquire images based on how representative they were of the entire sample.  

 4.2.3. Nuclei and cytoskeleton staining   

 

As it was mentioned earlier in this chapter, ECM morphology can tremendously affect cell 

behavior. This experiment is designed to investigate the effect of fiber orientation on cell attachment and 

actin/nuclei directionality of preosteoclasts.  Phalloidin-iFluor 555 reagent was used to stain cellular f-

actin and DAPI was used to stain nucleus.  

1X Phalloidin conjugate solution was prepared fresh by adding 1 µL of the 1000X Phalloidin 

conjugate Stock solution to 1 mL of PBS plus 1% BSA and mixed well by pipetting. 4 different sample types 

including pure unstretched CNF, pure stretched CNF, unstretched HA /CNF and stretched HA /CNF films 

were investigated. Films were punched in circular shape to fit into a 12- well plate sterilized using UV light 

for one hour. After the sterilization, 1 mL of media complete media was added to each well and then 

placed into the incubator for 1 hour. After one hour of incubation in media preosteoclast cells were 

trypsinized from their flasks and seeded onto the films and controls at a density of 100,000 cells/mL and 

culture dish was incubated for 72 hours. Next, the cell media was removed and 3% formaldehyde in PBS 

solution was added to each sample and incubated under the hood at room temperature for 10-30 

minutes. After the incubation period was over, 1 ml of 0.1% Triton X-100 in PBS was added to the fixed 
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cells for 5 minutes to increase permeability. At this stage, fixed cells were rinsed 3 times with PBS and 100 

µL of 1X Phalloidin conjugate solution to each well of fixed cells.  At this point, 1 ml of 5mg/ml DAPI 

solution was added to stain nuclei and samples were incubated at room temperature for 1 hour. Next, 

samples were gently washed with PBS for 3 times to remove excess phalloidin conjugate and MEM Alpha 

1X media was added to each well.  The samples were imaged using a Leica fluorescent microscope at 

Ex/Em 493/517 nm.  

4.2.4. FFT Analysis of cell orientation  

The FFT filter feature of ImageJ was used to quantify the degree of orientation of samples. FFT 

analysis allows the morphological quantification of microscopic structural alignment and pixel information 

of the photomicrograph is transformed into Fourier space (power spectra). Using the oval profile plugin 

of ImageJ, the radial sum intensities are generated for 360 radii around the center of the FFT image. To 

prepare images for the FFT analysis, all images went through the following process: 

1-  First, the split channel feature of ImageJ was used to achieve black and white images.  Next, a 

background reduction followed by auto contrast adjustment were applied to make cell actins 

more visible for analysis. All images were processed with the same macro for consistent results.  

2- Images were resized to 1024x1024 pixel that is recommended size for FFT analysis[114] 

3-  Next Using the “angle tool” of the main toolbar, the orientation angle of aligned actines was 

estimated. This angle will be used later to calculate root mean square (RMS).  

4- By choosing the FFT option from the menu bar the black and white image was transformed into 

its sine and cosine components and the pixel information was mapped in terms of relative 

intensities along specific orientations. 

5- Using the oval tool in the main toolbar a symmetrical circle was created to capture the entire FFT 

starburst achieved by applying FFT filter. The ring size was adjusted to ensure the ring captures 
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FFT starburst without including unnecessary dead space. The ring size remained the same for all 

images to ensure consistency across the sample analysis.  

6- By using the input output plugin in ImageJ and applying its oval profile feature, a radial sum 

intensity graph was generated. This step will sample the specified number of angles. Here we set 

the number of angles to 360 to be able to detect the orientation angle with more precision. The 

x and y values for all 360 angles from last step was used to create a X-Y scatter plot.  

7- The two peaks appeared on radial sum intensity scatter plot represent the angle of interest and 

the opposite angle of interest, while the troughs of the radial sum intensity represent the 

orthogonal angle and the opposite orthogonal angle. The angles at the peaks represent the 

alignment angle of the cytoskeleton. Since the cytoskeleton structures are not perfectly aligned, 

samples of the radial sum intensities around the four angles are taken into consideration as well 

as the angles themselves.  

8- According to previous studies, the ratio to the mean orthogonal angle represents the amount of 

alignment in oriented structures[114]. The equations for the ratio to mean orthogonal angle are 

below.  

Root mean square (RMS) = √
∑ 𝐴𝑖2360
𝑖=1

360
            (1) 

A= The radial sum intensity of each angle or Y in x-y scatter plot  

Ave m = 
∑

𝑀𝑗

𝑅𝑀𝑆
22
𝑗=1

22
                                                      (2) 

Ratio to mean orthogonal angle (ROA) e = ⌊(∑
𝑁𝑘

𝑅𝑀𝑆

𝐴𝑣𝑒⁡𝑚⁡
22
𝑘=1 ) ∗ 100⌋ * - 100                  (3) 
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M = The radial sum intensities of 22 angles, including the orthogonal angle ± 5 flanking angles and the 

opposite orthogonal angle ± 5 flanking angles.  

N = The radial sum intensities of 22 angles, including the angle of interest ± 5 flanking angles and the 

opposite angle of interest ± 5 flanking angles. A value of 0 for the ratio to mean orthogonal angle 

represents no alignment for the microscopic structures; while a value of 100 shows complete alignment 

for the microscopic structures.  

 

 

 

 

 

 

 

 

 

 

Figure 4. 2.left) Black and white image of stretched cytoskeleton acquired by flufenacet microscope. 
Right) FFT filter ring analysis 
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Figure 4. 3. Radial sum intensity plot of cell actins on a) unstretched films b) stretched films 

4.2.5. Nuclei Circularity 

 

Micrographs obtained from DAPI stained nuclei went through a series of image processing steps 

to calculate nuclei circularity. Particle analysis feature of ImageJ software was used to calculate circularity. 

Six images of each sample type group were analyzed, and an average circularity was calculated as shown 

in Figure 4.8. 
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4.3. Results and discussion 

4.3.1. MTT Assay  

 

Figures 4.3 and 4.4 present the MTT results reported as OD values of samples at 24- and 72-hour 

time points. Figure 4.3 compares the cell viability of unstretched pure CNF and unstretched HA /CNF films 

to the control.  According to the OD values obtained at 540 nm, after 24 hours of incubation, there was 

no significant difference between the cell viability of unstretched pure CNF films and control (Polystyrene 

plate). The same result was observed for unstarched HA samples. Although the HA modified film 

demonstrated slight increase in OD level, however it was not statistically significant (P value >0.05) 

suggesting that HA did not have a major effect on cell viability after 24 hours in unstretched samples.  

After 72 hours of incubation, cell viability of unstretched CNF sample significantly increased 

comparing to day 1 indicating cell proliferation. No significant difference between control and unstretched 

CNF cell viability was observed at this point. However, unstreched HA/CNF sample showed significantly 

higher (P < 0.005) cell viability compared to the control suggesting that the HA presence positively affected 

cell proliferation after 72 hours of incubation. 

The effect of surface morphology on cell viability was also evaluated by MTT assay.   Figure 4.4 

demonstrates the cell viability of stretched pure CNF and stretched CNF/HA films compared to control. At 

24-hour time point, OD level of stretched CNF film was at the same level of control, however, stretched 

CNF/HA sample showed a higher OD level comparing to control and stretched CNF sample. This 

observation is particularly important as it demonstrates that simultaneous effect of HA and orientation 

have a positive impact on cell viability even after 24 hours, while the presence of HA in unstretched 

samples did not have a remarkable effect on cell viability at this time.  

At 72-hour time point, cell viability of stretched CNF and stretched CNF/HA samples significantly 

increased from day one and were remarkably higher than control, suggesting successful cell proliferation 
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on both films. Additionally, stretched CNF/HA showed higher cell proliferation compared to stretched CNF 

indicating positive effect of HA on cell growth.  

Overall, MTT results revealed that stretched CNF/HA samples showed positive effect on cell viability 

from day 1, while positive effect of orientation in absence of HA was observed at day 3. Therefore, 

simultaneous presence of HA and fiber orientation can maximize cell proliferation. 

 

                  Figure 4. 4. Optical density of unstarched samples at 540 for day 1 and day 3 
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Figure 4. 5. Optical density of stretched samples at 540 for day 1 and day 3 

4.3.2.FDA /PI results 

 Proliferation of MC3T3E1 cells was further investigated by FDA/PI assay. Figures 4.5 and 4.6 

represent images of FDA labeled MC3T3E1 cells at 24- and 72-hour time points.  All samples showed 

significant increase in number of cells after 72 hours of incubation. Autofluorescence effect of films and 

exposure time caused uneven illumination in acquired images. However, live cells can be easily 

distinguished from the background in represented figures. Study combined with MTT results suggest that 

the highest proliferation and cell viability is achieved by having both orientation and HA in a single film.  
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     Figure 4. 5. Fluorescent images of FDA stained cells cultured on a) Stretched CNF/HA b) Stretched CNF 
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4.3.3. Cellular morphology analysis  

 

 Cellular orientation was quantified using FFT filter and RMO values were calculated accordingly. 

A RMO value close to zero indicates minimum to no orientation while a perfectly aligned structure has a 

RMO close to 100. Tylor et al, used this method to quantify orientation and compare directionality of 

different structures. For highly aligned structures such as steel wire and bamboo the RMO values were 

calculated at 42 and 28 respectively, whereas aligned oligodendrocytes and neurons resulted in RMO 

values of 8.7 and 12.6 respectively[114].  

Figures 4.7 demonstrates black and white images of actin filaments and nuclei of preosteoblasts 

seeded on stretched CNF film acquired by florescent microscope. Actins show a dominant orientation at 

45ᵒ, and nuclei are elongated towards same direction.   

Figure 4.8 compares cytoskeleton and nuclei morphology of preosteoblasts seeded on stretched 

and unstretched films after 7 days of incubation. The Phalloidin staining in red color represent actin 

Figure 4. 6. Fluorescent images of live (green)and dead (red)cells present on the surface of 
stretched CNF/HA film 
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filaments and blue displays DAPI stained nuclei. Cells seeded on stretched films showed a preferred 

cytoskeleton orientation while no dominant orientation were observed for unstretched samples. 

Additionally, in case of stretched films, nuclei are elongated towards the cytoskeleton direction while 

showing more circular and random shapes on unstretched films. The same effect was observed in 

stretched HA films modified and both oriented cytoskeleton and elongated nuclei were detected.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 7. Black and white microscopy images of cytoskeleton(left)and nuclei (right) of MC3T3E1 cells on 
stretched CNF films 
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Figure 4. 8. Fluorescent microscopy images of Phalloidin (a) and DAPI (b) stained MC3T3E1 cells on films 
with oriented and random structures 
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Figure 4.9 presents quantified cytoskeleton orientation reported as RMO values. The average 

RMO value for unstretched Pure CNF and unstretched CNF/HA samples were calculated at 1.05 and 1.15 

respectively that is significantly lower than the RMO values of stretches samples(P<0.05). The average 

RMO value of stretched CNF and stretched CNF/HA were 10.7 and 10.13 respectively. The difference 

between RMO value of cells cultured on stretched CNF and stretched HA/CNF was insignificant(P>0.05) 

suggesting that that both microenvironments had the same effect on cell alignment.  

 

 

 

 Figure 4. 9. Average RMO values of cells cytoskeleton seed on films 

 

This finding is in agreement with previous data in chapter 3 that showed stretched HA/CNF samples had 

the same BOI compared to stretched CNF. This analysis revealed that cell morphology is significantly 
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impacted by fiber orientation and the films with aligned fibers induced alignment to the cytoskeleton and 

cause elongated nuclei shape.  

4.3.4. Nuclei circularity  

Nuclei circularity analysis of cells seeded on 4 types of films are illustrated in figure 4.10.  

Circularity is defined as a value between 0 to 1. A perfectly round object has a circularity close to 1 and 

value of 0 is attributed to a straight line. Xuyan et al. demonstrated that the nuclei aspect ratios are 

directly affected by surface orientation and fiber directionality at nanoscale  can affect nuclei 

elongation[115]. They showed that cells cultured on oriented matrix had higher aspect ratio(or lower 

circularity) compared to random fibers[115].  

 

Circularity values represented in figure 4.10 denote that preosteoblasts cultured on oriented CNF 

films had significantly lower circularity (P<0.05) comparing to unstretched CNF films. The same result was 
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Figure 4. 10. Circularity analysis of nuclei 
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observed for HA incorporated samples. Circularity value of both stretched CNF and stretched CNF/HA 

were almost half of the unstretched samples of each type indicating the elongated morphology of nuclei 

on stretched films. We did not observe a statistically significant difference between the nuclei circularity 

of HA modified samples compared to pure CNF films suggesting that the ECM alignment was the dominant 

factor in nuclei elongation rather than mineral composition.   

4.4. Conclusion  

In this chapter we performed biological assays to evaluate the effect of fiber orientation and 

mineral composition of CNF thin films on cellular proliferation and morphology. MTT and FDA/PI assays 

demonstrated that oriented CNF/HA films provided a favorable microenvironment for the cells to 

proliferate with no cytotoxicity being observed. Cytoskeleton and nuclei staining confirmed that cells 

cultured on oriented samples are being redirected to a dominant orientation. Conversely, cells did not 

show any preferred orientation on unstretched samples. The HA and fiber alignment both improved cell 

proliferation after 72 hours with the stretched HA modified samples having the highest level of cell 

proliferation among all samples. Results of FFT and circularity analysis revealed that actin orientation and 

nuclei elongation were directly influenced by surface morphology. This work not only introduces a 

substrate that induces cell alignment through surface orientation, but it also shows the high impact of HA 

on cell proliferation even at low percentage of 10%. Considering the hierarchical structure of bone with 

the HA being the main mineral present in its structure, oriented matrix is a crucial prerequisite for bone 

regeneration. Our results are particularly beneficial for bone tissue engineering where a highly aligned 

ECM structure in presence of HA is crucial[96]. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

In chapter 2, an engineering solution to reduce the size of synthetic hydroxyapatite was 

suggested. A simple hydrothermal method presented by Liu et al was modified to develop an in-situ one 

step synthesis method capable of efficiently producing large quantities of biologically relevant HA suitable 

for use in biological applications. An in-situ milling process resulted in smaller particle size and this simple 

method avoids the need for continuous monitoring of pH and temperature that is prevalent in other HA 

synthesis approaches. Then, the lack of bioactive ECM mimic structures for bone regeneration established 

the motivation to create aligned CNF/HA composites by applying external force in chapter 3. The 

correlation between applied force and fiber orientation was explored and optimum force for maximized 

alignment was quantified. It was demonstrated that HA modified films had the same level of fiber 

orientation compared to pure CNF films. In chapter 4, biological assays were performed to evaluate films 

cytotoxicity and cellular alignment. The results revealed that HA remarkably improves cell proliferation 

and simultaneous presence of HA and orientation led to the highest level of cell proliferation. MC3T3E1 

cell morphology experiments showed substantial cytoskeleton alignment and nuclei elongation on 

stretched substrates. 

Although HA nanoparticles significantly increased cell proliferation, however, it caused a decrease 

in tensile strength when compared to pure CNF.   Hydroxyapatite nanoparticles create spaces between 

the cellulose fibrils and at higher percentage this can drastically decrease tensile properties. One possible 

solution to address this limitation is to take advantage of additives such as polyethylene glycol (PEG) to 

improve hydrogen bonding among fibers. PEG will bring fibers closer together by hydrogen bonding and 

can possibly improve tensile strength. One interesting aspect that future studies can focus on, is to 



 
 

69 
 

evaluate biochemical changes occurring on the surface of films due to metabolic activities and their effect 

on mechanical properties of the films at different time points.  
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