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CHAPTER 1

INTRODUCTION

Leavitt path algebras have been the object of much attention recently. To find some of

this attention, one can look at [1] and look at the references within. A Leavitt path algebra

is a type of universal algebra with relations and generators associated with a directed graph

and they generalize a family of algebras first studied by W. G. Leavitt in his study of the

invariant basis number property . However, the meaning of the relations is not immediately

transparent upon first examination. In this thesis however, we will not be concerned so

much with the algebras themselves but with the category of modules over them.

We say two algebras are Morita equivalent whenever their module categories are the

equivalent. For certain graphs it remains an open question whether the Leavitt path

algebras given by those graphs are Morita equivalent. For example, one may consider the

Cuntz splice as in [1, 7.3]. This motivates a study of the category of modules over Leavitt

path algebras.

A functorial picture of these module categories was previously established in [3,

Proposition 3.2]. In particular, we will show that the category of modules over a Leavitt

path algebra can be considered as a collection of vector spaces associated with the vertices

of the graph, and a collection of linear maps associated with the edges, satisfying a

coproduct condition that will be expanded on later. A straightforward extension of this is

to consider instead associations of the graphs of other categories, satisfying the same

coproduct condition. This is hoped to be useful in regarding the question of the Morita

equivalence of the Cuntz splice and other open questions of Morita equivalence.
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CHAPTER 2

CONSTRUCTION OF UNIVERSAL ALGEBRAS

2.1 Defining Modules and Algebras

Definition 2.1.1 (Module). Let R be a ring (not necessarily commutative nor with 1). A

left R-module or a left module over R is a set M together with

1. a binary operation + on M under which M is an abelian group, and

2. an action of R on M (that is, a map R×M →M) denoted by rm, for all r ∈ R and

for all m ∈M which satisfies

(a) (r + s)m = rm+ sm, for all r, s ∈ R,m ∈M ,

(b) (rs)m = r(sm), for all r, s ∈ R,m ∈M , and

(c) r(m+ n) = rm+ rn, for all r ∈ R,m, n ∈M .

If the ring R has 1, then we call M a unital R-module, and if it satisfies the

additional axiom:

(d) 1m = m, for all m ∈M .

A right R-module is similarly defined, except with the action of R being a right action. In

this text we will take unital left modules to be the default, and will simply call them

modules unless context requires otherwise.

Examples 2.1.2.

1. Let F be any field. Then any module over F is in fact an F-vector space. In fact, the

vector space axioms are almost identical to the module axioms - the only difference is

that a vector space is over a field.
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2. Let M be any abelian group, and for n ∈ Z and m ∈M , define nm = m+ · · ·+m

(with n copies of m). It is straightforward to check that M satisfies the module

axioms under this action. Hence every abelian group is a Z-module. Since modules

are required to be abelian groups, Z-modules and abelian groups are in fact the same

thing.

3. Let R be any ring. Then we can take R to be a (left) R-module by defining the

action of R on itself to be the usual multiplication in R. In this case, the module

axioms become identical to the ring axioms. If S is any subring of R, then R is an

S-module under multiplication by elements of S.

4. Let R be any ring, M any R-module, and S any set. Then we define Hom(S,M) to be

the set of functions from S to M . For φ, ϕ ∈ Hom(S,M), r ∈ R, and s ∈ S, we define

(a) (φ+ ϕ)(s) = φ(s) + ϕ(s),

(b) (rφ)(s) = r(φ(s)).

Under these operations, Hom(S,M) is an R-module. We can also define

Homgroup(G,M) in case G is some group. In this case we require the functions to be

homomorphisms of groups. Similary, if N is an R-module, we can take HomR(N,M)

to the set of all R-module homomorphisms from N →M (where an R-module

homomorphism takes on the natural definition).

Given the similarity of modules and vector spaces, we will often refer to elements of the

ring R as scalars. We now introduce a type of module that is of particular importance to

this text.

Definition 2.1.3 (Algebra). Let R be a commutative ring with identity. An R-algebra is a

ring A with identity that is also a unital R-module such that

r(ab) = (ra)b = a(rb)

for all r ∈ R and a, b ∈ A.

3



Examples 2.1.4.

1. Let R be a commutative ring with identity, and define R[x] to be the set of

R-polynomials in a single indeterminate. Then R[x] is an R-algebra under the

standard polynomial operations.

2. Let R be a commutative ring with identity. Then R is an R-module, and since R is

commutative, an R-algebra.

3. Let R be a commutative ring with identity, and for some k ∈ N, define R[x1, . . . , xk]

to be the ring of commutative R-polynomials in k indeterminates. By commutative

polynomials, we mean that xmxn = xnxm for all m,n ∈ 1, . . . , k. Then R[x2, . . . , xk]

is an algebra over R under the standard multivariable polynomial operations.

4. Let R be a commutative ring with identity, and let Mn(R) be the set of n×n matrices

over R. Then Mn(R) is an R-algebra under the usual matrix multiplication, addition,

and scalar multiplication. Note that in this example, matrix multiplication is not

commutative, and so Mn(R) is (very creatively) called a non-commutative algebra.

5. Let V be any F-vector space. We will write EndF(V ) to denote the set of linear

endomorphisms (linear maps from V to V ) of V . If we take addition to be given by

(f + g)(v) = f(v) + g(v), and multiplication to be composition of maps, then

HomF(V, V ) is an F-algebra.

6. Let R be a commutative ring with identity, and M an R-module. Then we can

generalize by the previous example by defining EndR(M) := HomR(M,M). As in

previous examples, we know that EndR(M) is a R-module. We can turn EndR(M)

into a ring by defining multiplication as function composition. Since the identity

endomorphism will clearly work as a multiplicative identity, and function composition

is associative, we only need to verify the distributive law. For φ, ϕ, ψ ∈ EndR, we have

φ(ϕ+ ψ)(m) = φ(ϕ(m) + ψ(m)) = (φϕ)(m) + (φψ)(m).

4



Under this multiplication, we can see that EndR(M) is a R-algebra.

7. Let R be any commutative ring with identity, and define R[x−1, x] to be the set of

Laurent polynomials over R. These are the polynomials with coefficients in R in the

two indeterminates x−1, x with the relation xx−1 = x−1x = 1. Under normal

polynomial operations, this gives an algebra over R.

2.2 Basic Theory of Algebras

Definition 2.2.1 (Algebra homomorphism and isomorphism). Let A,B be R-algebras.

Then an algebra homomorphism A→ B is a ring homomorphism ϕ : A→ B such that for

any r ∈ R and a ∈ A, we have ϕ(ra) = rϕ(a), and ϕ(1A) = 1B. An algebra isomorphism is

a ring isomorphism satisfying the same conditions. If there exists an algebra isomorphism

A→ B, then we say A and B are isomorphic and denote this with A ∼= B.

Examples 2.2.2.

1. Consider the R-algebras R and C. The injection f : R→ C given by f(x) = x is

trivially an algebra homomorphism.

2. Consider C as a R-algebra. Then the complex conjugation function is an algebra

isomorphism. When an algebra isomorphism is a function from the algebra to itself,

we call it an automorphism.

3. Let Mn(F) be the algebra of n× n matrices over some field F. Then

Mn(F) ∼= EndF(Fn), where Fn is the usual n-dimensional vector space over F.

Definition 2.2.3 (Ideal). Let A be an algebra over some ring R. Then an ideal of A is an

additive subgroup I of A such that for all a ∈ A we have aI ⊆ I and Ia ⊆ I. If S is some

subset of A, then the set (S) := {a1sa2 | a1, a2 ∈ A, s ∈ S} is an ideal of A, and we call it

the ideal generated by S.
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Remark: We note that ideals are closed under scalar multiplication. This is because for

any α ∈ R, and any x ∈ I, we have αx = (α1A)x ∈ I.

Definition 2.2.4 (Quotient Algebra). Let A be an R-algebra, and I some ideal of A. The

quotient algebra A/I is the set of cosets given by the equivalence relation a ∼ b whenever

a− b ∈ I. The operations in this algebra are the natural extensions of the operations of A.

There is a similar concept of a quotient for both rings and modules. Since an algebra is

both, it is possible to construct quotient rings and quotient modules of an algebra. The

fact that these quotients are compatible follows from the theorem below.

Theorem 2.2.5 (First Isomorphism Thoerem). [2] Let A and B both be R-algebras, and

ϕ : A→ B an algebra homomorphism. If we denote the kernel of ϕ with ker(ϕ), then

ker(ϕ) is an ideal of A and A/ ker(ϕ) ∼= im(ϕ).

We note that the proof of this theorem is essentially the same as any proof of the first

isomorphism theorem a reader will encounter in any text on groups or rings, and so we

omit it. The following theorem establishes a useful fact about algebras.

Theorem 2.2.6 (Homomorphism definition of algebras). Let R be a commutative ring

with identity, and A a ring with identity. Then A is an R-algebra if and only if there exists

a (ring) homomorphism ϕ : R→ A such that Im(ϕ) is contained within the center of A,

and ϕ(1) = 1.

Proof. We begin by showing that if such a homomorphism exists, we can use it to obtain an

action that turns A into an R-algebra. For r ∈ R and a ∈ A, we define ra := ϕ(r)a. Since

ϕ(r) is an element of the ring A, the action satisfies the module axioms as an immediate

consequence of the ring axioms. Furthermore, ϕ(R) lies in the center of A, telling us that

r(ab) = (ra)b = a(rb) for r ∈ R and a, b ∈ A. This establishes that A is an R-algebra.

Now we prove the other direction of implication. Assume that A is an R-algebra. Then

we define ϕ : R→ A to be the function ϕ(r) = r · 1 (where · denotes the action of R on A).
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Now we verify that ϕ is a ring homomorphism. Let r, s ∈ R. Then we see

ϕ(r + s) = (r + s) · 1 = r · 1 + s · 1 = ϕ(r) + ϕ(s),

and

ϕ(rs) = (rs) · 1 = r · (s · 1) = (r(1 · 1))(s · 1) = 1(r · 1)(s · 1) = ϕ(r)ϕ(s).

Next we show that the image of ϕ lies in the center of A. Let r ∈ R and a ∈ A. Then

ϕ(r)a− aϕ(r) = (r · 1)a− a(r · 1) = (r · a)− (r · a) = 0,

as desired. This proves the equivalence.

In this text we are primarily concerned with algebras over fields (i.e. the ring R is a

field). We now use the following proposition to allow for a convenience of notation:

Proposition 2.2.7 (Fields are embedded in algebras). Let F be a field, and A an

F-algebra. Then A contains within its center a field that is canonically isomorphic to F.

Proof. Let ϕ be the homomorphism from F→ A provided by Theorem 2.2.6. Since F is a

field, it has no non-trivial proper ideals and hence the kernel of ϕ is trivial. This

immediately gives the desired result.

The above proposition allows us to speak of elements of F as belonging to A, and we will

do so in this paper. Note that if we consider algebras over rings instead, we are unable to

do so. For example, the canonical homomorphism from Z→ (Z/2Z) is clearly not injective.

2.3 Free and Universal Algebras

Definition 2.3.1 (Free algebra). We say that an F-algebra A is free on the subset S of A

(and called a free F-algebra) if F satisfies the following universal property: For any

F-algebra B and any function f : S → B, there exists a unique homomorphism ϕf : F → A

such that the restriction of ϕf to S is equal to f . The existence and uniqueness of these

homomorphisms is called the universal property of free algebras. The next proposition tells
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us that free algebras are determined uniquely up to a canonical isomorphism by the field F

and the set S.

Proposition 2.3.2 (Free algebra uniqueness). Let F be a field and S some set. If

F-algebras A and B are both free over S, then there exists a unqiue isomorphism between A

and B whose restriction to S is the identity.

Proof. Let A and B both be free F-algebras over S. Then there exist unique

homomorphisms ψ : A→ B and ϕ : B → A that extend the identity function s 7→ s for

s ∈ S. Then the composition ϕ ◦ ψ : A→ A is a homomorphism from A to A that extends

the identity function on S. The universal property of free algebras tells us that only one

such homomorphism exists. However, the identity function on A is such a homomorphism,

and hence ϕ ◦ ψ = IdA. An analogous argument tells us that ψ ◦ ϕ = IdB, and this tells us

that ψ and ϕ are isomorphisms.

Remark: Since this result tells us that the information of the field F and the set S is

enough to denote a free algebra, we will denote a free algebra from now on by F 〈S〉.

An observant reader will notice that we have not yet shown that free algebras exist.

The following proposition takes care of that.

Proposition 2.3.3 (Existence of free algebras). Let F be a field and S any set. Then there

exists a free F-algebra over S.

Proof. The basic motivation for constructing a free algebra is to try to define the most

“general” algebra containing the elements of S. In particular, we need multiplication,

addition, and scalar multiplication. To obtain multiplication, we introduce the idea of a

“word”. This can be considered as a finite string of elements of S, or an element of the set

W (S) = ∅ ∪

(⋃
k∈N

Sk

)
,

where Sk is the cartesian product of k copies of S. Notice that W (S) contains S as a

subset, and hence we can talk about elements of S as elements of W (S). For

8



(s1, . . . , sj), (t1, . . . , tk) ∈ W (S), we define their formal product to be (s1, . . . , sj, t1, . . . tk),

i.e. the concatenation of the two tuples. If we have the empty word (), then we define

(s1, . . . , sk)() = ()(s1, . . . , sk) = (s1, . . . , sk).

We now define the free algebra over S to be the set

F 〈S〉 = {f : W (S)→ F | f(w) = 0 for all but finitely many w ∈ W (S)} .

For w ∈ W (S), we can associate it with the function that sends w to 1 and everything

else to 0. This gives us an F-vector space under pointwise addition and scalar multiplication

of functions, and W (S) forms a basis of F 〈S〉. Hence we introduce the notation

f :=
∑

w∈W (S)

f(w)w,

whenever f ∈ F 〈S〉, and point out that this is just writing out elements of F 〈S〉 explicitly

as F-linear combinations of elements of W (S). We now define the product of elements of

F 〈S〉 to be the convolution of the sum in F 〈S〉 and the formal product in W (S):

fs =

 ∑
w∈W (S)

f(w)w

 ∑
v∈W (S)

g(v)v

 =
∑

u∈W (S)

(∑
wv=u

f(w)g(v)

)
u.

It is both simple and tedious to verify that these definitions of multiplication (taking the

empty word to be the multiplicative identity), scalar multiplication, and addition satisfy

the axioms for an algebra, and so we leave it as an exercise for the reader.

Having constructed this algebra, we now demonstrate that it is free. Let A be any

F-algebra and f : S → A be any function. Since F 〈S〉 and A are both F-vector spaces, we

may define ϕf to be the unique linear map defined on basis elements by

(s1, . . . , sk) 7→ f(s1) · · · · · f(sk) and () 7→ 1A whenever (s1, . . . , sk) ∈ W (S). As this

mapping is linear, it respects addition and scalar multiplication. The defininition of ϕf

makes it obvious that it respects multiplication on basis elements. Since the multiplication

in F 〈S〉 is bilinear, ϕf respects multiplication on all elements.

Readers may notice that multiplication in F 〈S〉 is similar to multiplication of

polynomials. This is not coincidental: elements of F 〈S〉 may be considered as

9



non-commutative polynomials with coefficients in F and unknowns in S. Monomials then,

are elements of W (S). To reconcile the two seemingly disparate notions, we point out to

the reader that we may rewrite, for example, the tuple (s, t, t, v, t) as st2vt. This now

visually resembles a monomial, and allows us to see that the multiplication given for W (S)

coincides with that of (non-commutative) monomials. Under this interpretation, the

homomorphism given by the free algebra’s universal property may be thought of as

polynomial evaluation. The reader will also note that if S has one element, then F 〈S〉 is

just the algebra F[x] (up to isomorphism).

Definition 2.3.4 (Relation). When context requires it, we will refer to elements of a free

algebra F 〈S〉 as relations. Let A be a F-algebra and f a function from S to A. Then we

say that f satisfies the relation r if r ∈ ker(ϕf ), where ϕf : F 〈S〉 → A is the homomorphic

extension of f given by the universal property of F 〈S〉.

Examples 2.3.5.

1. In the free algebra R[x], the only mappings from {x} to R satisfying the relation

x2 − 2 are x 7→ ±
√
2. The reader will note that this coincides with saying that ±

√
2

are the roots of x2 − 2 in R.

2. There are no maps from {x} to R that satisfy the relation x2 + 1. However, the

homomorphisms extending x 7→ ±i from R[x]→ C both satisfy this relation. In fact,

it is the fundamental theorem of algebra that for any relation in R[x] (except for

scalar multiples of the identity), there exists some evaluation homomorphism

ϕ : R[x]→ C satisfying that relation.

3. It is also possible to describe properties of an algebra through a relation. Let A be

some F-algebra containing elements a, b that commute with each other, i.e. ab = ba.

Taking F 〈x, y〉 to be the free algebra over two elements, we observe that the mapping

x 7→ a, y 7→ b satisfies the relation xy − yx. In fact, A is commutative if and only if

every mapping from {x, y} to A satisfies this relation.

10



Definition 2.3.6 (Universal Algebra). Let F be some field, S some set. Then for

R ⊂ F 〈S〉, we call the quotient F 〈S〉 /(R) the universal F-algebra with generators S and

relations R.

Theorem 2.3.7 (Universal Property of Universal Algebras). Let A be some F-algebra, S

some set, and let f : S → A satisfy each relation r ∈ R for some R ⊂ F 〈S〉. Then there

exists a unique homomorphism φ : F 〈S〉 /(R)→ A whose restriction to S + (R) is f . Since

this will sometimes lead to elements of S being associated with one another, this sometimes

leads to a slight abuse of notation when considering S as a subset of F 〈S〉 /(R). However,

this will never lead to issues.

Proof. This is an immediate consequence of the first isomorphism theorem.

Remark. For any s ∈ S, we will denote the element s+ (R) of F 〈S〉 /(R) just by s.

Observe that these elements generate F 〈S〉 /(R) as an algebra - every element of F 〈S〉 /(R)

can be written as a linear combinations of products of these elements.

Examples 2.3.8 (Universal Algebras).

1. Let A be some F-algebra, and let F 〈A〉 be the free F-algebra over A. Then the

universal property of free aalgebras proves a homomorphism ϕ : F 〈A〉 → A extending

the identity map on A. Clearly F 〈A〉 / kerϕ ∼= A, meaning A is a universal algebra.

Thus we have shown that every F-algebra can be considered a universal algebra.

2. Let F be any field, and S = {x1, . . . , xk} be a finite set. The reader will recall that

F 〈S〉 is the set of non-commutative polynomials in the indeterminates in S and and

coefficients in F. In order to obtain the commutative polynomials, we can take our

set of relations to be

R = {xmxn − xnxm | m,n ∈ 1, . . . , k} .

We then obtain F 〈S〉 /(R) ∼= F[x1, . . . , xk].

11



3. Now consider the free algebra F[x], the set of single variable polynomials over some

field F. Then we may take f(x) to be any irreducible polynomial in F[x]. If we do so,

the quotient F[x]/(f(x)) is isomorphic to the extension field F[r], where r is any root

of f . For example, if we take our field to be R, and our polynomial to be x2 + 1, we

obtain

R[x]/(x2 + 1) ∼= R[i] = C.

This shows that every field extension of R is a universal algebra.

4. Consider Mn(F), the algebra of n× n matrices. As a vector space, it has basis

β = {εi,j | i, j ∈ 1, . . . , n}, where εi,j is the matrix with a 1 in position i, j and zeroes

elsewhere. We can also represent Mn(F) as a universal algebra with generators β, and

relations R := {εi,jεk,l − δj,kεi,l | i, j, k, l ∈ 1, . . . , n} ∪ {
∑n

k=1 εk,k = 1} (where δj,k is

the function that is 1 when j = k, and 0 otherwise - this function is known as the

Kronecker delta function). To see why, first we observe that standard matrix

multiplication tells us εi,j, εk,l = δj,kεi,l in Mn(F). Hence we see that εi,jεk,l− δj,kεi,l = 0

is in the kernel of the homomorphism from F 〈β〉 →Mn(F) that extends the identity.

Furthermore, the sum of the diagonal matrices εi,j is the identity matrix in Mn(F).

This tells us that every relation in R is satisfied by this homomorphism, and hence

there exists a unique homomorphism ϕ : F 〈β〉 /(R)→Mn(F) such that ϕ(εi,j) = εi,j

for each εi,j ∈ β. Notice that we have established a surjective mapping onto a basis of

Mn(F) that respects both addition and scalar multiplication. This implies that ϕ is

surjective on Mn(F). Now we note that since εi,jεk,l − δj,kεi,l = 0 for any εi,j, εk,l ∈ β,

the product of any two of these elements is an element of β. Since theses elements

generate F 〈S〉 /(R) as an algebra, this tells us that they span F 〈β〉 /(R) as a F

-vector space. Hence we observe that if
∑n

k=1

∑n
j=1 ϕ(αj,kεj,k) = 0, then linear

independence in Mn(F) indicates that each αj,k must be zero. This tells us that ϕ has

a trivial kernel and hence is injective. So ϕ is an isomorphism, as is desired.
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CHAPTER 3

LEAVITT PATH ALGEBRAS

We now introduce the central topic of this paper, Leavitt path algebras. A Leavitt path

algebra is a type of universal algebra whose relations are defined based on a directed graph.

We begin by defining a directed graph, following the terminology used in [1, Definition

1.2.2].

Definition 3.0.1 (Directed Graph). Let E0 and E1 be a disjoint pair of finite1 sets,

equipped with functions r : E1 → E0 and s : E1 → E0. Then we call the collection

E = (E0, E1, r, s) a directed graph. We call the elements of E0 the vertices of E, and the

elements of E1 edges. For a given e ∈ E1, we call s(e) the source of e, and r(e) the range.

Note that it is possible for multiple edges to have both the same soure and range.

Example 3.0.2. Although directed graphs are defined abstractly, they are usually

represented by diagrams. In the diagram below, the vertices are represented by the dots,

e1 e2

e3
v1

v2

v3

and the edges by the arrows. Thus we have E0 = {v1, v2, v3} and E1 = {e1, e2, e3}. The

source of an edge is the vertex that the edge is pointing away from, and its range is the

vertex it is pointing to. As such, we have s(e1) = v1 and r(e1) = v2.

The following is a minor adaptation of the definition of a Leavitt path algebra from the

one found in [1, Definition 1.2.3]. This modification is explained in the remark following

the definition.

1It is possible to define directed graphs without requiring these sets to be finite. However, allowing for
these sets to be infinite allows the algebras we will be defining with these graphs to become more complicated
(in particular, it allows for algebras without a multiplicative identity). It should be possible to extend the
results of this paper to infinite graphs, but for the sake of simplicity we will restrict to the finite case.
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Definition 3.0.3 (Leavitt path algebra). [1] Let E = (E0, E1, r, s) be some directed graph,

and F some field.

We will be using this graph to generate an algebra, but we wish to have two distinct

generators associated with each edge of the graph. To this end, we define

(E1)∗ := {e∗ | e ∈ E1} to be the set of ‘ghost edges’ of E and note that it is simply a set

with the same cardinality as E1, and whose elements are indexed by those of E1. Then the

Leavitt path algebra of E over F is the quotient of the free algebra F 〈E0 ∪ E1 ∪ (E1)∗〉 by

the ideal generated by the relations

1. vv′ = δv,v′v, for all v, v ∈ E0,

2. s(e)e = er(e) = e, for all e ∈ E1,

3. e∗s(e) = r(e)e∗ = e∗, for all e ∈ E1,

4. e∗e′ = δe,e′r(e) for all e, e′ ∈ E1,

5. v =
∑

s(e)=v ee
∗, for each v ∈ E0 that is the source of at least one edge, and

6.
∑

v∈E0 v = 1

For a given graph E, we denote the Leavitt path algebra of E over F by LF(E).

Remark. The sixth relation is only required since we have required universal algebras to

have identity. In the more usual definition, where universal algebras do not have identities,

it ends up being a consequence relations 1, 2, and 3.

Remark. Recall that we initially defined relations to be elements of a universal algebra,

which seems distinct from our usage of them here. However, when constructing the

universal algebra, we end up setting the relations equal to zero (they are used to generate

the kernel of the canonical homomorphism), and hence saying r1 = r2 is the same as saying

r1 − r2 = 0.

Examples 3.0.4.

14



1. Let E be the graph with a single vertex and no edges, i.e. the graph below:

v

Then we claim that LF(E) ∼= F as algebras. To see why, notice that our free algebra

is just F[v], and the Leavitt path algebra relations end up collapsing down to v2 = v

and v = 1 in this case. In particular, the ideal (R) of F[v] that we are dealing with is

just (v2 − v, v − 1). Since v − 1 divides v2 − v, this ideal is just (v − 1) and we have

LF(E) ∼= F[x]/(v − 1) ∼= F.

2. Now let E be the graph below:

e

v

We note that E0 ∪ E1 ∪ (E1)∗ = {v, e, e∗}, and we claim LF(E) ∼= F[x−1, x] (the

algebra of Laurent polynomials over F).The reader will observe that the function

sending v to 1, e to x, and e∗ to x−1 satisfies the Leavitt path algebra relations, and

hence gives us a unique homomorphism ϕ : LF(E)→ F[x−1, x].

We now show that this mapping is an isomorphism of algebras. Note that F[x−1, x] is

generated by 1, x, and x−1 meaning that the homomorphism ϕ is surjective. Now the

relations 4 and 5 ensure that every element a ∈ LF(E) is of the form

a = αv +
∞∑
j=1

βje
j +

∞∑
k=1

γk(e
∗)k,

with only finitely many of the β′js and γ′ks being non-zero.

This tells us that

ϕ(a) = α +
∞∑
j=1

βjx
j +

∞∑
k=1

γkx
−k.

Since the powers of x form a basis for the Laurent polynomials, linear independence

tells us that ϕ(a) = 0 if and only if a = 0, giving the desired result.
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3. Let F be some field, and E the graph given below:

e1
en−1v1 v2 vn−1 vn

We claim that LF(E) is isomorphic to Mn(F). The proof of this fact allows us to

demonstrate an important usage of the universal property of universal algebras.

We start by ensuring that we may use this property. The reader will recall from

Example 2.3.8 number 2 the equivalent definition of Mn(F) as F 〈β〉 /(R) where

β = {εi,j | 1 ≤ i, j ≤ n} and R = {εi,jεk,l − δj,kεi,l | 1 ≤ i, j, k, l ≤ n}∪ {
∑n

k=1 εk,k = 1}.

Let ψ : F 〈β〉 → LF(E) be the homomorphism extending the mapping

εi,j 7→


eiei+1 · · · ej−1 if i < j,

e∗i−1e
∗
i−2 · · · e∗j if i > j,

vi if i = j.

Then we wish to show that this homomorphism satisfies each relation in R. First we

note that relations 2 and 3 from Definition 3.0.3 ensure that

ψ(εi,j)ψ(εk,l) = ψ(εi,j)vjvkψ(εk,l) = δj,kψ(εi,j)ψ(εk,l).

Since this trivially gives us the desired result ψ(εi,j)ψ(εk,l) = δj,kψ(εi,l) whenever

j 6= k, let us now assume j = k. We make note of the fact that each vertex in E is

the source of at most one edge, and hence relation 5 simplifies down to

e′e∗ = δe′,es(e).

Now we claim that

ψ(εi,j)ψ(εk,l) =


eiei+1 · · · el−1, if i < l,

e∗i−1e
∗
i−2 · · · e∗l , if i > l,

vl, if i = l.
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To verify this claim, there are several case to check. For example, when i < j = k < l,

we have

ψ(εi,j)ψεk,l = eiei+1 . . . ej−1ekek+1 . . . el−1 = ψ(εi,l).

On the other hand, if i < l < k, then we have

ψ(εi,j)ψ(εk,l) = eiei+1 . . . ej−1e
∗
k−1e

∗
k−2 . . . e

∗
l = ψ(εi,l−1).

Verification of all the other cases use similar arguments, and which we will omit.

This tells us that we have ψ(εi,j)ψ(εk,l) = δj,kψ(εi,l) as is desired.

Now we construct an algebra homomorphism in the other direction. Let

φ : F 〈E0 ∪ E1 ∪ (E1)∗〉 →Mn(F) be the homomorphism extending the mappings

vj 7→ εj,j, ej 7→ εj,j+1 and e∗j 7→ εj+1,j. We show that φ satisfies relations 1-6 in

Definition 3.0.3. For relation 1, we see

φ(vkvj) = φ(vk)φ(vj) = εk,kεj,j = δj,kεk,j = δj,kεk,k = φ(δj,kvk).

For relation 2, we have

φ(ej) = εj,j+1 = εj,jεj,j+1 = φ(vjej) = φ(s(ej))φ(ej).

Similar arguments work for φ(ej) = φ(ejr(e)) and the entirety of relation 3. For

relation 4, we have

φ(e∗jek) = εj+1,jεk,k+1 = δj,kεj+1,k+1 = δj,kεk+1,k+1 = φ(δj,kr(ek)).

Since each vertex is the source of at most one edge, the sum in relation 5 has at most

one term. Hence an identical argument shows that relation 5 is satisfied. Hence φ

satisfies the Leavitt path algebra relations.

17



By the universal properties of LF(E) and Mn(F), the maps defined above induce

homomorphisms ϕ : LF(E)→Mn(F) and ψ :Mn(F)→ LF(E). Since the

compositions ϕ ◦ ψ and ψ ◦ ϕ are both homomorphisms that are the identity on the

generators of each algebra, the universal properties of these algebras ensure that they

are the identity homomorphism. In particular, both ϕ and ψ are isomorphisms, as is

desired.
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CHAPTER 4

CATEGORY THEORY

4.1 The Basic Language of Category Theory

We now introduce the basic language of category theory, mostly following [4].

Definition 4.1.1 (Category). A category C consists of a collection Ob(C) of objects, and

for each pair X, Y of objects a set Hom(X, Y ) of morphisms satisfying the following:

1. If X, Y, Z are objects, then for each f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), there is

given a unique morphism g ◦ f ∈ Hom(X,Z) called the composition of g with f such

that or any triplet f, g, h we always have (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever both f ◦ g

and g ◦ h exist.

2. For each object X, there is a morpism IdX ∈ Hom(X,X) with the property that for

all objects Y , and all morphisms f ∈ Hom(X, Y ) and g ∈ Hom(Y,X) we have

f ◦ IdXf and IdX ◦ g = g.

Examples 4.1.2.

1. There is a category called SET. In this category we take the objects to be sets, and

the morphisms to be functions between sets. Composition of morphisms in this

category is defined to be composition of functions.

2. Many of the structures encountered in algebra classes also form categories. In

particular, there are categories of monoids, groups, rings, fields, modules, vector

spaces, and algebras. In each of these categories, the morphisms are the various types

of homomorphism (and linear maps for vector spaces).

3. Let C be a category with one object X such that for any f ∈ Hom(X,X), there

exists some f−1 ∈ Hom(X,X) such that f ◦ f−1 = f−1 ◦ f = IdX . Since we have
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associativity of composition, inverses, and an identity element, the morphisms of this

category form a group. Given an arbitrary group G, we may also form a category by

defining the object to be a single point, and the morphisms to be elements of the

group. The reader may verify that the definition of a group easily ensures that the

category axioms are satisfied.

4. Let X be some partially ordered set. Then we may define a category C by taking

Ob(C) = X. In this category, we say there exists a morphism from x→ y if and only

if x ≤ y. Since x ≤ x for each x ∈ X, we see that each object has the required

identity morphism. Since there is at most one morphism between any two objects,

and a partial ordering is transitive, we have only one choice for composition of

morphisms, and this composition satisfies the axioms for a category.

5. There is a category of categories. In this category, we take the objects to be categories

themselves. We will define the morphisms of this category in Definition 4.1.7

6. Let E be some finite directed graph. Then we can define the category Path(E). In

this category, we take the objects to be the vertices of E. A morphism of this

category is a path, which one may consider as an operdered tuple (e1e2 . . . en) of edges

such that r(ek) = s(ek+1) for all 1 ≤ k < n. We also take a single vertex to be a path.

Then we define the identity morphism for a vertex v to be the path (v), and we

define composition of morphisms to be the concatenation of paths (i.e. e1 · e2 = e1e2).

Definition 4.1.3 (Isomorphism). Let X and Y be objects of some category C. We say X

and Y are isomorphic if there exist morphisms f : X → Y and g : Y → X such that

f ◦ g = IdY and g ◦ f = IdX . Whenever f and g fulfill this conditions, we call them

isomorphisms, and say that f and g are inverses.

Examples 4.1.4.

1. Let C be the category SET. Then objects X, Y ∈ C are isomorphic if and only if

there exists a bijection between X and Y .
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2. Readers will also have encountered examples of isomorphisms in their studies of other

mathemtacial structures, such as groups, rings, and vector spaces.

As mentioned before, there is a category of categories. The morphisms in this category

are called functors. They are defined as follows:

Definition 4.1.5 (Functor). Let C and D be categories. Then a functor from C to D,

denoted by F : C → D, is a mapping that sends each object X of C to some object F (X)

of D and each morphism f of C to some morphism F (f) of D, satisfying the following:

1. For X, Y ∈ Ob(C), and f ∈ Hom(X, Y ), we have F (f) ∈ Hom(F (X), F (Y )),

2. For any X ∈ Ob(C), we have F (IdX) = IdF (X), and

3. For any morphisms f, g of C that compose, we have F (f ◦ g) = F (f) ◦ F (g).

Examples 4.1.6.

1. Let C and D be two partially ordered sets, treated as categories as in Example 4.1.2.

we may take F to be a functor between these two categories. Then we observe that if

X ≤ Y , we must have F (X) ≤ F (Y ). This tells us that a functor between these

categories is the same thing as a function that preserves the partial ordering of their

elements.

2. Let G and H be groups. As in Example 4.1.2 number 3, when we treat these groups

as categories, the morphisms are just the elements of the group and composition is

multiplication. If we have a functor F : G→ H, then we see that for any a, b ∈ G we

have F (ab) = F (a ◦ b) = F (a) ◦ F (b) = F (a)F (b). This tells us that a functor

between groups is just a group homomorphism.

3. In the initial examples of categories, we mentioned many categories based on sets

(such as groups, rings, vector spaces, and the like). In each of these examples, we
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may define forgetful functors from these categories to the category of sets. These

functors map each object of the category to the set containing its elements, and each

morphism to the function that gives the same action. For example, if G is the group

Z/2Z and H = Z/4Z, and ϕ : H → G is the homomorphism such that ϕ(1) = 1, and

F is the forgetful functor from the category of groups to the category of sets, then

F (G) is the set containing the elements of Z/2Z, F (H) containing the elements of

Z/4Z, and F (ϕ) is still just ϕ, only now it is considered a map of sets.

4. Now let us define C to be the category whose objects are vector spaces over some

fixed field F, and whose morphisms are linear maps between these vector spaces. For

a given vector space V , we define its dual space to be

V ∗ := {linear maps from V → F}. We may also define its double dual,

V ∗∗ := {linear maps from V ∗ → F}. If V and W are F-vector spaces, and f a linear

map between them, then we define

f ∗∗ : V ∗∗ → W ∗∗ :

f ∗∗(v∗∗)(w∗) = v∗∗(w∗ ◦ f), for all v∗∗ ∈ V ∗∗ and w∗ ∈ W ∗.

Then the mapping

F : C → C

F (V ) = V ∗∗

F (f) = f ∗∗

is a functor from C → C, called the double dual functor.

Definition 4.1.7 (Natural Transformation). Let C and D be categories, and let

F,G : C → D be functors. A natural transformation τ : F → G is a function giving each

object X ∈ C a morphism τX : F (X)→ G(X) of D such that for each morphism

f : X → Y in C, the following diagram commutes:
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f F (f)

τX

G(f)

τY

X

Y

F (X)

F (Y )

G(X)

G(Y )

If τ is such a function, then we say that the morphisms τX are natural in X. If each τX

is also an isomorphism, we say τ is a natural isomorphism. If F is naturally isomorphic to

G, we denote the situation with F ∼= G.

Since we have defined a category of categories, it seems natural to think in terms of

isomorphisms of categories. Following the general notion of an isomorphism, this would

require us to have functors F : C → D and G : D → C such that F ◦G = IdD and

G ◦ F = IdC . However, it turns out that in many cases where we want to talk about

categories being the same, this idea of isomorphism is too restrictive. To resolve this

problem, we introduce the idea of equivalence of categories.

Definition 4.1.8. [Categorical Equivalence] Let C and D be categories. Then we say C

and D are equivalent if there exist functors F : C → D and G : D → C such that

F ◦G ∼= IdD and G ◦ F ∼= IdC .

Examples 4.1.9.

1. Let C be any category, and let IdC : C → C be the identity functor. Then clearly for

any X, Y ∈ C and morphism f : X → Y the following diagram commutes:

f f

Idc

f

Idc′

c

c′

c

c′

c

c′

Since the identity morphism is always an isomorphism, this tells us that each

category is equivalent to itself.
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2. Let C be the category of finite dimensional vector spaces over some field F, let

F : C → C be the double dual functor defined in Example 4.1.6 part 4, and let

IdC : C → C be the identity functor. Since IdC ◦ F = F ◦ IdC = F , it just remains to

show that F is naturally isomorphic to IdC . So for a given vector space V , let

τV : V → F (V ) be the map such that τV (v)(w∗) := w∗(v). As in [2, Section 11.3

Theorem 19], we see that this map is an isomorphism. It is also naturally isomorphic

to the identity, since for each v ∈ V and each w∗ ∈ W ∗ we have

τW (f(v))(w∗) = w∗(f(v)) = τV (v)(w
∗ ◦ f) = f ∗∗(τV (v))(w

∗).

4.2 The Category of Modules Over an Algebra

Before we approach the main theorem of the text, we will establish a useful result about

the category of modules over a general algebra.

Definition 4.2.1. Let A be some F-algebra with identity. Then we define Mod(()A) to be

the category whose objects are unital A-modules, and whose morphisms are

homomorphisms of A-modules.

Definition 4.2.2. Let A be some F-algebra with identity. Then we take M(A) to be the

category whose objects and morphisms are defined as follows.

Objects: An object of M(A) consists of a pair (V, ϕ) of an F-vector space V and an

identity preserving algebra homomorphism ϕ : A→ EndF(V ), where EndF(V ) is the

algebra of linear maps from V to V , as in Example 2.1.4 part 6.

Morphisms: For objects (V, ϕ) and (W,ψ), a morphism T : (V, ϕ)→ (W,ψ) consists of a

linear map t : V → W such that for each a ∈ A, we have t ◦ ϕ(a) = ψ(a) ◦ t.

Theorem 4.2.3. Let A be any F-algebra with identity. Then the categories M(A) and

Mod(A) are equivalent.

Proof. Let A be an algebra over some field F and let M ∈ Mod(A). For α ∈ F and m ∈M ,

we define αm := (α1A)m. The module and algebra axioms ensure that M is a F-vector
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space under this definition of scalar multiplication. Now we define the map

ϕM : A→ EndF(M)

(where EndF(M) is the set of linear endomorphisms from M to M when considered as a

vector space) to be given by

ϕM(a)(m) = am,

for a ∈ A and m ∈M .

Now let M,N ∈ Mod(A) and let f :M → N be a module homomorphism. For a ∈ A

and m ∈M , we clearly have f(am) = af(m). If we now consider M as a vector space, this

tells us f(ϕM(a)m) = ϕN(a)f(m). If we define

F : Mod(A)→M(A)

to be the map sending

M 7→ (M,ϕM), and

f 7→ f,

then F preserves the composition and identities of morphisms (as it is the identity on

them), and hence is a functor.

Now let (V, ϕ) be some object of M(A). Then for v ∈ V and a ∈ A, we can define the

action av := ϕ(a)(v). As ϕ(a) is linear, we observe that this action makes V a module over

A. Note that for any morphism

T : (V, ϕ)→ (W,ψ)

we have

t(av) = t(ϕ(a)v) = ψ(a)t(v) = at(v).

Along with the fact that t is linear, this ensures that t is a morphism from V → W in

Mod(A). If we define

G :M(A)→ Mod(A)
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to be the map sending

(V, ϕ) 7→ V, and

f 7→ f, then we note that G preserves the composition and identities of morphisms and is

therefore a functor.

Now we note that for M ∈ Mod(A), we clearly have G ◦ F (M) =M , for f ∈ Mod(A),

we have G ◦ F (f) = f . Hence G ◦ F = IdMod(A). Similarly F ◦G = IdM(A). Since the

identity functor is definitely naturally isomorphic to itself, this establishes the desired

equivalence of categories.
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CHAPTER 5

THE CATEGORY OF MODULES OVER LEAVITT PATH ALGEBRAS

Definition 5.0.1 (Cuntz-Krieger-Leavitt Category). Let E be some finite directed graph

and let Paths(E) be the path category of E, as in Example 4.1.2 . Then we define the

category CKLF(E) to be as follows:

The objects of the category are functors M : Paths(E)→Mod(F) such that if v ∈ E0 is

the range of at least on edge, then the map

∑
r(e)=v

M(e) :
⊕
r(e)=v

M(s(e))→M(v)

given by

(xs(e)|r(e) = v) 7→
∑
r(e)=v

M(e)(xs(e))

is an isomorphism of vector spaces.

The morphisms of CKLF(E) are natural transformations of functors, and the

composition of morphisms is composition of functors.

Note that although we are defining the objects of this category as functors, it is not

something categorical in nature. Objects of this category end up looking like a collection of

vector spaces and linear maps between them, up to the above direct sum condition. The

purpose of defining this as a functor is that it allows for this idea to be expressed in a

compact manner. Under this consideration, a morphism of this category is a collection of

linear maps from the vector spaces of one object to another, such that the structure of the

linear maps of each object is in some sense the same.

Examples 5.0.2.

1. Let E be the graph with a single vertex v, and let F be some field. Then an object of

CKLF(E) consists of a functor that sends v to some vector space V , and Idv to IdV .

For objects M and N of CKLF(E), a morphism T :M → N consists of a linear map
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Tv :M(v)→ N(v) such that Tv ◦ IdM(v) = IdN(v) ◦ Tv. Clearly this applies for every

linear map Tv, and so a morphism is just any linear map from M(v)→ N(v).These

considerations show that the functor CKLF (E)→ Mod(()F ) defined on objects by

M 7→M(v), and on morphisms by T 7→ Tv, is an equivalence of categories.(We have

not quite demonstrated this, but finding the inverse functor here consists of

essentially the same argument.)

2. Let E be the graph with two vertices, v and w, and no edges between them, and let F

be some field. Then an object of CKLF(E) consists of a functor sending v and w each

to some vector spaces, and the identity morphisms to the identites of their respective

vector spaces. For objects M and N of CKLF(E), a morphism T :M → N is a

collection T = {Tv, Tw} of linear maps such that Tv ◦ IdM(v) = IdN(v) ◦ Tv and

Tw ◦ IdM(w) = IdN(w) ◦ Tw. Just as in the last example, this will hold for any pair of

linear maps.

This allows us to take a functor from CKLF(E)→ Mod(F× F) sending

M 7→ (M(v),M(w)), T :M → N to (Tv, Tw). As before, this gives us an equivalence

of categories.

Definition 5.0.3. Let E = (E0, E1, r, s) be some graph. Then we define it’s

opposite graph, to be the graph Eopp := (E0, E1, s, r). Put into the common interpretation

of directed graphs, this is the graph with the same vertices and edges as E, but with the

arrows pointing in the opposite direction.

The following theorem is essentially [3, Proposition 3.2]. We shall give a proof of this

result that fills in some of the omitted details.

Theorem 5.0.4. Let E be some finite directed graph and Eopp its opposite. Then

CKLF(E) ∼= Mod(LF(E
opp)).

Proof. Let E be some finite directed graph, and F some field. For a given M ∈ CKLF(E),

we define
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VM :=
⊕
v∈E0

M(v).

If we denote elements of VM by (xv|v ∈ E0), then we define πM,v0 to be the map sending

(xv|v ∈ E0) 7→ xv0 , and χM,v :M(v)→ VM to be the map sending M(v) to its naturally

isomorphic copy within the direct suma VM .

Now let v ∈ E0 be a vertex that is the range of at least one edge, i.e. r−1(v) 6= ∅. Recall

from Definition 5.0.1 that the map∑
r(e)=v

M(e) :
⊕
r(e)=v

M(s(e))→M(v)

given by

(xs(e)|r(e) = v) 7→
∑
r(e)=v

M(e)(x(s(e)))

is an isomorphism. For each edge e0 ∈ r−1(v) we define

π′M,e0
:M(r(e0))→M(s(e0))

to be the map

π′M,e0
= πM,s(e0) ◦

∑
r(e)=v

M(e)

−1 .
Then we take F to be the functor from CKLF(E)→M(LF(E

opp)) defined as follows:

For a given object M of CKLF(E), we take F (M) = (VM , ϕM), where ϕM is the algebra

homomorphism from LF(E
opp)→ EndF(V )M such that for each x ∈ VM , we have

ϕM(v)(x) = (χM,v ◦ πM,v)(x) whenever v ∈ E0, (5.0.5)

ϕM(e)(x) = (χM,r(e) ◦M(e) ◦ πM,s(e))(x) whenever e ∈ E1, and (5.0.6)

ϕM(e∗)(x) = (χM,s(e) ◦ π′M,e ◦ πM,r(e))(x) whenever e∗ ∈ (E1)∗. (5.0.7)

The fact that this is enough to define a homomorphism follows from the universal property

of LF(E
opp), so long as we are able to verify that ϕM satisfies the necessary relations. To do

29



so, we make note of the following identities:

πM,v ◦ χM,w = δv,wIdw, and (5.0.8)

π′M,e ◦M(e) = Ids(e). (5.0.9)

An observant reader may notice that strictly speaking, the first identity isn’t always

well defined - if v 6= w, the codomains are different. However, in this case the delta

function sends everything to zero anyways, and so we decide to abuse notation and have

the zero live wherever we need it to. It will not end up making a difference.

The first identity holds as a simple observation that πM,v sends elements of M(v) to

themselves, and everything else to zero. The second identity is similar. For a given

x ∈M(s(e)), we are sending it to πM,s(e)(e0) ◦
(∑

r(e′)=vM(e′)
)−1
◦M(e). Hence we see

that an element of M(s(e)) will first get sent to M(r(e)). Then it will get sent to itself, but

now living in the direct sum given in Definition 5.0.1, and then will get sent to itself living

in M(s(e)), as is desired.

Now we verify the relations in defintion 3.0.3 (recall that we considering the Leavitt

path algebra over the opposite graph of E, and so the various s’s and r’s are reversed).

The reader will note that we will always send elements of E0 ∪ E1 ∪ (E1)∗ to compositions

whose leftmost element is one of our χ functions, and whose rightmost element is one of

our π functions. This allows for immediate vertification of the first four relations. For

example, we see in the first relation, we have

ϕM(v)ϕM(v′) = (χM,v ◦ πM,v)(χM,v′ ◦ πM,v′) = δv,v′χM,vπM,v′ = δv,v′ϕM(v).

Dealing with relations 2− 4 follow arguments that are essentially the same. The fifth

relation is a bit trickier, and so we handle it in more detail. Recalling the definition of π′M,e
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we observe

∑
r(e)=v

ϕM(e) ◦ ϕM(e∗) =
∑
r(e)=v

χM,r(e) ◦M(e) ◦ πM,s(e) ◦ χM,s(e) ◦ π′M,e ◦ πM,r(e) (5.0.10)

=
∑
r(e)=v

χM,r(e) ◦M(e) ◦ π′M,e ◦ πM,r(e) (5.0.11)

= χM,v ◦

∑
r(e)=v

M(e)π′M,e

 ◦ πM,v (5.0.12)

= χM,v ◦ πM,v (5.0.13)

= ϕM(v). (5.0.14)

For relation 6, we see that for any (xv|v ∈ E1) ∈ VM , we have

∑
v∈E0

M(v)(xv|v ∈ E1) =
∑
v∈E0

(χM,v ◦ πM,v)(xv|v ∈ E1) =
∑
v∈E1

χM,v(xv) = (xv|v ∈ E1).

This shows that we have satisfied the universal property of LF(E
opp). This verifies ϕM

is an algebra homomorphism, and so we have confirmed that F sends each object of

CKLF(E) to an object of M(LF(E
opp)).

Now we wish to define the action of F on a morphism of CKLF(E). For a pair M,N in

CKLF(E), a morphism from M to N is a collecion τ = {τv | v ∈ E0} of linear maps

τv :M(v)→ N(v) such that for any e ∈ E1, we have N(e) ◦ τs(e) = τr(e) ◦M(e). Then we

define F (τ) : F (M)→ F (N) to be the linear map T : VM → VN given by T =
⊕

v∈E0 τv.

This gives us the following identities:

π′N,e ◦ πN,r(e) ◦ T = τs(e) ◦ π′M,e ◦ πM,r(e), (5.0.15)

T ◦ χM,v = χN,v ◦ τv, and (5.0.16)

πN,v ◦ T = τv ◦ πM,v. (5.0.17)
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If v ∈ E0, then we have

T ◦ ϕM(v) = T ◦ χM,v ◦ πM,v (5.0.18)

= χN,v ◦ τv ◦ πM,v (5.0.19)

= χN,v ◦ πN,v ◦ T (5.0.20)

= ϕN(v) ◦ T. (5.0.21)

If e ∈ E1, then we have

T ◦ ϕM(e) = T ◦ χM,r(e) ◦M(e) ◦ πM,s(e) (5.0.22)

= χN,r(e) ◦ τr(e) ◦M(e) ◦ πM,s(e) (5.0.23)

= χN,r(e) ◦N(e) ◦ τs(e) ◦ πM,s(e) (5.0.24)

= χN,r(e) ◦N(e) ◦ πN,s(e) ◦ T (5.0.25)

= ϕM(e) ◦ T (5.0.26)

Finally, if e∗ ∈ (E1)∗, then

T ◦ ϕM(e∗) = T ◦ χM,s(e) ◦ π′M,e ◦ πM,r(e) (5.0.27)

= χN,s(e) ◦ τv ◦ π′M,e ◦ πM,r(e) (5.0.28)

= χN,s(e) ◦ π′N,e ◦ πN,r(e) ◦ T (5.0.29)

= ϕN(e
∗) ◦ T. (5.0.30)

We have verified that T ◦ ϕM(s) = ϕN(s) ◦ T for each s ∈ E0 ∪ E1 ∪ (E1)∗. Since these

elements generate LF(E
opp), this tells us that T ◦ φM(a) = φN(a) ◦ T for every

a ∈ LF(E
opp), and so T = F (τ) is a morphism in the category M(LF(E

opp)). We also note

that since each τv is the identity map whenever T is the identity morphism, clearly

F (IdM) = IdF (M) for any M ∈ CKLF(E).

Finally, if S :M → N given by S = {σv | v ∈ E0} and T : N → O given by

T = {τv | v ∈ E0} are two morphisms in CKLF(E), then their composition is
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T ◦ S = {τv ◦ σv | v ∈ E0}. Since F (T ) ◦ F (S) =
⊕

v∈E0 τv ◦
⊕

v∈E0 σv =
⊕

v∈E0 τv ◦ σv, we

see that F respects the composition of morphisms and is therefore a functor.

Now we wish to define a second functor, H :M(LF(E
opp))→ CKLF(E). Recall that an

object of CKLF(E) is a functor from Paths(E)→ Mod(F). Let (V, ϕ) be an object of the

category M(LF(E
opp)). Then for a given v ∈ E0, we take H(V, ϕ)(v) to be Im(ϕ(v)). (We

will consider this image as its own vector space, instead of as a subspace living in V .) For

an edge e ∈ E1, we define H(V, ϕ)(e) : Im(ϕ(s(e)))→ Im(ϕ(r(e))) to be the restriction of

the map ϕ(e) : V → V to the subspace Im(ϕ(s(e))). Note that the relation e = r(e)e in

LF(E
opp) ensures that the image of ϕ(e) is contained in the image of ϕ(r(e)). For a path

e1e2 . . . ek, we define

H(V, ϕ)(e1e2 . . . ek) := H(V, ϕ)(ek) ◦ · · · ◦H(V, ϕ)(e2) ◦H(V, ϕ)(e1).

Now let v ∈ E0 be a vertex such that r−1(v) 6= ∅. Then we define the map

ψv :
⊕
r(e)=v

Im(ϕ(s(e)))→ Im(ϕ(v))

to be given by

ψv(xe|r(e) = v) =
∑
r(e)=v

ϕ(e)(xe).

We claim that ψv is an isomorphism of vector spaces. For a given x ∈ Im(ϕ(v)), we

have via relation 3 in Definition 3.0.3 ϕ(e∗)(x) = ϕ(s(e)) ◦ ϕ(e∗)(x) (recall that we are in

the opposite graph of E). This ensures that ψv(e∗)(x)|r(e) = v) a well-defined element of⊕
r(e)=v Im(ϕ(s(e))), and relation 5 tells us that ψv sends this element to x.

To see that ψv is injective, we begin by assuming ψv(xe|r(e) = v) = 0 for some

(xe|r(e) = v) ∈
⊕

r(e)=v Im(ϕ(s(e))). Relation 4 of Definition 3.0.3 tells us

0 = ϕ(f ∗) ◦ ψv(xe | r(e) = v) =
∑

r(e)=v ϕ(f
∗e)xe = φ(s(f))xf , for each edge f ∈ E1 with

r(f) = v. Since ϕ(s(f)) is idempotent (via relation 1), we know that it must act as the

identity on Im(ϕ(s(f)) and hence we have

xf = ϕ(s(f))(xf ) = 0.
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Since this holds for each f with r(f) = v, this tells us the kernel of ψv is trivial and hence

ψv is injective. Therefore H(V, ϕ) is an object of the category CKLF(E).

Now we define the action of H on morphisms. Let T : (V, ϕ)→ (W,ψ) be some

morphism in M(LF(E
opp)). Recall that this morphism T consists of a linear map

t : V → W with the property that t ◦ φ(a) = ψ(a) ◦ t for every a ∈ LF(E
opp). Then for each

vertex v ∈ E0, we have t ◦ ϕ(v) = ψ(v) ◦ t, and so we can restrict t to the map

τv : Im(φ(v))→ Im(ψ(v)). Since this map satisfies τv ◦ φ(e) = ψ(e) ◦ τv for each edge

e ∈ E1, the collection (τv|v ∈ E0) constitutes a natural transformation H(V, φ)→ H(W,ψ).

Now we wish to show that H respects the identity. If T is the identity morphism, then t

is the identity linear map, and hence each restriction of tv of t is the identity on the

subspace it is identified with. We also see that H respects the composition of functions.

This is because the action of H on morphisms is restricting functions, which respects the

composition of functoins as well. This proves that H is a functor from

M(LF(E
opp))→ CKLF(E).

Now we wish to show that the functors F and H establish an equivalence of categories.

To do this, we must show that both F ◦H and H ◦ F are naturally isomorphic to the

identity. We first show this for H ◦ F .

Let M be an object of CKLF(E). Then H ◦F (M) = H(VM , ϕM), where VM and ϕM are

defined as earlier in this proof. For a vertex v ∈ E0, we have

H(VM , ϕM)(v) = Im(ϕM(v)) = Im(χM,v ◦ πM,v), where the image is treated as its own

vector space. Recall that we defined χM,v to be the natural injection M(v)→ VM . Since

Im(πM,v) is clearly just M(v), this tells us H(VM , ϕM)(v) =M(v).

Now let e1 ∈ E1 be an edge of E. Then

H(VM , ϕM)(e) : Im(ϕM(s(e)))→ Im(ϕM(r(e)))

is the restriction of ϕM(e) to the subspace Im(ϕM(s(e))) (again with both treated as their

own vector spaces). We previously proved that Im(ϕM(s(e))) =M(s(e)) and

Im(ϕM(r(e))) =M(r(e)). Furthermore, for a given x ∈M(s(e)), we have
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ϕM(e)(x) = χM,r(e) ◦M(e) ◦ πM,s(e)(x). Since we are dealing with the restriction to

M(s(e)), this tells us ϕM(e)(x) =M(e)(x), and hence H(VM , ϕM)(e) =M(e). Since both

functors have been shown to respect multiplication of edges, we may extend this to any

path of E. This tells us that for any object M ∈ CKLF(E), we have M = H ◦ F (M). In

particular, we have shown that H ◦ F = IdCKLF(E).

Now we consider F ◦H. First we note that for a given object (V, ϕ) of M(LF(E
opp)),

F ◦H(V, ϕ) will give us a vector space and an identity respecting algebra homomorphism

from LF(E
opp)→ EndF(V ). First we note that, by direclty applying the definitions of F

and H, this vector space will be

⊕
v∈E0

H(V, ϕ)(v) =
⊕
v∈E0

Im(ϕ(v)).

Relation 6 in definition 3.0.3 tells us that this sum is a natural isomorphism.
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Considering the image of ϕ under F ◦H, we see

(χH(V,ϕ),v ◦ πH(V,ϕ),v)(xv|v ∈ E0) = ϕ(v)(xv) whenever v ∈ E0, (5.0.31)

(χH(V,ϕ),r(e) ◦H(V, ϕ)(e) ◦ πH(V,ϕ),s(e))(xv|v ∈ E0) = ϕ(e)(xv) whenever e ∈ E1, and

(5.0.32)

(χH(V,ϕ),s(e) ◦ π′H(V,ϕ),e ◦ πH(V,ϕ),r(e))(xv|v ∈ E0) = ϕ(e∗)(xv) whenever e∗ ∈ (E1)∗.

(5.0.33)

This tells us that F ◦H is the identity. Thus we have demonstrated an equivalence of

categories, as is desired.

36



REFERENCES

[1] Gene Abrams, Pere Ara, and Mercedes Siles Molina. Leavitt path algebras, volume 2191

of Lecture Notes in Mathematics. Springer, London, 2017.

[2] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons, Inc.,

Hoboken, NJ, third edition, 2004.

[3] Ayten Koç and Murad Özaydın. Representations of Leavitt path algebras. J. Pure

Appl. Algebra, 224(3):1297–1319, 2020.

[4] Saunders MacLane. Categories for the working mathematician. Graduate Texts in

Mathematics, Vol. 5. Springer-Verlag, New York-Berlin, 1971.

37



BIOGRAPHY OF THE AUTHOR

Davis MacDonald was born in South Portland Maine. He graduated high school in 

Windham Maine. He graduated from the University of Maine with a Bachelors of Arts in 

Mathematics in 2020. He is a candidate for the masters degree in mathematics from The 

University of Maine in May 2022. Davis Clark MacDonald is a candidate for the Master of 

Arts degree in Mathematics from the University of Maine in May 2022.

38


	The Category of Modules Over a Leavitt Path Algebra
	Recommended Citation

	tmp.1655318048.pdf.diQ_Q

