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ROAD SALT USE ANALYSIS IN THE CONTEXT OF CHANGING

WINTER WEATHER CONDITIONS

By Dikshya Parajuli

Thesis Advisor: Dr. Shaleen Jain

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Civil Engineering)

May 2022

The research is inspired by the past and current patterns of road salt use, changing

weather patterns, and management strategies in Maine. The historical road salt

application has led to long-term impacts on the environment pressing the need for strategic

use of road salt. Winter Severity Indices (WSIs) find their application in the field by aiding

in interpreting weather forecasts and planning for strategic salt application. This study

uses existing indices: Accumulated Winter Season Severity Index (AWSSI), Strategic

Highway Research Program (SHRP) index, Illinois Salt days index, and Accumulated

Freezing Degree Days to quantify long-term changes in winter weather conditions.

Statistical models based on Principal Component Analysis, Quantile, and quasi-Poisson

regression provide estimates of trends, interdependence between weather variables and salt

use, derivation of weather indices model with high salience towards the use of road salt.

Results show the existing index and changing baselines linked to salt application practice

explain most of the variability (R2 greater than 80%) in salt usage from 1991 to 2020. The

leading components of WSIs parse Maine’s weather variability into short-term and

long-term patterns showing increasing severity, in general, along coastal regions.

The research also investigates the prevalence of rising chlorides in groundwater in

Maine. The impact assessment is based on the water quality data set analysis to get



estimates of the local risk of well contamination due to chlorides. Qualitative analysis of

chlorides in well and appropriate co-variates representing the proximate environment are

also presented. We find general patterns of increasing chlorides with decreasing distance to

high-priority roads. In addition, the local risk of wells for chloride contamination and

arsenic mobilization provide substantial grounds for further study. The results from this

study will help state and local road maintenance agencies understand the regional disparity

in winter severity and implement informed road salt application decisions in potential

contamination zones.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

During winter, in regions with a cold climate, snow, and ice accumulated along the road

surface adversely affect traffic safety and mobility. In particular, the snow and ice make

roads slippery and reduce pavement friction, causing slower speeds, reduced roadway

capacity, and increasing crash risk. Road maintenance authorities employ deicing and

anti-icing practices to prevent ice formation and accumulation on road surfaces. These

practices involve applying solid or liquid salt on the roads before, during, or after a storm

to prevent or break the ice bond, improve traction, and promote melting. The resulting

mix is easier to plow and clear the roads of snow and ice.

Approximately 35 million metric tons of salt are applied to roads for wintertime

maintenance worldwide [49]. This rate continues to rise due to the expansion of the

maintained wintertime road miles, higher public demand for safer driving conditions, and

increased precipitation in cold regions due to climate change [49]. In 2020, highway deicing

accounted for about 43 percent of all salt consumed in the United States [44]. The winter

road maintenance alone accounts for about 20 percent of state Department of

Transportation (DOT) maintenance budgets.

The Maine DOT used 155,568 tons of rock salt for snow and ice control activities in the

winter of 2019-2020 [10]. This material cost amounts to $10.7 million of the state budget.

without accounting for more than three thousand gallons of salt brine used during the road

pre-treatment. Furthermore, these figures represent road salt use from Maine DOT only

and exclude the material used by other agencies, such as Maine Turnpike Authority,

Municipalities, Counties, and private sectors. Although proven to improve traffic mobility,

the historical road salt application can leave long-term impacts on the environment.
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In the following sections of this chapter, we discuss some recognized effects of road salt

use. Important winter severity indices used to relate to climate and winter road

maintenance are reviewed, along with a discussion of previous work. Related wintertime

severe weather conditions and meteorological variables are presented. Finally, the

objectives and contributions of this work will be presented.

1.2 Impacts of Winter Road Salt use

Extreme winter weather conditions Increased snow and ice 
accumulation on roads

Reduced traffic safety and 
mobility

Demand for increased winter 
road maintenance activities

Increased winter road salt 
use

High chloride concentrations 
in soil, surface and 
subsurface water Elevated chloride concentrations 

in streams during subsequent 
wet periods

Well contamination

Increased winter road 
maintenance cost

Increased cost associated 
with contamination 

compensation 

Long term elevated Chloride 
levels in streams during dry 

seasons

Effect on public health

Disruptive impacts on 
aquatic ecosystem

Accumulation of chlorides in 
groundwater sources

Changing level of service for 
winter roads

Impact on roadside 
vegetation

Deleterious impacts on 
infrastructures: roads and 

bridges

Figure 1.1: Flow chart showing cause and effect relation between extreme winter weather
conditions, winter road salt use, and its impacts.

The road salt, which most commonly is sodium chloride, is 40% sodium and 60%

chloride with up to 5% of trace elements or possible contaminants [46]. The chloride ions

move with water seeping through soil, joining streams, and accumulating in groundwater

systems. They are gradually discharged into streams over the years as base flows affecting

the streams, especially in dry seasons, even after the period of salt application. Maine

Department of Environmental Protection (MDEP) reports alarmingly high levels of

chloride concentrations for aquatic life in most of the Maine streams, with the chloride
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levels exceeding the acute criterion during the wet months and chronic criterion during the

drier months [37].

Maine’s private and public water supply is heavily sourced from groundwater. It

contributes to around 40% of Maine’s household private water supply and 94% of the

public water systems. Considering this heavy reliance on groundwater sources, the public

health risk from elevated sodium and chloride levels is serious. The elevated sodium levels

in drinking water are associated with health risks of high blood pressure and cardiovascular

disease. The effects of elevated chlorides are secondary such as a salty taste in water and

corroded pipes, pumping, and plumbing fixtures [6]. Additionally, in the state of Maine,

well owners whose water supply has been adversely affected by public construction,

reconstruction, or maintenance of roads (including road salt application) are redressed by

the state [1]. With increasing demands on the level of service for winter roads and no check

on salt use, these claims and associated compensation continue to rise. Maine DOT has

spent around $5.3 million on resolving well claims during 2006-2020 [11]. In addition to

water systems, the effect of winter road salt has been realized on road infrastructures,

public vehicles, and roadside vegetation. Frequent road salt use causes corrosion to

concrete, metal members, reinforcement bars, and other essential bridge components.

Likewise, the salts develop corrosion in the vehicle metal parts and deteriorate pavement

by accelerating the normal deterioration caused by freeze-thaw cycles in winter, shortening

the lifespan of asphalt. Roadside plants and trees show inhibition of general growth,

followed by specific injuries to foliage and limbs, and, at times, plant death in response to

increased salt concentration in soil [25].

The flow chart, shown in Figure 1.1, summarizes the cause and effect relation between

winter weather conditions, winter road salt use, and impacts on roadside soil, vegetation,

infrastructures, and water systems.
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1.3 Winter Severity Indices

Wintertime road conditions comprise a complex array of weather phenomena, ranging

from icing, frost, frozen rain, and black ice, to name a few. Thus, the amount and timing of

applied road salt are closely linked to winter weather severity. As such, numerous Weather

Severity Indices (WSI)s have been developed with a view to (a) anticipate salt usage, (b)

interpret weather forecasts within the context of potentially hazardous conditions on roads,

and (c) plan and schedule salt application on roads.

This section includes a detailed description of the severity indices established to aid

efficient ice and snow control activities in several countries and states with cold climates.

The indices are introduced in detail, along with the type of variables included, and weather

triggers accounted for.

1. Maine DOT index (Not currently in use) [30]

The Maine Department of Transportation (Maine DOT) developed a point-based

WSI in 2009 using daily historical weather information from 1980 to 2006. The index

assigns various values to weather conditions: daily values of minimum and maximum

temperatures and derived parameters: daily snowfall and precipitation values,

including freezing rain. The first derived parameter is freezing rain equivalent,

defined by:

Freezing Rain Equivalent =
30

30 +DeltaT 2
+ [Daily Precipitation Total−

Daily Snowfall (10 : 1 ratio) Equivalent Precipitation]

(1.1)

where DeltaT is the maximum temperature less thirty (Tmax – 30).

This parameter considers freezing rain events by converting freezing rain into an

equivalent snowfall amount throughout a winter season.
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The second parameter is modified snowfall, and the definition is as follows:

Modified Daily Snowfall =[Estimated Daily Snowfall (ratio)

−Measured Daily Snowfall] ∗ 1.25

+Measured Daily Snowfall

To calculate the second parameter, first, estimated values of daily snowfall are

obtained by using daily values of precipitation with predetermined snow to liquid

ratios. The remainder of the precipitation is assumed to be freezing rain and added

to modified rainfall using a factor of 1.25 for accounting for increased maintenance

costs. The points are seasonally accumulated and then adjusted based on their

statistical properties. The lowest seasonal point (zero) corresponds to the Zero WSI

point, and the highest value corresponds to the WSI point of near 100.

The developed WSI is a good indicator of winter severity for the study period 2005 to

2008 across all five DOT regions. However, discrepancies appeared when relating to

the maintenance cost. Maine later did not adopt the index due to the requirement for

a significant expansion in data collection efforts [20].

2. Winter Severity Index from Strategic Highway Research Program (SHRP) [4]

A study conducted by Strategic Highway Research Program (SHRP) in 1993

developed a severity index to help highway agencies efficiently allocate winter

maintenance resources and ensure adequate safety. The SHRP index computes

parameters for temperature, snowfall, and the likelihood of frost based on daily

weather records and provides a seasonal value varying from -50 to + 50, where -50

implies severe winter with maximum ice and snow control and +50 implies warm

winter with no need of snow and ice control. Weather data are summed from daily

records from National Weather Service and then averaged for each month from

November 1 to March 31 to eliminate the influence of the month length.
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The index is computed using the equation:

WISHRP = −25.58
√

Tindex − 35.68 ln(
Sdaily

10
+ 1)− 99.5

√
dfreez1

Trange1 + 1
+ 50 (1.2)

where

tseasonindex = Average tdayindex over season, (0 ≤ tseasonindex ≤ 1),

tdayindex = 0, ifminimum daily temperature (Tmin) is above 32◦F

= 2, if daily maximum temperature (Tmax) ≤ 32◦F,

Sdaily = Mean daily values of snowfall (millimeters),

dfreeze1 = Mean daily values of no. of days with Tmin ≤ 32◦F,

Trange1 = Mean monthly Tmax minus the Mean monthly Tmin(
◦C)

Since Trange1 was determined to have a similar but inverse distribution to relative

humidity, the term
√

dfreez1
Trange1+1

reflects the likelihood of frost [41]. The weights for

specific terms with temperature, snowfall, and the likelihood of frost in the equation

are assigned according to their significance to the maintenance costs. Since its

development, the SHRP index has been actively used in transportation agencies for

more than two decades [13]. The index is now actively used by Kansas and New

Hampshire state DOTs for winter maintenance operations [13, 33, 12].

A comparison of the index values with winter maintenance cost data from 40 states

showed a strong log-linear relationship exists between cost and index. However, the

index does not address regional characteristics that influence maintenance activities

since it was developed in general to be used in all states. To address this issue, some

transportation agencies outside the US have modified the index to better represent

the local winter conditions. An example is a work by the Ontario Ministry of

Transportation, which modified SHRP by substituting freezing rain for the likelihood

of frost [31].
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3. Illinois DOT index : Salt days [8]

The Illinois DOT index was developed by Illinois State Water Survey as a

user-oriented climatic variable indicating the number of days when road salt is

required. It is computed as the number of days requiring snow and ice work by

summing the cold days and snow days. The formula for index computation is:

WIIllinois = Dsnow +Dcold (1.3)

where Dsnow is the number of days with snowfall accumulation greater than or equal

to 0.5 inches (1.3 cm) and Dcold is the number of days with daily mean temperature

between 15◦ F and 30◦ F (9◦ to −1◦ C). The index was also incorporated into a study

explaining the temporal and spatial variability of salt use on highways in the

Province of Ontario, Canada [3].

4. Accumulated Winter Season Severity Index (AWSSI) [32]

AWSSI was developed in 2015 for application in general sectors, including

transportation. It is a point-based index that computes winter seasonal severity by

accumulating points for daily values of minimum, maximum temperatures, and

snowfall amounts and depths. Unlike other indices, which often compute seasonal

severity based on fixed calendar months, AWSSI accumulates daily severity from an

evaluated onset day through an evaluated cessation day of the winter season. The

winter onset day is defined as the day when any one of the three criteria is met: 1)

daily maximum temperature ≤ 32◦F (0◦C), 2) daily snowfall ≥ 0.1in. (0.25 cm), or

3) it is December 1. The cessation day is when the last of the four conditions are

met: 1) daily maximum temperature ≤ 32◦F (0◦C) no longer occurs, 2) daily

snowfall ≥ 0.1 in. (0.25 cm) no longer occurs, 3) daily snow depth ≥ 1.0 in. (2.5 cm)

is no longer observed, or 4) it is March 1. This allows the index to add points for the

impacts of any offset or long winter season and accurately estimate seasonal severity.
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Once the accumulation period in winter is defined, daily points of AWSSI are

computed based on thresholds of maximum and minimum temperature, snowfall, and

snow depth shown in Figure 1.2. The point thresholds were designed to give greater

weight to rare or extreme occurrences with trace snowfall and depths treated as zero,

not accumulating severity points. The following expressions highlight the point

accumulation process:

AWSSI =
∑

[Daily Temp Scores+Daily Snow scores] (1.4)

where,

Daily Temp score = Min Temperature Score+Max Temperature Score, and

Daily Snow score = Snowfall score+ Snow depth score

Reprinted from "Barbara E Mayes Boustead, Steven D Hilberg,
Martha D Shulski, and Kenneth G Hubbard. The accumulated winter
season severity index (awssi). Journal of Applied Meteorology and
Climatology, 54(8):1693–1712, 2015."

Figure 1.2: Points accumulated in daily AWSSI totals, based on thresholds of daily
temperature, snowfall, and snow depth data.
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The AWSSI index is new in the field of transportation, and its implementation for

maintenance activities or material use is not tested yet. A noteworthy limitation in

the index is it does not explicitly include freezing rain events, which are reported as

liquid precipitation or mixed precipitation events, not snow events.

5. WSI for provincial highway system in Ontario, Canada [31]

In 2016, a study was conducted to develop a winter severity index for highway

systems in Ontario, Canada. The index is a province-wide and simple-to-use winter

severity index that effectively explains temporal and spatial variations in winter road

maintenance activities. Based on the previous studies and data availability, six

weather conditions were selected for inclusion in the index:1) Snowfall, 2) Road

Weather Information System Pavement Warnings, 3) Rain with low temperatures, 4)

Blowing snow, 5) Series of cold days, and 6) Warm weather adjustment factor. The

first five conditions represent weather conditions that trigger the maintenance

activity. The sixth variable is a warm-weather adjustment factor that represents the

times of the year when the average mean temperature remains above freezing for an

extended period and reduces daily weather severity.

Rather than combining these conditions into a single equation, the authors designed

the index such that each day during the study period is characterized as a single

weather condition out of the six conditions and is provided the associated

weather-severity score. The hierarchy of day’s weather triggers is the same as the

numerical order of the weather conditions listed. Accordingly, the daily weather

scores were accumulated for a 14-day period that aligned with the reporting period of

maintenance activities across all maintenance regions in Ontario. Thresholds and

scores for each weather trigger were calculated using an optimization algorithm. The

developed index was found to have a good fit with the maintenance activity across all

maintenance regions in Ontario.
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6. Weather index in Denmark [26, 41]

The Danish severity index, developed by Knudsen in 1994, uses meteorological data

continuously available from a large network of road weather stations covering 13 out

of 14 Danish counties. The frequency of daily instances of freezing road surface

temperature, frost conditions, thaw and freeze cycles, snowfall, and snowdrifts are

included in the index equations. The index is equation is:

WIDane =

Apr15∑
Oct15

WIDaneDay (1.5)

where

WIDaneDay =xfreeze(1 + xfrost + xrefreeze + xsnow + xdrift)

xfreeze =1, if the road temperature is below 0.5◦C at any moment within a 24−

hour period, otherwise 0.

xfrost =the number of times the road temperature drops below 0◦C, provided

that it is at the same time lower than the air dew point for at least

3 hours, with an interval of at least 12 hours

xrefreeze =the number of times the road temperature drops below 0◦C

(from at least 0.5◦C to ˘0.5◦C) within a 24− hour period.

xsnow =1, if a snowfall of at least 1 cm is reported within a 24− hour period,

otherwise 0.

xdrift =1, if some noteworthy snowdrift has occurred, otherwise 0.

The parameters xrefreeze, xfrost and xrefreeze are averaged over all road weather

stations within a county. With this, daily values of severity indices are calculated for

individual counties.
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7. Noriks index for Norway [29]

The Noriks index is developed to accurately represent the weather and climate

conditions in the Norwegian climate. The index equation is:

NORIKS = [Temperature rise+Temperature Fall+Precipitation+Drifting snow]

(1.6)

The elements in the equation represent the frequency of instances of different weather

conditions. Temperature rise represents the number of instances of an increase in

temperature. Such increasing temperature can occur in connection with a change

from cold and clear weather to cloudy and humid weather leading to frost formation.

Temperature fall gives information on the frequency of cases when the lowering road

surface temperature drops below freezing and leads to ice formation or frost

formation in case of decreasing air humidity. Precipitation term represents snow,

snow mixed with rain, and freezing rain. Drifting snow represents conditions when

the loose snow along the road is swept with the blowing wind. The three key elements

define a snowdrift event: 1) occurrence of snowfall, 2) air temperature remains below

freezing and no rainfall, and 3) wind speed during a 24-hr period exceeds 7 m/s.

8. GAB index for Sweden [17]

The GAB index is based on three weather parameters: snow, frost, and black ice.

The index equation is:

GAB = A ∗ snow +B ∗ frost+ C ∗ blackice (1.7)

Snow includes snow or rain events occurring below 0 ℃ are considered. Frost is the

number of occasions with risk of frost formation, for at least a 2-hr duration with a

time interval of at least 4-hr. Black ice is the number of occasions when the

temperature drops from above 0 ℃ to below 0 ℃ and the road surface remains dry.

The parameters A, B, and C take a value of either 0 or 1 depending on whether or
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not the respective criteria are satisfied. The daily GAB values can be summed up for

the entire season or a short period to accumulate the severity. The index also offers

flexibility to change the influence of the three weather parameters on maintenance

activity by treating the parameters A, B, and C as weights.

Common Weather events and variables used in context of winter road

maintenance

Winter road maintenance agencies develop the WSIs to represent winter’s severity

accurately. They incorporate parameters that pertain to characteristic weather conditions

that lead to snow and ice formation on roads. As a general rule, WSIs are designed to

reflect the relative importance of weather events and their severity on road maintenance.

Point-based indices, such as AWSSI, design the point assignments to reflect the relative

importance. Some indices use relative weights to achieve the same. SHRP assigns 35%,

35%, and 30% to temperature index, snowfall, and frost, and the weights reflect relative

importance in maintenance cost. GAB index assigns weights to reflect the influence of

snow, frost, and black ice on maintenance activity.

The inclusion of weather parameters in indices varies with the differing perceptions of

the severity and the prevalence of winter weather conditions in the target region. Table 1.1

shows the winter weather conditions included in the indices discussed.

Index Weather events included
Maine DOT [30] Snowfall, Freezing rain, Low temperature
SHRP [4] Snowfall, Low temperature, Likelihood of frost
Illinois DOT [8] Snowfall, Freeze
AWSSI [32] Snowfall, Snow depth,Low temperature

WIOntario [31] Snowfall, Freeze, Rain with low temperature,
Blowing snow, Series of cold days

WIDenmark [26] Snowfall, Freeze, Refreeze, Frost, Snow drift
NORIKS [29] Snowfall, Rain, Freeze and thaw, Snow drift
GAB [16] Snowfall, Rain, Frost, Black Ice

Table 1.1: Winter Severity Indices and weather events included.
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Snowfall is a significant critical weather event and is recognized in all the indices. Cold

temperature is also recognized, followed by freezing events and frost. Freezing rain occurs

when snowfall passes through a thick, warm layer above a thin layer of freezing air. Such

raindrops immediately freeze after contact with pavements forming a layer of ice. The

formed ice layer appears white or translucent due to the entrapped air. Both near-freezing

temperature and precipitation variables are included to identify freezing rain events. Freeze

events occur when the temperature reaches a freezing point and freezes moisture already

present on the road. Frosting results from the water vapor present in the air when the air

temperature reaches the dew point. The ice layer formed is transparent and is termed

black ice. Snowdrift represents the events when the snow is carried by blowing wind

carrying snow onto the road surface.

Weather variables Parameters included in index computation

Temperature

Minimum, maximum and mean air temperature
Road surface temperature
Dew point temperature

Precipitation

Amount of snowfall or rainfall
Duration of snow fall or rainfall
Snow depth accumulation
Frequency of days with snow or freezing rain
Frequency of days with light, medium and heavy snowfall

Wind Wind speed

Table 1.2: Weather variable and their representative parameters in WSI.

The meteorological variables and parameters common to the indices are shown in Table

1.2. Three significant meteorological variables in use are temperature, precipitation, and

wind. Temperature and precipitation are the most versatile meteorological variables in the

index computation. Temperature-based parameters like minimum, maximum, or mean air

temperature and, at times, road surface temperature are compared against freezing

temperature, 32◦ F or 0◦ C, to determine if freezing events occurred during a particular

day. Dew point temperature and minimum air temperature have been used to determine

the occurrence of frost. As for precipitation, the amount, duration, or intensity of all the
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forms are used: snowfall, rainfall, and freezing rain. The frequency of days with these

precipitation events is also included. Wind speed is used to determine visibility severity

from drifting snow.

1.4 Related work in relating indices to winter road maintenance

Numerous past studies have focused on relating winter maintenance with meteorological

data and severity indices. The objective is to evaluate degree of maintenance activity and

cost and minimize the resources and expenses. The SHRP index, developed to relate to

winter highway maintenance in the United States, showed strong relation to maintenance

cost data at 40 states from 1985/86 to 1988/89 [4]. Gustavsson (1996) compared three

different winter severity indices: the modified Hulme index [45], the COST 309 winter

index [48] and the GAB [17] index used in Sweden, in relation to winter road maintenance

but concluded that none of the indices fully explained the maintenance activity [16].

Another study used various indices based on snowfall amount and frequency of sleet

observations, black ice formation, freezing rain, and frost formations in Finland; however,

the equations developed did not perform satisfactorily in all regions [28].

With innovations in measuring real-time road surface conditions, severity indices that

require continuous road weather data are being introduced. These, however, prevent the

applicability of models to regions with only basic meteorological stations. In this setting,

Venäläinen (2001) experimented with estimating the road salting cost in Finland by using

only air temperature, which is reliably measured at most stations [47]. Linear regression

models developed using monthly air temperature provided reasonable estimates of annual

salting amounts with 60% variance explained.

The need for road salt application primarily stems from the severe winter weather

conditions. As such, any variances in patterns of the winter weather itself can bring about

variability in the patterns of road salt application. The link between changing patterns of

the wintertime severity and road salt application in recent years, brought upon by climate
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change, can help make informed salt application decisions. The WSIs can be applied in

assessing the spatio-temporal variations in winter weather. Several state DOTs apply

severity indices to compare maintenance cost geographically and temporally.

1.5 Objective of Thesis

This research aims to understand the cause and effect relation of road salt with winter

weather and associated groundwater contamination in Maine. The first objective of the

work is to study the spatial and temporal patterns in historical (1991-2020) winter weather

severity in Maine. A suite of established severity indices, AWSSI, SHRP, Illinois Salt days

index, and Accumulated Freezing Degree Days (AFDD), is calculated at 12 stations and

analyzed for this. Given that extreme weather events govern the road salt application,

weather triggers for road ice and snow accumulation are also included. The indices and

weather events are estimated using the basic daily meteorological variables, such as

snowfall, rain and ambient air temperature.

The second objective is to characterize the appropriateness of the indices, events, and

patterns on road salt application. The influence of indices and events on historical road

salt amounts is studied. The results are used to suggest a suitable model that would

adequately explain road salt use in Maine.

Finally, the third goal is to assess chlorides (Cl) levels on groundwater wells in Maine

using well-sampling tests from 2001 to 2020. Incidence of wells exceeding Cl thresholds is

used to estimate local risk to surrounding wells. The influence of hydro-geological factors

in the mobility of road salt away from roads to groundwater systems is discussed.

The organization of the remaining chapters is as follows. Weather and road salt-related

analyses are discussed in Chapter 2. The groundwater contamination assessment is

provided in Chapter 3. Chapter 4 discusses the findings of this research, the perspectives

for future research, and summarizes the major contributions and conclusions of the work.
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CHAPTER 2

ROAD SALT USE ANALYSIS IN THE CONTEXT OF CHANGING

WINTER WEATHER CONDITIONS

2.1 Introduction

An in-depth understanding of historical patterns in WSIs, with high salience towards

winter road salt use, can help better understand the historical salt use patterns. This

information is vital for working towards efficient salt application decisions and anticipating

and adapting to potential impacts on water systems. At present, Maine DOT uses the

point-based index, AWSSI [32], to compare seasonal severity with winter road

maintenance cost and materials [10]. AWSSI offers an advantage over other indices in

adjusting for longer/ shorter or offsets winter seasons by implementing sets of criteria to

estimate the winter onset and end date. The index is relatively new in traffic safety and

winter road maintenance. As such, the long-term performance of the index, especially in

the context of winter road salt, has not been explored yet.

This chapter aimed to provide insight into the appropriateness of AWSSI and three

other established indices: SHRP, Illinois Salt Days Index, and Accumulated Freezing

Degree Days (AFDD), to Maine’s climate and road salt application. The index SHRP [4]

was developed to reduce winter maintenance costs on U.S. highways in general. Similarly,

the Salt Days index [8], developed for Illinois DOT, was built to relate to winter road salt

application in specific. AFDD measures how long and cold it has been. Additionally, given

that much of the salt use is carried out on an event-by-event basis; the count of weather

situations is a critically important measure of the severity. Hence, the weather events and

their influence on road salt will be discussed.

In addition to winter weather, the variability in road salt use is induced by non-weather

factors such as changing road salt practices, increasing winter road maintained miles and
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increasing the level of service for winter road maintenance. Thus models for road salts

based solely on weather indices are incomplete. To overcome this, we present a method of

combined models that linearly combines estimates from individual WSI models to improve

accuracy.

The historical severity data at multiple stations presents challenges for analysis due to

the high dimensions and inherent multi-collinear severity values. The method of Principal

Component Analysis (PCA) can be used with high dimensional data to aid in data

visualisation and subsequent data analysis. It re-expresses multivariate data into new sets

of uncorrelated features that preserve most of the available information in the first few

features and can be used in regression analysis. The results from PCA can also be analyzed

to study the spatial and temporal patterns in the original variables.

Likewise, the information on trends of the weather indices and various weather

conditions across the state help authorities anticipate salt use decisions. The trend analysis

is performed using Quantile Regression (QR) and quasi-Poisson Regression approach.

These approaches are discussed in detail later in the chapter. To summarize, the main

contributions of this chapter are:

• Characterizing principal patterns of space-time variability in winter severity and their

relationship with road salt use,

• Combined WSI model to forecast road salt use for improved accuracy

• Investigating quantile specific trends to study and identify any diverse trends across

the distribution of indices,

• Understanding the trends in the frequency of winter weather conditions prevalent in

Maine
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In regions with more than one meteorological station, smaller areas
were delineated using Thiessen polygons.

Figure 2.1: Study station located across Maine DOT maintenance regions.

2.2 Study Area and Data

The data used for this study consists of salt and climate data from 1991 to 2020.

Seasonal salt use data are obtained from Maine DOT [10] and reflected only Maine DOT’s

share of winter material use. Climate data consists of daily meteorological data recorded at

GHCN (Global Historical Climate Network) stations across Maine [34]. The data are

accessed from the cli-MATE online data portal [7]. The meteorological data are collected

at 12 weather stations in Maine: 1) Sanford, 2) Portland, 3) Farmington, 4) Gardiner, 5)

New Castle, 6) Jackman, 7) Dover-Foxcroft, 8) Belfast, 9) West-Rockport, 10) Bangor, 11)

Caribou and 12) Grand Lake Stream.

Additionally, daily mean temperature, minimum dew point temperature, and

precipitation values for the stations are obtained from PRISM Climate Data [38]. These

additional data contribute to the estimation of frost events. Locations of the study stations
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across Maine DOT maintenance regions are shown in Figure 2.1. We divide the DOT

maintenance regions into smaller sub-regions by constructing Thiessen polygons around the

weather stations. The regional severity is computed using weather data at the station.

Selected Weather Triggers for Road Salt Application in Maine

Ice formations on road surfaces result from freezing temperatures and moisture (water)

availability on the surface. Although road ice formation during snowfall and rain is typical,

moisture from the groundwater seepage and snow that had initially melted on the warm

road surface also form ice if the temperature lowers below freezing. In this study, four

events leading to road ice formations are used to study their influence on road salt use in

Maine.

• Freezing rain days

When falling rain passes through a below-freezing air layer near the road surface, it

freezes into clear glaze ice as soon as it hits the road. Parameters corresponding to

freezing rain are included in several state DOTs indices, including past indices

developed for Maine DOT. In this study, freezing rain days correspond to the days

that receive rainfall and have daily mean air temperatures near freezing

(25◦F − 32◦F ).

• Frost days without precipitation

To account for the events when the moisture from roadside snow or groundwater

seepage leads to road ice formations, we consider frost day events without

precipitation. These are computed as the days when the minimum air temperature

and mean dew point temperature are below freezing temperature 32◦F .

• Snow days below and above freezing temperatures

Snow events are split into two sub-events to investigate the influence of snow days

during freezing and non-freezing conditions separately.
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2.2.1 Calculation of Severity Indices

Seasonal values of all winter severity indices and events, shown in Table 2.2, are

calculated at 12 stations for each winter from 1991 to 2020. AWSSI, SHRP, and Salt days

are calculated using the computation methods described in the literature review. The

formula is presented in Table 2.1. The AWSSI index computation is based on estimated

winter onset and cessation day for each seasons during the study period. The criteria for

start and end period along with obtained seasonal length are presented in Appendix A.1.

Accumulated Freezing degree days are calculated as a sum of average daily Fahrenheit

degrees below freezing for the winter season. Daily accumulated snowfall below 4 inches is

classified as light snowfall, snowfall between 4 and 12 inches as moderate snowfall, and that

above 12 inches is considered heavy snowfall in this study.

This study defines freezing rain days as days with more than trace rainfall and average

air temperature between 25◦F to 32◦F . Frost days without precipitation are described as

days with zero precipitation(snow and rain) and minimum air temperature below the mean

dew point temperature. Snow days during freezing and non-freezing temperatures are

calculated as days with snow during and or above the freezing range (25◦F to 32◦F ).

Table 2.2 shows the meteorological variables used in the computation for indices and

metrics.
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Indices Computation Formula

AWSSI AWSSI =
∑

[Daily Temp Scores+Daily Snow scores], where

[32] Daily Temp score = Tmin score+ Tmax score
Daily Snow score = Snowfall score+ Snow depth score

WISHRP WISHRP = −25.58
√
Tindex − 35.68ln(

Sdaily

10
+ 1)− 99.5

√
dfreez1

Trange1+1
+ 50, where

[4] tseasonindex = Average tdayindex over season, (0 <= tseasonindex <= 1)
tdayindex = 0, Tmin is above 32oF ; 1, if Tmax > 32oF while Tmin <= 32oF ;
2, if Tmax <= 32oF
Sdaily = Mean daily values of snowfall (millimeters)
dfreeze1 = Mean daily values of no. of days with Tmin <= 32oF
Trange1 = Mean monthly Tmaxminus the Mean monthly Tmin(

oC)

Illinois Salt days Index Salt days = Dsnow +Dcold, where

[8] Dsnow = Number of days with snowfall > 0.5inches
Dcold = Number of days with Tmeanbetween (15− 30)oF

Table 2.1: Computation formula for indices AWSSI, SHRP Index and Illinois Salt days index.
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Indices Items Precipitation Air Temperature
Rainfall Snowfall Snowdepth Minimum Maximum Mean Dew point

AWSSI - x x x x - -
Winter Severity

Indices
SHRP - x - x x - -

Illinois Salt day Index - x - - - x -
AFDD - - - - - x -

Freezing rain days x - - - - x -

Weather
triggers

Snow days with
freezing temperature - x - - - x -

Snow days with non-
-freezing temperature - x - - - x -

Frost days - - - x - - x

Snow days

Light snow
(less than 4 in.) - x - - - - -

Moderate snow
(between 4 and 12 in.) - x - - - - -

Heavy snow
(greater than 12 in.) - x - - - - -

Table 2.2: Study indices and metrics with the meteorological variables included in the computation.
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2.3 Methods

2.3.1 Principal Component Analysis (PCA) of indices

The method of PCA has two essential applications. First, it can identify, through a

reduction of data, the recurring and independent modes of variation within an extensive,

noisy data set, thereby summarizing the essential information of the data set so that the

meaningful and descriptive conclusions can be made [19]. Second, the analysis sorts the

initially correlated data into new variables, designated as Principal Components (PCs),

which are linear combinations of the original variables. The linear transformation is

performed so that the most significant variance in the initial data is found on the first

principal component, and each subsequent component is orthogonal to the last and has a

lesser variance. In this way, the PCs obtained are uncorrelated and ordered so that the first

few components retain most of the variation present in all of the original variables. PCA is

adopted in this study since it helped reduce the winter severity indices available at 12

study stations to a few uncorrelated variables that still represent the original severity

variation in the data.

Below is a brief description of the computation involved in PCA:

With the data matrix for an index, i, with a dimension of 12 variables (stations) and 30

samples (years), the data are first centered on the means of each variable. The first

principal component (Y1) is defined by the linear combination of the initial variables X1,

X2, . . . ,X12 as

Y1 = a1 1X1 + a1 2X2 + .....+ a1 12X12 (2.1)

The first principal component is calculated to account for the greatest possible variance

in the data set. This is obtained by choosing large values for weights a1 1, a1 2, ....a1 12 with

the constraint that their sum of squares is 1.

a21 1 + a21 2 + ......+ a21 12 = 1 (2.2)
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The second principal component is calculated in the same way, with the condition that it is

uncorrelated with (i.e., perpendicular to) the first principal component and accounts for

the next highest variance.

Y2 = a2 1X1 + a2 2X2 + .....+ a2 12X12 (2.3)

This continues until 12 principal components have been calculated, equal to the original

number of variables. The sum of variances in all principal components will equal the sum

of the variances of all of the variables. That is, all of the original information has been

explained or accounted for. It is essential to note that the new variables, or principal

components, are mathematical and do not necessarily have to have physical relevance.

Using Horn’s Parallel Analysis criterion [22], the number of components to be retained

to capture maximum variance in the selected indices is either only one or two. Thus, the

first two components, which represent the severity at 12 stations, are retained for each

index. The PCA results are then employed in subsequent analyses as discussed below.

2.3.2 Spatial and temporal patterns in winter severity in Maine

The PCA solution of an index comprises two results: 1) new uncorrelated principal

components for the historical period, and 2) rotated principal component loading scores

from the original variables. The loading scores, representing the weight from original

variables, highlight varying contributions from multiple stations towards combined severity.

The scores provide information on spatial patterns of severity existent between the

stations. The time series of the first two retained PCs help understand the temporal trend

in weather variability.

2.3.3 Winter Severity Indices and Road Salt Use

Multiple Regression models are fit for natural log-transformed salt use data using the

retained principal components of the individual WSIs as the explanatory variables. An

upward temporal trend component’ Year’ is also added to account for changing baselines
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linked to deicing practices and level of service in winter road maintenance over the years.

The equations for the regression model are:

Model 1 : log(Salt) = β01 + β11AWSSI PC1 + β21AWSSI PC2 + β31Y ear

Model 2 : log(Salt) = β02 + β12SHRP PC1 + β22SHRP PC2 + β32Y ear

Model 3 : log(Salt) = β03 + β13Illinois Salt days index PC1 + β23Illinois Salt days

index PC2 + β33Y ear

Model 4 : log(Salt) = β04 + β14AFDD PC1 + β24AFDD PC2 + β34Y ear

The model performance, coefficient and significance of predictors are studied to

understand relation between weather, non-weather factors and road salt use.

2.3.4 Influence of selected weather events

To measure the influence of the selected weather triggers, we fit log-transformed linear

regression models for road salt with the retained PCs of the weather events without any

component for non-weather factors. The general regression equation fitted for the seasonal

frequency of a weather event, i, is:

log(Salt) = β0i + β1i ∗Weather event PC1 + β2i ∗Weather event PC2

2.3.5 Linearly combined WSI models

Several non-weather factors, such as changing maintenance practices over the years, can

bring variability in road salt use. Due to the challenges in quantifying the non-weather

factors, road salt models based solely on weather severity are often of interest. The

individual WSI models perform differently due to varying winter weather conditions

considered in the index. As an alternative, several incomplete WSI-based models can be

combined linearly to improve accuracy. The constrained least-squares regression

combination method [2, 14, 36] facilitates a linear weighted combination of individual
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models, with the weight adding up to unity. This combination weighs in the accuracy over

explainability of models. The weights represent the relative contribution from individual

models.

The development structure of AWSSI is such that it assigns severity points based on

the minimum and maximum temperatures and snow depths. However, it does not address

the severity of freezing rain and frost days. Accordingly, we select the leading components

from the index AWSSI and weather events, freezing rain days and frost days without

precipitation, and build three regression models. Three combinations of the individual

models are developed and tested using a randomly split train and test data set, using the

train-test split ratio of 2:1. The final combined model is selected using the Root Mean

Square Error (RMSE) criterion.

2.3.6 Nature of changing winter weather severity

For trend analysis, we consider seasonally accumulated snowfall amounts and seasonal

events of light, moderate, and heavy snow days and indices adopted in earlier analyses.

Given the continuous and discrete types of variables, two regression approaches are

adopted.

2.3.6.1 Method of Quantile regression analysis

Quantile Regression (QR) is adopted to study the long–term trends in continuous

weather indices across different severity levels. Developed by Koenker and Bassett in

1978 [27], QR estimates the functional relationship between predictor variables and any

user-selected quantile in the response distribution. A traditional linear regression, suited to

estimate the conditional mean, has its assumptions rooted in constant variance and thus

fails to acknowledge any variability across the distribution of the response variable. The

linear regression assesses the symmetric changes in response variables assuming trends

observed in the mean are equivalent to trends across the distribution. On the other hand,

quantile regression provides estimates of any conditional quantile of a response variable
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without any restrictions on the distributional variance. It allows for appraising and

identifying any conflicting trends in the median, and lower and upper quantiles that signify

the extremes of the distribution. QR proves advantageous over conventional regression in

this study because it can detect trends in statistical extremes as maintenance measures

often need to be considered at different severity levels. For example, since the degree of

winter severity goes hand in hand with the degree of maintenance activity carried out, any

refined information on trends in the distribution of weather extremities is particularly

useful in allocating and optimizing maintenance resources.

Quantile regression at 0.1, 0.2, 0.3, 0.4, 0.5 (median), 0.6, 0.7, 0.8 and 0.9 are performed

using a temporal trend component ’ Year ’ as the predictor variable. The QR is carried out

for individual indices at each of the 12 weather stations. The general form of the fitted

model at any quantile, τ , at a station, S, is:

WSIS = βS
0τ + βS

1τ ∗ Y ear

2.3.6.2 Method of Poisson Regression analysis

Count indices that represent the frequency of weather events are studied for long-term

patterns using Poisson regression models. The method of Poisson regression is a

generalized linear model where the log conditional expected response given the covariates

can be expressed as a linear combination of the covariates and a noise term, that is,

logE(Y |X) = β0 +
n∑

k=1

βkxk + e

,

where Y is the response variable, X1, X2, . . . , Xn are the covariates and e is the noise

term. The response is a variable of count data and is assumed to be Poisson distributed.

The Poisson model is based on assumption that the mean and variance of the the response

variable are equal. The equidispersion in the data were checked by using the dispersion

parameter (values shown in Appendix B).
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Based on the values of dispersion parameters (see Appendix A.5), the weather count

data are found to be either under or over-dispersed. A quasi-Poisson regression, a special

case of Poisson regression, is adopted due to the unequal mean and variance in the indices.

Multiple models of quasi-Poisson regression are performed with count indices as the

response variable and time(year) as the explanatory variable. A positive coefficient

estimate for the predictor variable ’year’ implies increasing counts of weather events

variable with time and vice versa.

Negative Binomial is another popular method for modeling over-dispersed data. While

quasi-Poisson models assume a linear relationship between mean and variance of the

response variable, negative binomial models the relation as quadratic. The coefficients

obtained from quasi-Poisson are compared with those from negative binomial (see

Appendix A.6) as a cross-check.

2.4 Results and Discussion

2.4.1 PCA and spatio-temporal variability in weather severity

Indices/Weather events % Var PC1 %Var PC2 %Var Total
AWSSI 70.10 10.10 80.20
SHRP 68.30 11.70 80.00

Illinois: Salt days 65.10 14.20 79.30
AFDD 61.20 13.30 74.50

Freezing rain days 46.00 13.50 59.50
Freezing snow days 43.10 12.80 55.90

Snow days above freezing temp 57.50 10.40 67.90
Frost days without precipitation 74.50 6.50 81.00

Table 2.3: Percentage variances explained by retained first two components

Table 2.3 shows the percentage of variances explained by the retained principal

components. The leading two components for AWSSI, SHRP, and Salt days cumulatively

explain almost 80% of variation in original data. The variance is slightly less (75%) for

AFDD. The cut-off of cumulative 70% variation is common to retain in the PCs for

analysis. Thus PCA solution obtained for the indices is a good representative of the
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original index data. Consequently, we use the PCA solution of WSIs to examine spatial

and temporal patterns in weather severity. The cumulative variances are much lower (less

than 70%) for three of four seasonal event counts. The lower variance implies that the

components capture less information from the data.

The spatial and temporal mapping of the two leading components of severity indices

highlight patterns of long-term changes and year-to-year variability in the winter weather

from 1991 to 2020. Figure 2.2 presents the spatial mapping of the loading scores, both

within and across the DOT maintenance regions, and time series plots of PCs for four

WSIs. In all four indices, the time series of the leading component, PC1, shows oscillations

every 2-3 years. The PC1 loadings from all 12 weather stations are positive and almost

equal, suggesting all weather stations exhibit similar short-term variability in winter

severity.

For the second component, PC2, the loadings from weather stations are unequal and

opposite in signs. Three stations near the coast (Grand Lake Stream, Bangor, Newcastle)

and one station in the mid-east (Farmington) show consistent negative loadings for all four

indices. In addition, the time series of PC2 for AWSSI and SHRP exhibits distinct

long-term trends with mostly higher values in the latter half of the analysis period. The

PC2 values at the four stations seem to be decreasing, implying dissimilar weather

variability and road salt burden compared to the rest stations. The exact nature of

dissimilarity (increase- decrease or vice versa) between the severity at stations can be

interpreted using the relations established between salt use and the components, which is

explored in the section 2.4.2.
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 Legend 

Blue and red diamond shapes represent positive and negative loadings.
The size of the diamonds represent the magnitude of loadings.

Figure 2.2: Spatio-temporal patterns in Index PCs during 1991-2020.
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Figure 2.3: Correlogram for WSI PCs. Proportion of correlation is indicated by individual
pie.

Figure 2.3 plots the correlation between the two leading components of all the indices

and weather events. The PCs of AWSSI show a strong correlation with SHRP PCs (more

than 75% among both PC1s and PC2s). Even though freezing rain events are not

incorporated in AWSSI by design, the PCs of AWSSI and Freezing rain days show a fair

correlation. The weakest correlation of AWSSI PCs is observed with those of Frost days

without precipitation.
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2.4.2 Road salt use, weather and non weather factors

The results from the linear regression of log-transformed road salt use are shown in

Table 2.4. All four models explain at least 80% of statewide road salt use variation from

1991 to 2020. These models have both Index PCs and a temporal trend as the predictors.

The trend represents changing baselines linked to deicing practices and level of service.

Both the first PC and trend component significantly explain salt use variations across all

models. The model based on PCs from AWSSI explains the most salt use variation of

84.5%. Both PCs and long-term trend are significant (p-value<0.01) for estimating salt use.

The coefficients from regression suggest that every year from 1991 to 2020, there is an

almost 3% increase in road salt use if weather severity is constant. Similarly, a unit

increase in PC1 results in a 2.6% increase, and that in PC2 results in a 7.5% decrease in

salt use if other predictors are held constant.

Interestingly, the second principal component has a negative coefficient in the model,

suggesting salt use increases with a decrease in PC2. When we look back at the

spatio-temporal patterns in PCs in Figure 2.2, the four stations (New Castle, Farmington,

Bangor and Grand Lake Stream), with negative loading on PC2 show increasing severity

and high salt burden compared to rest stations in the latter years.

The four weather event triggers show varying degrees of relationship with salt use (see

Table 2.5). The frequency of frost days without precipitation explains only 11.2% salt use

variation. Higher variances (around 58%) are accounted for through snow days both below

and above freezing temperatures. The relative differences in the strength of the

relationship also highlight that the weather triggers, when taken together, represent the

broader array of winter weather situations that require snow and ice control operations.

32



Model pc predictors % Var PC1 %Var PC2 Regression Analysis 1991-2020
PC1 coeff. PC2 coeff. Year coeff. R-squared %

AWSSI 70.10 10.10 0.026** -0.072** 0.032*** 84.50
SHRP 68.30 11.70 0.034** -0.014 0.027*** 82.10

Illinois: Salt days 65.10 14.20 0.033** -0.016 0.026*** 81.10
AFDD 61.20 13.30 0.030** -0.032 0.030*** 80.90

Table 2.4: PCA Regression results for log-transformed statewide road salt based on index pcs. Note: p < 0.001 (***); 0.001 <
p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Model pc predictors % Var PC1 %Var PC2 Regression Analysis 1991-2020
PC1 coeff. PC2 coeff. R-squared %

Freezing rain days 46.00 13.50 0.058** 0.111** 42.5
Freezing snow days 43.10 12.80 0.081*** 0.109** 57.0

Snow days above freezing temp 57.50 10.40 0.068*** -0.132*** 58.9
Frost days without ppt 74.50 6.50 0.032+ -0.034 11.2

Table 2.5: PCA Regression results for log-transformed statewide road salt based on weather events pcs. The significance of
coefficients are as noted in Table 2.4
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Residuals

The residual plot (Figure 2.4) highlights random nature of the WSI model residuals.

The random patterns suggest that the linear models appropriately fit the data.
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(b) Model2 (SHRP PCs):R2 82.1%
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(c) Model3 (Illinois Index PCs):R2 81.1%
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(d) Model4 (AFDD PCs):R2 80.9%

Each model also has a temporal component as predictor.

Figure 2.4: Road salt regression model residuals using PCs from four indices.
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2.4.3 Combined WSI model

Models Description
AWSSI log(Salt) ∼ AWSSI PC1 + AWSSI PC2
Freezing rain log(Salt) ∼ Freezingrain PC1 + Freezingrain PC2
Frost days log(Salt) ∼ Frostdays PC1 + Frostdays PC2

Table 2.6: Original regression model descriptions

Models RMSE Weights for
AWSSI Freezing Rain Frost days

Original
AWSSI 0.292 1 - -
Freezing rain 0.259 - 1 -
Frost days 0.314 - - 1
Combined
All three 0.247 0.2 0.7 0.1
AWSSI and Freezing rain 0.149 0.8 0.2 -
AWSSI and Frost Days 0.163 1 - 0

RMSE shown for test data.

Table 2.7: Weights and estimate errors: Individual and Combined models. Original model
descriptions provided in Table 2.6

The combined model based on AWSSI model and Freezing rain days model shows

much-improved accuracy over the individual forecasts (Table 2.7). There is a 48%

reduction in the RMSE from original AWSSI model to the combined model. The combined

model also shows the lowest RMSE among other candidate combined models. The relative

weights of 0.8 and 0.2 are the percent contribution from individual models. The weighted

linear average of AWSSI and counts of freezing rain days model can be beneficial to

authorities in forecasting salting needs accurately and effectively planning the maintenance.
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2.4.4 Quantile regression trends

The results for median quantile regression are discussed first followed by discussion on

results for 0.2 and 0.8 quantile. Finally the QR results across all nine quantiles are

presented.

Median trends

Figure 2.5 shows the median trend information in the Thiessen region of influence

around the weather stations. Median trends in AWSSI and SHRP show increasing patterns

in many coastal regions. Sanford (region 1), Belfast (8), and Grand lake stream (12) show

an increase for both indices. Median AFDD has decreased over years in the northern

region, but does not exhibit trend at other stations. The median seasonally accumulated

snow increases broadly except for the mid-interior region.
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Figure 2.5: Trend analysis based on median quantile regression of three seasonal indices: a)
AWSSI, b) SHRP, c) AFDD and d) Accumulated snow from 1991-2020 in Maine.

The positive and negative coefficients in Table 2.8 indicate an upward and downward

trend in severity from 1991 to 2020. The magnitude measures the rate of change.

Compared to the rest regions, Belfast shows escalating median AWSSI and SHRP over the

years. Median AFDD decreases by 8.7 degrees Fahrenheit every year in the northern

region. The average increase in median accumulated snow is 1.6 inches per year.
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ID Stations AWSSI.0.5 SHRP.0.5 AFDD.0.5 Accsnow.0.5
1 Sanford 10.857 * 0.515 * 4.818 1.452 *
2 Portland 7.958 0.434 * -0.386 1.772 *
3 Farmington 10.579 0.144 -3.375 1.322 *
4 Gardiner 3.211 0.39 * -5.25 1.045
5 Newcastle 7.714 0.294 -7 1.787 **
6 Jackman -2.5 0.086 -5.389 0.273
7 Dover-Foxcroft 3.143 0.191 0.467 -0.256
8 Belfast 23.556 ** 0.599 ** 5.238 1.9 **
9 West Rockport 0.625 0.507 * 12.827 1.819 **

10 Bangor 11.222 + 0.252 -5.773 0.621
11 Caribou 10.148 0.156 -8.711 + 1.477 **
12 Grand Lake Stream 15.056 ** 0.318 * -2.833 1.795 **

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table 2.8: Median QR trends at 12 stations from 1991 to 2020. Coefficient and significance
(p-value) of predictor year variable is shown.
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Trends at 0.2 and 0.8 quartile

The results for upper and lower quantile regression are presented in maps in Figure 2.6.

Magnitude and significance of the trends are separately presented in Table 2.9 and

Table 2.10.
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Figure 2.6: Trends in lower (0.2) and upper (0.8) quantiles of seasonal indices: a) AWSSI,
b) SHRP c)AFDD , and d) Accumulated snow from 1991 to 2020.

The trend typology for AWSSI index shows that the increases seen in median quantile

regression are mirrored for the upper and lower quantiles for Belfast (8) and Grand Lake

Stream (12). Sanford(1) shows increase in AWSSI at lower quantile (0.2). A conflicting

trends in extreme quantiles is detected in Caribou. It shows increase at upper(0.8) tail and

decrease for the lower(0.2) tail suggesting an increase in distributional variances of AWSSI

from 1991 to 2020.

The typology for SHRP shows increase at upper quantile at Sanford, Gardiner and

Belfast. SHRP trends at lower (0.2) quantile have increased at Bangor and Grand Lake

stream.
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The cold severity trend typology suggests incidences of lowering AFDD at 0.2 quantile

at mid-interior regions (Farmington and Dover Foxcroft). This phenomenon is also

reflected in decreasing lower quantile severity for AWSSI and SHRP in the two regions.

Grand Lake stream shows decreased AFDD at both tails (0.2 and 0.8). AFDD is increasing

at the upper tail in West Rockport and at the lower tail in Jackman.

Accumulated snow severity shows increase at both tails in Belfast and Grand lake

stream. These results are consistent with trends in AWSSI. Regions Portland, Newcaslte,

West Rockport, and Caribou show increase at the lower tails.

Upper quantile (0.8) trends

ID Stations AWSSI.0.8 SHRP.0.8 AFDD.0.8 Accsnow.0.8
1 Sanford 13.316 0.351 ** 4.75 2.841 **
2 Portland -3.941 0.239 -2.295 -0.575
3 Farmington 14.126 0.063 -1.821 0.932
4 Gardiner -5.059 0.182 + -1.733 -0.013
5 Newcastle 4.412 0.034 1.375 0.352
6 Jackman 5.385 0.054 -1.185 0.15
7 Dover-Foxcroft 9.105 -0.228 * 5 -0.743
8 Belfast 31.632 * 0.469 ** 6.694 2.472 *
9 West Rockport -0.318 0.141 8.433 * 0.536

10 Bangor 9 -0.221 3.757 0.8
11 Caribou 13.478 + 0.001 -8.159 0.73
12 Grand Lake Stream 28.958 * 0.259 -6.214 + 1.729 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table 2.9: Upper(0.8) QR trends at 12 stations. Coefficient and significance (p-value) of
predictor year variable is shown.

The upper tail trends in AWSSI, SHRP and Accumulated snow are all positive and

upwards. Grand Lake stream showed negative trend in upper tails of AFDD. The highest

increase for AWSSI and SHRP are observed in Belfast. West Rock shows highest increase

for AFDD. The highest rate of accumulated snow, equal to 2.8 inches/year, is observed in

Sanford.
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Lower quantile (0.2) trends

Both upwards and downwards trend are observed at lower tails of AWSSI. Caribou (11)

and Farmington (3), which do not exhibit trends at other quantiles, show downwards

trend. Farmington shows steepest decline and Belfast show steepest rise in 0.2 quantile of

AWSSI. The maximum rise SHRP is observed in Sanford. All trends in lower tails of

AFDD are negative with steepest at Grand Lake stream. Accumulated snow is all

up-trending with maximum of 1.396 inches/year at Grand lake stream.

ID Stations AWSSI.0.2 SHRP.0.2 AFDD.0.2 Accsnow.0.2
1 Sanford 4.375 * 0.646 * 9.912 * 1.55
2 Portland 6.667 -0.138 6.795 0.925 *
3 Farmington -17.867 + 0.028 -9.857 + -0.535
4 Gardiner -5.68 0.025 -8.135 0.664
5 Newcastle 6.517 0.035 1.208 1.093 **
6 Jackman -5.75 -0.085 -8.324 * 0.6
7 Dover-Foxcroft -16.938 0.024 -7.75 + -0.758
8 Belfast 11.875 ** 0.354 + 8.636 0.861 +
9 West Rockport 0.333 0.223 -1.712 0.71 +

10 Bangor 7.917 0.191 + -0.25 0.244
11 Caribou -12.353 + 0.172 -7.5 1.037 *
12 Grand Lake Stream 8.25 + 0.422 * -11.625 * 1.316 +

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table 2.10: Lower(0.2) QR trends at 12 stations. Coefficient and significance (p-value) of
predictor year variable is shown.

Comparing across the quantiles, Caribou shows decreasing AWSSI at lower tail but

increasing AWSSI at upper tail. Thus, the variance in the severity as measured by AWSSI

appears to increase at Caribou. While such significant and conflicting trends across the

three quantiles are not observed elsewhere, the variances, in general, are observed to be

increasing during the period. More detail on the distributional variances is provided by QR

results across all quantiles which is presented in the next page.
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QR results across all quantiles : AWSSI
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Figure 2.7: Quantile regression for AWSSI from 1991 to 2020. Slopes of quantile regression
lines are shown.

Figure 2.7 presents a concise summary of the quantile regression for AWSSI at 12

locations. Each point represents the coefficient (slope of regression) obtained from

particular quantile regression model. Values above 0 represent increasing trend and below 0

denote decreasing trend. As suggested by key quantiles, Caribou indeed shows diverse

trends across distribution, negative for lower half quantiles and positive for upper half.

Similarly diverse trends are observed for AWSSI at Farmington and Dover-Foxcroft.

Bangor, Belfast, Grand Lake Stream and Sanford show upwards trends across all quantiles.

Jackman has mostly negative trends across the distribution.

The results for SHRP, AFDD and Accumulated snow are presented in Appendix A.2.

In addition to trends in seasonal indices, trend analysis are performed for monthly values of

severity for months of November, December, January, February, March and April during

41



1991 to 2020. The results for monthly AWSSI, AFDD and Accumulated snow are

presented in Appendix A.3 and A.4.

The asymmetric trends in the extreme ends of the weather index distribution

underscore an important concern for planning and decision making, in that the trends in

extreme have disproportionately large impact and careful consideration of the trends may

allow for better planning and adaptation approaches.

2.4.5 Trends in frequency of selected weather triggers

Changes in frequency of events with time
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Figure 2.8: Trends in the seasonal frequency of extreme winter weather events over winters
from 1991 to 2020 for indices: a) Frost days without any precipitation, b) Freezing rain days,
c) Snow days with freezing temperatures and d) Snow days above freezing temperatures.

The incidence of increase in snow days during both days with freezing and non-freezing

mean air temperature, is observed at most regions. However, the central region (Dover

Foxcroft) shows decrease in the snow days. Similarly, incidence of frost days without

precipitation shows broad scale decrease. Freezing rain days appears to increase

significantly at regions Sanford (1), Belfast (8) and West Rockport (9).
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ID Stations Freez rain days Freez snow days Snow days above frez temp Frost days without ppt
1 Sanford 0.015 + 0.042 ** 0.044 *** -0.003 *
2 Portland 0.005 0.002 0.005 -0.003 *
3 Farmington 0.003 0.022 ** 0.013 + -0.001
4 Gardiner 0.004 0.012 0.019 * -0.004 *
5 Newcastle 0.011 0.014 + 0.002 -0.002
6 Jackman -0.008 0.008 0.016 ** -0.006 **
7 Dover.Foxcroft -0.007 -0.016 * -0.006 -0.002 +
8 Belfast 0.023 ** 0.037 *** 0.04 *** -0.003 *
9 West Rockport 0.014 * 0.027 ** 0.013 -0.005 **
10 Bangor -0.005 0.004 0.007 -0.004 *
11 Caribou 0.005 0.01 + 0.002 -0.005 ***
12 Grand Lake Stream 0.008 0.057 *** 0.029 ** -0.004 **

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table 2.11: Quasi-Poisson Regression Results for four weather events. Coefficients and significance (p-value) of time variable
are presented.

Table 2.11 details the estimated coefficients of the predictor variable ’year’. The coefficients measure change in log mean

values of count with every year. Positive denote increased incidences and negative denote decreased incidences of weather

events.
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2.4.6 Trends in seasonal frequency of light, moderate and heavy snowfall

The results from Quasi-Poisson regression for three classes of snowfall days are

discussed in this section.

Signs and statistical significance of the coefficient of time variable in each
regression model is plotted in one of four categories (increasing, significantly
increasing, decreasing and significantly decreasing).

Figure 2.9: Trends in the seasonal frequency of extreme winter weather events over winters
from 1991 to 2020 for indices: a) Light snowfall (less than 4 inches) days, b) Moderate snow
days (between 4 to 12 inches), and c) Heavy snow days (greater than 12 inches).

The trend typology in Figure 2.9 highlights many regions receive increasing days of

light snowfall days. Moderate snow fall showed mixed trends across locations. While such

moderate snow days are increasing at Sanford and Belfast, the eastern regions seemed to

receive less incidence of such days. The increasing incidence of heavy snowfall seemed to be

more apparent in coastal regions. The diverse patterns in spatial trends in different levels

of snowfall can help authorities in managing maintenance materials resourcefully.
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ID Stations Light snow days Moderate snow days Heavy snow days
1 Sanford 0.047 *** 0.045 *** 0.067 +
2 Portland 0.002 0.005 0.04
3 Farmington 0.017 ** -0.004 0.008
4 Gardiner 0.018 ** 0.007 0.019
5 Newcastle 0.005 0.012 0.111 **
6 Jackman 0.018 ** -0.016 + 0.008
7 Dover Foxcroft -0.008 -0.01 -0.006
8 Belfast 0.043 *** 0.021 + -0.01
9 West Rockport 0.016 * 0.017 0.032
10 Bangor 0.006 -0.012 0.067 *
11 Caribou 0.003 0.009 0.041
12 Grand.Lake.Stream 0.04 *** 0.016 0.024

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table 2.12: Quasi-Poisson Regression Results for three classes of snow days. Coefficients and
significance (p-value) of time variable are presented. Light snow : less than 4 inches snow;
Moderate snow: between 4 to 12 inches of snow; and Heavy snow: greater than 12 inches of
snow.

Quasi Poisson regression results for the seasonal snow events are provided in Table 2.12.

Sanford is the only station that shows increase in seasonal incidence of all three classes of

snow days. A statistically significant(p-value <0.1) negative trend is observed for moderate

snow days in Jackman.
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CHAPTER 3

GROUNDWATER WELL CONTAMINATION DUE TO ROAD SALT IN

MAINE

3.1 Introduction

Rock Salt (NaCl) is the most common deicing agent in winter road maintenance. The

rock salt dissociates into sodium and chloride ions as the snow melts. While the sodium

ions tend to bind in soil layers, the chlorides ions do not get involved in any biological

processes nor get adsorbed in soil layers. The chloride ions are not involved in any

biological processes, nor are they adsorbed in soil layers. They percolate through the

subsurface and accumulate in groundwater sources. In public water systems, excess

chloride can show secondary effects such as a salty taste in water and corrosion of

plumbings and fixtures. Moreover, rock salts can contain up to 5% of trace minerals and

possible contaminants such as lead, and arsenic [9], adding in the environmental and health

concerns.

Groundwater contamination from the road salt contaminants is a significant concern

because these effects are long-term, and it can take up to decades for recovery [35]. In

Maine, a state where over half the population relies on private wells for drinking water, the

concern of road salt contamination of wells is strengthened.

There are two types of groundwater wells in Maine: Shallow dug wells that are mostly

built in sand and gravel aquifer, and bedrock wells that are drilled deep into bedrock

aquifers. Shallow wells can easily capture the overland dissolved saltwater due to less

overburden thickness. However, the deicing salt intrusion in bedrock wells is hard to

characterize. Maine’s bedrock geology primarily consists of igneous and metamorphic

rocks, which are less permeable but allow infiltration through cracks, fractures, and faults

in the bedrock layers. In addition, local hydro-geological conditions, well location and
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distance from road salt loads, roadside slopes, and hydraulic gradient can influence road

salt transport into the wells.

A good understanding of chloride contamination in wells is essential for identifying

elevated chloride risk zones and implementing additional caution in winter road salt

application. This study presents a preliminary investigation of chloride contamination in

Maine wells based on well sampling data from 2001-to 2020. Important hydro-geological

and topographical fractures that influence the transport of road salt contaminants into

groundwater sources and wells will be discussed.

The main objectives of the study are:

1. To investigate the status of sodium and chloride contamination of groundwater wells

in Maine

2. To assess changing chlorides in wells with well types and well depth.

3. To provide estimates of local contamination risk for surrounding wells based on

incidence of contaminated wells

3.2 Data and Methods

The well sampling data used in the study is obtained form Maine DOT [10]. The data

contains sampling records from investigative sampling tests conducted in private wells and

pre-construction sampling tests conducted along public roads. Hence the data is not

representative of drinking water wells in Maine. There are 5387 sample test records and 44

fields for each test record. These fields contain information on street/ geographical address

for well households or sampling locations, sampling date, well type and well depth, and

water quality parameters. The sampling date for the tests ranges from 2001 to 2020. In

addition to chloride, concentration levels were also recorded for sodium and arsenic.

We screened the data based on the completeness of the record for chloride

concentrations. The remaining 4740 wells are used in the data visualization and risk
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computation. Additionally, where wells do not have information on geographical

coordinates, approximate well locations are obtained by geocoding from available street

addresses information.

The contaminant levels thresholds for chloride are adopted from US National Secondary

Drinking Water Standards set by Environmental Protection Agency (EPA). Maine CDC

follows EPA’s regulations for Chloride in Maine public water systems. The Secondary

Maximum Contaminant Level (SMCL) for Chloride, as recommended by the EPA’s

secondary drinking water standard, is 250 milligrams per liter (mg/L). Since high amounts

of chloride give a salty taste to water and corrode pipes, pumping, and plumbing fixtures,

SMCL for Chloride is set to indicate water quality problems. The secondary standard is

not enforceable but is recommended as a reasonable goal.

Chloride contamination risk

We estimate the risk for wells in regions around the sampling locations. For this, we

create circular buffer zones around individual sampled wells and count incidences of total

sampled and contaminated wells ( wells exceeding SMCL for chlorides). Local risk within

an area is calculated by dividing the number contaminated by the total number of wells.

We compute the risk for study regions of varying radius ranging from 250 meters to 5000

meters.

Chloride and Arsenic in wells

Arsenic is a naturally occurring chemical found in soil and rocks. High arsenic water is

more common for drilled wells, but even shallow dug wells can show elevated arsenic [5].

Both Maine CDC’s Maximum Exposure Guideline(MEG) and US EPA’s MCL for arsenic

is 10 ppb. Potential health effects from long-term exposure to Arsenic above MCL include

skin damage, problems with the circulatory system, and increased risk of getting cancer.

Recent research have focused on the effect of road salt has on mobilizing heavy metals from

bedrocks including arsenic [42, 24, 23, 39]. Moreover, traces of arsenic and other metals

have been found in deicers [9].
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In this study, arsenic contamination status is also investigated using the sample well

data. Joint contamination of chloride and arsenic are estimated for study areas of radius

5000 meters. The joint risk is calculated by dividing the number of wells within the study

area exceeding thresholds of both chloride and arsenic with the total number of wells

sampled within the area.

3.3 Results and Discussion

3.3.1 Chloride contamination in wells

Figure 3.1: Chloride concentrations (mg/L) in Maine. Data is from Maine DOT groundwater
samplings conducted from 2001 to 2020.

We found 182 wells, out of 4740, that exceed chloride levels above US EPA’s SMCL

(250 mg/L). Figure 3.1 presents the location of tested and contaminated wells. The cases

of chloride contamination are concentrated in southern, mid-coast, and some eastern parts.

49



Moreover, a majority of tests were conducted during the 2000-2006 period, wherein the

annual average exceeded 400 samples. Relatedly, three-fourths of the identified cases of

chloride contamination were identified during 2000-2006.

It is important to note that wells shown are a combination of private wells as wells as

pre-construction sampling tests. As such, analyses presented in this report require careful

interpretation and not to be construed as representing the spatial patterns of statewide

well contamination. The latter would require a systematically designed sampling approach.

Sodium contamination status

For most healthy people, a sodium level up to 100 milligrams per liter of water will not

substantially increase risk [6]. But in view of individuals on low-sodium diet, Maine CDC

recommends 20 mg/L of sodium as a drinking water standard [6]. Excess sodium from salt

in the diet increases the risk of high blood pressure and cardiovascular disease [6].

Esri, HERE, Garmin, FAO,
NOAA, USGS, EPA, NRCan,

Parks Canada

(a) 2349 Wells with sodium exceeding
recommended low sodium diet value (10
mg/L).
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(b) Chloride and sodium in test wells. Three
well tests with highest sodium concentration (990
mg/L , 1160 mg/L and 2000 mg/L) not shown for
better data visualization.
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Approximately 50% (2349 out of 4740) wells exceed the recommended sodium level for

low Sodium diet. The well locations are shown as in Figure 3.2a. 203 wells have Sodium

exceeding 100 mg/L. In addition, the data suggests common incidence of elevated

concentrations of sodium and chloride in test wells shown in Figure 3.2b. Both chloride

and sodium can occur naturally in groundwater; however, coinciding elevated levels suggest

a possible salt-water intrusion.

Well depth and Chloride levels
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Wells with chloride levels more than 1000 mg/L not plotted for better
data visualization.

Figure 3.3: Chloride concentrations decreasing with well depths based on 2061 wells with
well depth information.

The plot 3.3 shows a general pattern of decreasing chloride levels with increasing well

depths. The reason can be shorter infiltration path and time in shallower wells that tend to

capture salt water melt more readily.

We further study this phenomenon in both shallow and drilled bedrock wells. The

pattern of higher chloride in shallower wells seemed to be consistent across the well types
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Figure 3.4: Chloride concentration and well depths by well type.

(see Figure 3.4). The result further strengthens overland flows as a possible contamination

source. However, this offers partial view of the well vulnerability as other local

hydro-geological factors also control the transport of road salt to wells. These factors are

studied more on section 3.3.5.

52



3.3.2 Sodium and chloride levels across Maine towns

Maine’s winter road maintenance responsibility is shared by Maine DOT, towns, and

counties. The municipalities maintain 81% of the state’s total winter maintained miles,

sidewalks, and parking lots. In this section, we use the sampling test data to assess the

presence of sodium and chlorides in Maine towns from 2001 to 2020. The median chloride

concentration in towns over two periods (2001-2010) and (2010-2020) are presented in

Figure 3.5. Towns with median chloride concentrations above 250 mg/L are labeled.

During 2011-2020, 15 towns have at least one sampling test with chloride concentration

above the SMCL. The town of Durham in Androscoggin shows the maximum number of

contamination cases of 13 for this period. South Thomaston in Knox county shows the

highest number of contaminated cases of 4.

Year 2001-2010 Year 2011-2020

Median chloride concentrations

≤20 mg/L

20 mg/L - 50 mg/L

50 mg/L -100 mg/L

100 mg/L - 250 mg/L

>250 mg/L

Plymouth
Orono

Thomaston

South
Thomaston

South
Berwick

Portland

Knox Glenburn

Deer Isle

The towns with median chloride above 250 mg/L are labeled. Central black
dots denote towns with less than 5 sampling tests.

Figure 3.5: Median chloride concentration in Maine towns over two periods.

Similarly, the median sodium levels in towns for the two periods are presented in

Figure 3.6. Three towns during 2001-2010 and six town during 2011-2020 are found to
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Year 2001-2010 Year 2011-2020

Median sodium (mg/L)

≤12.5

12.5-25

25-75

75-100

>100

West
Paris

PortlandSouth
Berwick

York

Madawaska

Buckfield

Old Orchard
Beach

Newport

Thomaston

Plymouth

South
Thomaston

New haven

The towns with median sodium above 100 mg/L are labeled. Central black dots
denote towns with less than 5 sampling tests.

Figure 3.6: Median sodium concentration in Maine towns over two periods.

exceed the threshold of 100 mg/L. Towns Plymouth, Orono, Thomatson and South

Thomaston show excess of both sodium and chloride levels during 2011-2020.

The following graph 3.7 details the contaminated sample tests accumulated over cities

and towns by Maine DOT maintenance regions. The information can help assess risk for

the population at large. The highest incidence of chloride contaminated sample tests are

detected for second class cities (population range of 1501-10,000). While the wells sampled

did not totally represent the drinking water wells, chloride contamination patterns can be

suggestive of undetected contamination or rising chloride levels for the proximal wells.
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Figure 3.7: Sum of Chloride Contaminated wells recorded in First and Second Class cities,
Towns across the Maine DOT regions.

Description of City and Town Class:

Towns, A: < 1,500

Second Class Cities, B: 1,501 – 10,000

First Class Cities, C: > 10,000
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3.3.3 Chloride contamination risk around well locations

The estimates of chloride contamination risk obtained for circular areas of radius 5000

meters are shown in Figure 3.8. The local estimates highlight potential risk zones mainly

in mid-coast and southwestern Maine. Important to note is that the risk estimates for

regions are based on the number of total wells within the regions and are not constant.

Risk estimates are provided only for areas with more than 5 test wells.

Figure 3.8: Estimated chloride contamination risk in study areas of radius 5000 meters
around sampled wells.

Similar risk estimates are obtained for circular areas of smaller radii (see Figure 3.9).

Distribution of number of wells for the sets of buffer radii is presented in Figure B.1 in

Appendix B. The quantified risk offers a limited view of the relative likelihood of spatially

proximate sites with high contamination levels. While limited by the nature of sampling, a

foreknowledge of local risk can be useful for estimating remediation strategies and guidance

to local communities.
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r=250m r=500m r=750m r=1000m

r=2250m r=2500m r=2750m r=3000m

r=5000mr=4750mr=4500mr=4250m

Chloride contamination risk

Not detected

0 to 10%

11% to 20%

21% to 50%

51%-100%
Note: Risk estimates are provided only for areas with more than 5 wells. Only one study
buffer with radius 250 meters have at least 5 wells.

Figure 3.9: Local estimates of chloride contamination risk around sample locations for
varying radii.
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3.3.4 Arsenic incidence in Maine

(a) Well sampling locations and Arsenic
contamination. At the locations marked
in red, the Arsenic levels were found to
exceed the MCL.

(b) Well Contamination probability due
to chloride and Arsenic in circular study
regions of radius 5000 meters around
test wells.

Similarly, 603 wells out of the 4527 complete well test records on Arsenic levels show

arsenic concentration above MCL of 10 parts per billion (ppb). The map on 3.10a shows

the location of well tests where the arsenic concentrations exceed the MCL. Moreover, joint

local estimates, as mapped in Figure 3.10b, show distinct clusters of non-zero risk of

contamination due to both arsenic and chloride at four locations. Maine’s bedrock geology

is characterized by high levels of arsenic. Therefore, the phenomenon of arsenic

mobilization due to road salts should be investigated in depth at the identified locations.
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3.3.5 Chloride levels and influencing factors

The rate of transport of dissolved road salt within the soil layers is largely influenced by

hydraulic properties of the layers. Hydraulic conductivity is a property of soil that

describes the ease with which a fluid can move through pore spaces. Ideally, higher

conductivity of subsurface layers implies higher infiltration rate. However topographical

factors, such as presence of bedrock fractures, distance to nearest salted roads, come into

play and significantly alter the course and rate of infiltration.

In this section, we study the variation of chlorides with three hydro-geological factors:

distance to nearest sources (high salt burden roads and salt piles), distance to nearest

faults and soil hydraulic property. Part of well location information logged in the sampling

data referred to the street address or post office boxes rather than the actual location of

wells. As such, for this section, only 1744 wells with recorded geographical coordinates are

selected.Spatial location of the wells exceeding SMCL for chloride in relative to distances to

roads, and fault lines is presented in Map 3.11.

The values of saturated hydraulic conductivity (Ksat) for Maine are obtained from the

global Ksat map at 1 km resolution at depths of 0 cm, 30 cm, 60 cm and 100 cm [15].

Equivalent vertical saturated conductivity is estimated over the depth of 100 cm. The

bedrock fault lines data are obtained from Maine Geological Survey [43]. Location

information from road salt stockpiles are obtained from Maine DOT [11]. The estimates of

distances from approximate well location to the nearest high priority roads (Priority 1,2

and 3), salt stock piles and faults are obtained using nearest distance analysis tool available

in ArcGIS Pro 2.6.
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Salt stockpiles, faults and chloride elevated wells

Legend
Wells exceeding chloride levels of 250 mg/L

Faults

Priority 1, 2 and 3 roads

Saturated Hydraulic Conductivity

0.84 cm/day

2.35 cm/day

Saturated Hydraulic Conductivity, Bedrock Metamorphic Faults and Public
roads in Maine

Salt stockpiles

Wells exceeding chloride levels of 250 mg/L

Faults

Figure 3.11: Locations of chloride contaminated wells with respect to faults, public roads
(Priority 1,2 and 3), saturated hydraulic conductivity and salt stockpiles in Maine.
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Figure 3.12: Effect of saturated hydraulic conductivity, nearest distance to roads, salt piles
and faults on chloride concentrations in 1744 wells for which the exact location information
were available.

The bottom left plot in Figure 3.12 highlights increase in well chloride levels with

decreasing distance to nearest roads. This preliminary study is unable to show any

patterns of elevated chlorides with distance to nearest faults, salt piles or with hydraulic

conductivity. However, few other studies have conducted in-depth studies and confirmed

effects of these factors in drinking water wells in Maine.

In 2012, USGS investigated relations among water levels, chloride concentration and

depth of bedrock fractures in four road salt contaminated wells in Maine [40]. They used

dissolved oxygen data and borehole logs data to understand the interaction of fractures and
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groundwater flow. The results indicate that the bedrock fractures have a substantial

influence of transport of chlorides to the groundwater wells.

A closer study by Maine DEP in 2021 studied chloride contamination risk in private

wells in Maine [21]. They compared well chloride levels for varying roadside slopes, soil

hydraulic property, surface and bedrock geology, and presence and orientation of bedrock

fractures. Results indicate the mean values of chloride levels are highest in wells where the

well capture zone (based on 75 foot well pump radial capture zone) is located in downslope

and lowest where the zone is located in distal upslope from the centerline of road.

In addition, shallow wells with the capture zone in downslope from road are found more

likely to get contaminated compared to deeper drilled wells. In case of deep wells drilled

into bedrocks, more optimal alignment between dominant bedrock fracture direction and

direction from road to well was found to increase the soil hydraulic conductivity in

groundwater in downslope compared to upslope. These effect of decreasing chlorides in

deeper wells is also apparent in our results.

When all the factors; geology, overburden soil property, varying road side slopes, and

well types are considered, the three highest risk well categories obtained from the study

are: Volcanic bedrock wells , Dug shallow wells and Wells lying in 5 to 7 degrees soil slope

(well to road). The high risk denotes the greater likelihood of chloride contamination in

downslope wells from road and lower chloride concentration for upslope wells.

The comprehensive studies highlight the vulnerability of groundwater wells in context

of hydro-geological factors. The estimated local contamination risk from our study can be

studied along with well vulnerabilities to assess risk to individual wells.
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Existing framework for vulnerability assessment

In 2008, USGS developed a framework for evaluating water quality of the New England

crystalline rock aquifers [18]. The framework consists of four categories of spatial variables:

(1) geologic, (2) hydrophysiographic, (3) land-use land-cover, and (4) geochemical. On a

regional scale, these variables represent indicators of natural and anthropogenic sources of

contaminants, as well as generalized physical and chemical characteristics of the aquifer

system that influence ground-water chemistry and flow. These factors can be combined

along with groundwater well vulnerability factors as well depth, well location, etc. to assess

the water quality. The framework is presented in Figure 3.13.

This comprehensive framework can be a guidance tool for future works aimed to

establish relation between road salt and groundwater contamination and associated

vulnerability assessment.
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Reprinted from "Harte, Philip T., et al. Framework for evaluating water quality
of the New England crystalline rock aquifers. 2008."

Figure 3.13: Preliminary framework approach for the evaluation of regional ground-water
quality in the New England crystalline rock aquifers proposed by USGS (2008).
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CHAPTER 4

CONCLUSIONS

The work presented here focuses on studying the causal factors and effects of historical

road salt use in Maine. The literature review details established indices, development

approaches, and existing relations to winter road maintenance. An appropriate WSI suited

to closely representing Maine’s climate will help in strategic road salt application. This

study uses four existing winter severity indices: AWSSI, SHRP, Illinois Salt Day Index, and

AFDD, to characterize Maine’s climate and study their applicability to road salt usage.

The selected weather indices estimate changing weather severity and influence on road salt

application. In addition, trends in winter weather conditions and their relation to salt use

are investigated since road salt application occurs with severe weather conditions. Finally,

impact assessment of road salt on groundwater wells is performed to facilitate informed salt

use decisions. The research provides assessment based on analysis of water quality test

data.

4.1 Road Salt and Winter Weather

The leading components of WSI, obtained from PCA, suggest the presence of both

shorter and long-term winter weather variability in Maine. In general, stations at

Farmington, New Castle, Bangor, and Grand Lake Stream show increasing long-term

severity patterns. The subsequent analysis using PCA regression relates weather indices

and events to salt use. The existing indices and long-term baselines for changing practice

help explain most variation in statewide salt use data from Maine DOT. The models

provide an appropriate fit for salt use data with R2 greater than 80%, with the AWSSI

model performing the best (R2=84.5%). Both snow days and freezing rain days show

moderate influence on road salt (R2 around 50%). The frost days without precipitation

that represent the risk of road ice formation due to moisture present at roadsides show less
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influence (R2=11.2%). Moreover, trend analysis shows such frost days are declining from

1991 to 2020.

A method of model combination is suggested as a better alternative when the intent is

to achieve accuracy rather than to explain variability. A combined model based on 80%

weights for AWSSI estimates and 20% weights for Freezing rain day estimates shows

improved accuracy. There is a 48% reduction in Root Mean Squared Error compared to

the error from the model-based solely on AWSSI.

The investigation of changing nature of winter severity and incidence of weather events

is achieved using Quantile Regression and quasi-Poisson Regression. We investigate trends

across quantiles to identify any the asymmetric trends in winter severity. Results show that

many regions are characterized by changing distributional variances in winter severity from

1991 to 2020. The station in Caribou shows decreasing trend at the lower tails of AWSSI

distribution and an increasing trend at the upper tail, suggesting an incidence of highly

varied winter at the location. While other stations do not show such conflicting trends,

broad-scale increased variability is observed from quantile regression. Mainly increasing

severity is observed along the coastal regions. Decreasing trends for AWSSI are observed at

Caribou and Farmington at a lower tail (0.2 quantiles). Similar decreasing trends are

observed in cold severity as measured by AFDD. The accumulated snow amounts show

broad-scale increases across the state.

Trend information on episodic indices is obtained from quasi-Poisson regression.

Results highlight diverse spatial patterns of incidence and the need for region-specific plans

for maintenance and resources planning. The incidence of freezing rain days is increasing at

three stations along the coast. Similarly, the incidence of snow days is rising in most

regions. Within the different classes of snowfall, we find broad-scale increasing trends in

the incidence of light snow (snow less than 4 inches) days.

The information on regional disparity in winter severity and incidence of severe

conditions is essential for anticipating variability in winter road maintenance, including
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road salt application. Future studies focused on regional salt data can estimate the

influence of weather conditions and severity on regional salt use patterns.

4.2 Groundwater Contamination

The water quality test data provide the current status of groundwater contamination

due to chlorides in Maine. Although not wholly representative of drinking water wells, the

test wells’ chloride levels suggest elevated levels in the proximity of high priority roads.

Local risk of well contamination due to excess chloride or excess of both chloride and

arsenic are estimated. The risk estimates for chloride contamination show the

contamination prevalent across the high population density locations. Since most winter

road maintenance duties lie with local municipalities, the spatial assessment of local risk is

critical in planning for reducing road salt application. The presence of joint chloride and

arsenic contamination at four locations provides ground for further investigation of arsenic

mobilization from bedrocks at the sites. The potential health implication of the finding is a

strong justification for further study of this phenomenon. Established frameworks can guide

future works on vulnerability assessment of drinking water wells and risk to the population.
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APPENDIX A

A.1 Winter season length at 12 stations

The index AWSSI accumulates daily severity scores based on estimated winter onset

and cessation day. The criteria for the start and end dates are:

Winter starts with the earliest occurrence of three conditions:

• First measurable snowfall (>= 0.1 inch)

• Maximum temperature at or below 32°F

• December 1

The end day is the last occurrence of:

• Last measurable snowfall (>= 0.1 inch)

• Last day with 1 inch of snow on the ground

• Last day with a maximum temperature of 32°F or lower

• February 28/29

The varying season length obtained for 12 stations are plotted below.
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A.2 QR results across all quantiles for SHRP, AFDD and Accumulated Snow

The figures below present a concise summary of the quantile regression for other three

indices: SHRP, AFDD and Accumulated snow at 12 locations. Each point represents the

coefficient (slope of regression) obtained from particular quantile regression model. Values

above 0 represent increasing trend and below 0 denote decreasing trend.
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Figure A.1: Quantile regression for SHRP during 1991 to 2020.
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AFDD
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Figure A.2: Quantile regression for AFDD during 1991 to 2020.
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Accumulated snow
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Figure A.3: Quantile regression for Accumulated snow during 1991 to 2020.
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A.3 Trends in monthly AWSSI using quantile regression

In addition to QR of seasonal AWSSI, we performed the regression for monthly values

of AWSSI. The results are shown in following three tables.

Stations Nov Dec Jan Feb Mar Apr
1 -0.113 1.941 6.75 ** 2.857 * 3.444 ** -0.304
2 0 1 7.516 * 8.1 + -2.964 0
3 -0.232 7.278 -1.061 3.143 1.5 0.88
4 0 2.71 1 -0.923 -1.611 0
5 0.455 * 1.154 4.333 1.24 -2.31 0.211
6 -0.577 0.792 -4.733 + 3.476 + -3.36 -0.972
7 0 7.88 -8.381 4.632 -2.966 -3.571
8 0.308 * 3.76 * 10.571 11.706 3.762 * 0.853 +
9 0 4.833 * -2.063 -4.773 -1.222 0
10 0.333 + 6.727 * 7.2 * 9.533 + -1 1.2 *
11 -3 + 4.304 -2.3 3.654 0.517 -3.6
12 0.246 * 7.429 ** 10.471 ** 11.158 ** 6.429 ** 1.556 **

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.1: Lower (0.2) QR results for monthly AWSSI

Station Nov Dec Jan Feb Mar Apr
1 0.2 3.5 ** 10.143 ** 10.2 ** 3 + 0
2 0.444 9.071 * 3.957 1.333 0.067 1.25
3 -0.647 6.929 + -6.81 + 5.593 * 1.412 1.231
4 0.632 11 ** 0.214 1.765 1.833 1.143
5 1.783 + 3.818 1.259 2.13 4.875 2.84 +
6 -3.882 + 2.231 -1.333 1 -1.5 0
7 0.625 1.493 -6.833 * -1.818 0.231 -0.385
8 0.636 + 6.95 * 14.083 ** 12 ** 6.125 ** 2.2 **
9 0.448 6.167 * -2.167 -0.6 -2.414 1.333 +
10 2 + 9.714 ** 2.286 5.321 2.154 2
11 1.067 2.133 -0.5 -0.923 0.267 3.188
12 1.333 * 9.056 14.444 13.588 11.611 2.261 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.2: Median (0.5) QR results for monthly AWSSI
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Stations Nov Dec Jan Feb Mar Apr
1 1.45 13.667 ** 8.68 ** 10.45 * 6.571 + 0.5
2 -0.176 10.545 * -6.143 4.765 1 -0.25
3 2.05 -0.259 -3.28 7.235 * -8.038 + 2.571
4 3.7 -0.684 -3.7 + 0 -3.682 -1.333
5 3 -4 -2.609 6.684 + -4.435 -2.714
6 2.533 1.417 1.238 -2.095 -5.462 4.92 +
7 1.441 0.84 -7.65 ** -2.333 -1.071 -0.852
8 3.75 * 9.381 + 13.545 * 12.2 * 8.5 + 2.133 +
9 0.4 -5.105 6.548 -0.913 -0.167 -0.654
10 1.933 13.28 * 7.375 -2.5 0.727 1.3
11 6.531 + -1.55 -2.6 -1.071 0 -0.15
12 5.429 10.75 + 12.538 10.706 ** 9.786 ** 4 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.3: Upper (0.8) QR results for monthly AWSSI
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A.4 Trends in monthly AFDD and accumulated snow using quantile

regression

Table A.4 presents both monthly and seasonal trends in the accumulated snow at upper

quantile for all stations. At location Sanford, the seasonal increase appears to be apparent

in months of November, December and February. Similarly, locations Belfast and Grand

lake stream also exhibit increased snow severity for early winter months. Additionally,

monthly severity trends can be identified for those locations that did not pick up trend in

seasonal scale. For example the location Bangor shows increased severity for February and

decreased severity for March, even though no seasonal trend was observed. Most locations

show increasing trends during months of November, December, January and February but

decreasing trends for March and April.
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ID Stations Nov Dec Jan Feb Mar Apr Seasonal
1 Sanford 0.115 + 0.788 * 0.305 1.182 * 0.452 0.08 2.841 **
2 Portland 0.005 0.131 -0.783 + 0.889 * -0.604 -0.204 -0.575
3 Farmington 0.182 0.410 0.046 0.367 -0.420 -0.152 0.932
4 Gardiner 0.271 0.421 0.28 0.484 -0.568 + -0.023 -0.013
5 NewCaslte 0.335 + 0.065 -0.108 0.85 + -0.571 -0.038 0.352
6 Jackman -0.333 0.056 -0.6 * 0.11 -0.1 0.045 0.15
7 Dover.Foxcroft 0.231 -0.017 -0.468 + -0.197 -0.808 * -0.205 -0.743
8 Belfast 0.333 ** 0.667 * 0.467 0.659 0.167 0.196 2.472 *
9 West.Rockport 0.1 0.518 0.2 0.437 -0.776 ** 0 0.536
10 Bangor 0.173 0.159 0.089 0.662 * -0.85 * -0.014 0.8
11 Caribou 0.481 0.875 * -0.187 -0.2 -0.089 0.076 0.73
12 Grand.Lake.stream 0.5 + 0.532 + 0.639 * 0.367 0.241 0.194 1.729 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.4: Upper(0.8) QR trend in Monthly accumulated snow at 12 stations. Coefficient and significance (p-value) of predictor
year variable is shown.
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ID Stations Nov Dec Jan Feb Mar Apr Seasonal
1 Sanford -0.008 -0.116 -0.032 -0.076 -0.06 -0.055
2 Portland 0.048 -0.015 0.211 + 0.04 0.061 0.092 + 0.008
3 Farmington 0.04 0.013 0.164 0.086 0.083 0.073 0.12 +
4 Gardiner 0.056 0 0.237 * 0.095 0.079 0.097 0.053
5 NewCaslte -0.016 -0.062 0.098 0.015 -0.019 0.068 -0.02
6 Jackman 0.023 -0.033 0.171 0.057 0.013 0.068 0.055
7 Dover.Foxcroft 0.073 -0.003 0.101 0.014 0.029 0.1 0.108 *
8 Belfast -0.003 -0.181 + 0.019 0.009 -0.064 -0.038
9 West.Rockport 0.001 -0.1 0.091 -0.041 -0.074 -0.006 -0.056
10 Bangor 0.012 -0.063 0.079 0.006 -0.039 0.095 0.041
11 Caribou 0.131 0.082 0.219 + 0.121 + 0.087 0.063 0.111 +
12 Grand.Lake.stream 0.112 0.206 * 0.33 0.117 0.124 + 0.105 + 0.197 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.5: Upper(0.8) QR trend in Monthly mean temperature at 12 stations. Coefficient and significance (p-value) of predictor
year variable is shown.
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Mean air temperature trends at lower and upper quantile highlight scattered but

increasing trends specific in months of January, February and March. Referring to

table A.5 for mean air temperature, sporadic increase patterns are observed seasonally as

well as monthly. In seasonal scale, locations Farmington, Dover Foxcroft, Caribou and

Grand Lake stream show increase but with less statistical significance. At monthly scale, a

decrease mean temperature is observed for month of December in Belfast. Scattered

increase is found in all months except for November.

The lower quantile(0.8) for mean air temperature does not exhibit significant seasonal

trends. While at monthly scale, incidence of increasing trends, however, scattered, are

common in months of January, February and March.
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ID Stations Nov Dec Jan Feb Mar Apr Seasonal
1 Sanford -0.01 -0.057 -0.124 0.093 -0.268 * -0.06
2 Portland -0.025 0.071 0.201 + 0.237 -0.012 0.028 0.073
3 Farmington 0.025 -0.001 0.118 0.243 0.032 0.062 0.031
4 Gardiner -0.003 0.108 0.232 0.264 -0.1 + 0.078 0.045
5 NewCaslte 0.014 0.086 0.254 + 0.203 -0.12 + -0.03 0.037
6 Jackman -0.031 -0.109 -0.079 0.322 + -0.032 -0.041 -0.038
7 Dover Foxcroft 0.007 0.051 0.172 0.125 -0.055 0.085 * 0.017
8 Belfast -0.072 -0.011 0.166 0.099 -0.055 -0.06
9 West.Rockport -0.071 + -0.173 * 0.282 + 0.111 -0.107 + -0.012 -0.014
10 Bangor -0.075 -0.046 0.332 * 0.193 -0.015 -0.005 0.035
11 Caribou -0.009 0.002 0.272 + 0.251 + -0.068 -0.021 0.015
12 Grand.Lake.stream -0.011 0.047 0.454 ** 0.342 * 0.016 0.086 0.068 +

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.6: Lower (0.2) QR trend in Monthly mean temperature at 12 stations. Coefficient and significance (p-value) of predictor
year variable is shown.
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A.5 Dispersion parameters for weather count data

The values of dispersion parameter obtained from Poisson regression of seasonal

frequency of winter events are provided in tables below:

Stations ID Freezing rain Freezing snow Snow days above Frost days without
freez temp precipitation

1 1.34 1.38 2.00 0.42
2 1.36 1.00 3.06 0.44
3 1.18 1.14 1.95 0.57
4 1.71 1.76 1.71 0.45
5 1.39 1.57 2.41 0.44
6 0.69 0.91 1.66 0.99
7 0.82 0.81 2.11 0.38
8 1.13 0.97 1.69 0.48
9 0.92 1.01 3.06 0.53
10 1.08 1.84 1.85 0.53
11 0.81 1.01 1.56 0.42
12 0.65 1.26 3.59 0.45

Table A.7: Dispersion parameters for four weather events at 12 weather stations.

Stations Light snow Moderate snow Heavy snow
Sanford 2.05 0.47 0.88
Portland 1.92 1.84 0.81

Farmington 1.65 1.16 1.14
Augusta 1.35 1.13 0.70

Newcastle 1.48 1.54 0.52
Jackman 1.91 1.19 0.82

Dover Foxcroft 1.44 0.86 1.47
Belfast 1.28 1.83 1.03

West Rockport 1.40 1.75 0.76
Bangor 1.53 1.20 0.93
Caribou 0.90 1.35 0.95

Grand.Lake.Stream 4.03 1.48 1.05

Table A.8: Dispersion parameters for light, snow and heavy snow days at 12 weather stations.
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A.6 Negative binomial regression results

The coefficients obtained from Negative binomial regression for weather event count data are presented in tables below.

The results conform with the results from quasi-Poisson regression analysis.

Freezing rain days Freezing snow days Snow days above freezing temp Frost days without ppt
Sanford 0.015 + 0.042 *** 0.041 *** -0.003

Portland 0.005 0.002 0.004 -0.003
Farmington 0.003 0.022 ** 0.012 * -0.001

Augusta 0.004 0.012 0.018 ** -0.004 +
Newcastle 0.011 0.014 * 0.002 -0.002
Jackman -0.008 0.008 0.016 ** -0.006 **

Dover.Foxcroft -0.007 -0.016 * -0.006 -0.002
Belfast 0.023 ** 0.037 *** 0.04 *** -0.003

West.Rockport. 0.014 * 0.027 ** 0.013 -0.005 *
Bangor -0.005 0.004 0.007 -0.004 +

Caribou 0.005 0.01 + 0.002 -0.005 *
Grand Lake Stream 0.008 0.058 *** 0.032 ** -0.004 *

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.9: Negative binomial regression results for four weather event counts.
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Light snow days Moderate snow days Heavy snow days
Sanford 0.043 *** 0.045 *** 0.067 +

Portland 0.002 0.005 0.04
Farmington 0.017 ** -0.004 0.008

Augusta 0.018 ** 0.007 0.019
Newcastle 0.005 0.012 0.111 *
Jackman 0.018 *** -0.016 * 0.008

Dover.Foxcroft -0.008 -0.01 -0.006
Belfast 0.042 *** 0.022 + -0.01

West Rockport 0.015 * 0.017 0.032
Bangor 0.006 -0.012 0.068 *

Caribou 0.003 0.009 0.041
Grand Lake Stream 0.046 *** 0.016 0.024

Note: p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01 < p < 0.05 (*); 0.05 < p < 0.1 (+)

Table A.10: Negative Binomial regression results for three classes of snow days. Coefficients and significance (p-value) of time
variable are presented. Light snow : less than 4 inches snow; Moderate snow: between 4 to 12 inches of snow; and Heavy snow:
greater than 12 inches of snow.
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APPENDIX B

The plot below shows the distribution of number of wells used in local risk computation for

varying buffer radius.
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Note: Any regions with less than 5 well tests are not included in all sets. The horizontal red line denotes
mean of the distribution.

Figure B.1: Distribution of well sampling cases in study regions for eleven values of buffer
radius.
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