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One expected outcome of physics instruction is that students develop quantitative reasoning skills,
including evaluation of problem solutions. To investigate students’ use of evaluation strategies, we
developedand administered tasks prompting studentsto check the validity of a given expression. We
collected written (N>673) and interview (N=31) data at the introductory, sophomore, and junior levels.
Tasks were administered in three different physics contexts: the velocity of a block at the bottom of an
incline with friction, the electric field due to three point charges of equal magnitude, and the final
velocities of two massesin an elastic collision. Responses were analyzed using modified grounded
theoryand phenomenology.

In these three contexts, we explored different facets of students’ use and understanding of
evaluation strategies. First, we document and analyze the various evaluation strategies students use
when prompted, comparing to canonical strategies. Second, we describe how the identified strategies
relate to prior work, with particular emphasis on how a strategy we describe as grouping relates to the
phenomenon of chunking as described in cognitive science. Finally, we examine how the prevalence of
these strategies varies across different levels of the physics curriculum.

From our quantitative data, we found that while all the surveyed student populations drew from the

same set of evaluation strategies, the percentage of students who used sophisticated evaluation

strategies was higher in the sophomore and junior/senior student populations thanin the first-year



population. From our case studies of two pair interviews (one pair of first years, and one pair of juniors),
we found that that while evaluating an expression, both juniors and first-years performed similar
actions. However, while the first-year students focused on computation and checked for arithmetic
consistency with the laws of physics, juniors checked for computational correctness and probed whether
the equation accurately described the physical world and obeyed the laws of physics.

Our case studies suggest that a key difference between expert and novice evaluation is that experts
extract physical meaning from their result and make sense of them by comparing them to other
representations of laws of physics, and real-life experience.

We conclude with remarks including implications for classroom instruction as well as suggestions for

future work.
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CHAPTER 1

1. INTRODUCTION
1.1 OriginStory

As a means of motivating this project, the authoroffers a brief anecdote in the first-person singular
(“1”) toillustrate the development of herinterestin the phenomenathatare studied. For most of the
dissertation, the voice will shift to first-person plural (“we”) to reflect the inherently collaborative nature
of the work.

During my first year as a teaching assistant at UMaine, | spenta few hours a week tutoring students
in the Physics Learning Center (PLC), adrop-in tutoring center operated by the physics department.
Students who visited the PLC were takingintroductory physics classes (both algebra- and calculus-based)
and were usually workingon homework or preparing foran exam. On one such occasion, | helped a
studentwitha homework problem that require the student to determine how faraway a sound could
be heard. The studentand | solved the problem and arrived an answer. While | continued to stare at the
board, she thanked me and started to pack herthings to leave. “Wait a minute” | said, “that can’t be
right.” She looked puzzled. “No one should hearyou from that far away. That distance is larger thanthe
radius of the earth” | said. The student did not seemto share my concern, but she waited while we went
through the set-up of the problem again. It turned out that | had used the natural logarithm instead of
base 10 logarithm to calculate the sound levelin the earlier part of the calculation. However, even atthe
end of the session, my student did not seemto expectthe result of her calculations to make real-world

sense or have real-life implications.



1.2 General Introduction

One important skill that physics students are expected to develop is the ability to evaluate the
solution to a problem. In physics, evaluation can be defined as checking to make sure that the solution
of a problem obeys the laws of physics, is reasonable, and satisfies the constraints relevant to the
context of the problem [1]. Examples of evaluation strategiesinclude performing dimensional analysis,
considering limiting cases, using approximations, predicting the effects of changes in problems and
identifying errorsin solutions [2]. The ability to evaluate a solutionis one of the examples of what it
means to “think like a physicist” [3]. In both physics and mathematics, evaluationis considered an
important step in problem solving [4]—[7]. Evaluation is also an important step in the mathematical
modeling process [8], [9], as well as a step in models of the use of mathematics (mathematical
reasoning) in physics [10]—[12]. From the perspective of metacognition, the use of evaluation is an
expression of control/regulation, self-evaluation, and beliefs about knowledge[6], [13]-[15].

The aim of this projectis to probe students’ use and understanding of evaluation strategies. This
project explores evaluation strategies as an avenue forstudents to find connections between
mathematical operations, physics concepts, intuition, and lived experience. This project also joins other
studiesfound at the confluence of mathematics and physics as it probes how student ground their use
of mathematicsin physicsin the context of using evaluation strategies. The integration of mathematics
and physicsin a way that makes sense physically is a mark of expertise in physics. Consequently, our
projectalso studies how students use of evaluation strategies evolves as students gain expertise on
physics.

Despite its relevance to problem solving, mathematical modeling, mathematical reasoning, and
metacognition, there have only been a few studies focused on the use of evaluation strategies [2], [16]—

[19]. Furthermore, priorresearch on evaluation in physics has largely focused on teaching and learning



of the strategies of special case analysis, unit analysis, and use of reasonable numbers. As aresult, in this
project, we refertothese three strategies as canonical evaluation strategies. Most prior studies have
not addressed the fundamental questions of when, and how, students choose to use evaluation
strategies, and what skills they use when doing so. To add to the body of knowledge on the use of
evaluation strategies in physics, we aim to answerthe following questions:

1. To what extent, and in what ways, do students evaluate the validity of derived expressions or

solutions when prompted?
2. To what extent are existing frameworks for problem solving and reasoning consistent with

students’ use of evaluation strategies?

3. How dostudents’ use of evaluation strategies compare at different levels the physics

curriculum?

To address these questions, we willbe using a combination of interviews and written free responses
to tasks in which students were provided students with the context and solution of a physics problem
and asked how they would go about checking to see if the solution was reasonable. One of the
administered tasks is shownin Figure 1.1. There were eight tasks in total. However, in this dissertation,
we focuson three:theinclined plane task, the point charge task, and the bubble skating task (Figure 1.1,

1.2, and 1.3).

1.3 Project designand development
The aim of our projectis to explore students’ use and understanding of evaluation strategies. To
this end, we designed tasks that prompted students to evaluate the solution to a physics problem. We

intended that students’ responses to the tasks would a) generate alist of evaluation strategies that



students use in different physics contextsand b) include the use of expert evaluation strategies
including special case analysis, unit analysis, and using reasonable numbers.

The general layout of our research task s as follows: First, we posed a posed a hypothetical
physical scenario thatis simplified into a physics problem. Next, we provided an equation thatwas the
solution to the problem posed in the scenario. Lastly, we asked students how they would go about
checking if the solution was reasonable. The three tasks that we administered are shownin figure 1.1,
1.2, and 1.3, and summarizedin figure 1.4.

The choice to provide students the solution to the physics problem as part of the prompt was
intentional. First, providing the students with the solution of the physics problem allowed us to focus on
how students evaluate expressions. Studies in PER that have shown that generally, students do not
evaluate solutions spontaneously. Any study in which students are students are not explicitly prompted
will give rise to the question: do students not evaluate because they don't know how to, or do they not
choose to evaluate despite being able to do so when prompted? Providing students with the solution of
the problem allowed us to skip these questions and hone in on how students can evaluate solutions
when they are prompted. Studies where students were explicitly asked to evaluate the solution of a
problem [17-19] were published after this study was designed.

Secondly, providing the students with the solution of the physics problem makes the time to
compete the task shortersince students do not have to spend time solving the problem. Essentially, we
designed ourtask sothat students focused on the step of evaluating the solution, ratherthan solving
the physics problem outlined in the task. However, one consequence of this choice is that the
prevalence of students evaluating solutions in our study is perhaps not representative of the frequency

of students who would evaluate their solutions to a problemin a natural problem-solving setting.



PHY 122 Physics for Engineers and Scientists Name:
Fall 2018 November 13, 2018

You were asked to solve for the velocity of a block sliding down an incline just when
it reaches the bottom of the slope and you obtained the following result:

v =/2gd(sinf — ucos @),
where d is the length of the incline, 8 is the angle of the incline, and u is the
coefficient of kinetic friction between the block and incline surfaces. The block
starts from rest at the top of the incline (marked by 0].

a. Without knowing the correct answer, how would you go about checking if
yvour solution is reasonable?

this is likely the correct result.

Figure 1.1: An example of the inclined plane task

The physics problemsin the posed scenarios were taken from back-of-the-chapter questionsin
the assigned textbooks of the courses associated with each task. Specifically, the questions discussed in
this dissertation were taken from the 4™ edition of Randall Knight’s Physics for Engineers and Scientists.
We chose physics problems with symbolicsolutions that could be easily evaluated using special case

analysis, and unit analysis.



electric field (magnitude and direction) at a point p on the x-
axis due to three equal positive point charges located on the
y-axis at y = 0, and at points y = *d.

Your friend obtained the following result and claims that it
is correct:

B = q 1 2x .
met = areo [FJF 2+ d2)3f2] '

is reasonable?

correct result.

—n —

PHY 122 Physics for Engineers and Scientists Name:

Fall 2018 September 13, 2018
You and your friends are working on a homework problem y

where you have been asked to derive an expression for the +q ®

+q.

—_— 0 —

+q @

a. Without knowing the correct answer, how would you go about checking if your friend's solution

b. Using the approach(es) you described in part a, determine whether or not this is likely the

Figure 1.2: An example of the point charge task

There are two consequences of the choice to use symbolic solutions. First, most solutions to the

problems givento first yearstudents are arithmetic (i.e., the solutionis a number). As a result, the

symbolic solution we provided lends it itself to that first-year students would normally not use.

Secondly, the symbolicnature of the tasks makesthem more adaptable to expert-like strategies like unit

analysis and special case analysis. Thus, the nature of our task might skew responses so thatthe number
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PHY 121 Physics for Engineers and Scientists Name:
Fall 2018 September 24, 2018

You and your friends are preparing for a game of bubble skating (skating while in a human
hamster ball). Being a great physicist, you explain to your friends how the game is going to
be a series of elastic collisions. You proceed to approximate the players as balls, and solve
the final velocities of two balls involved in a one-dimensional elastic collision.

You obtain the following results:

~ vy + Vo Ve = vy + sy,
1i 2 2 1i 2i
my + m, m, +m, ! my; +m, m, +m,

my — m, 2m, 2m, m, —my

T'ilf =

where m and m2 are the masses of the balls, vii and v2; are the velocities of the balls before
the collision, and vi¢ and vz¢ are the velocities of the balls after collision, respectively.

a. Without knowing the correct answer, how would you go about checking if your solution
is reasonahle?

b. Using the approach(es) you described in part a, determine whether or not this is likely
the correct result.

Figure 1.3: An example of the bubble skating task

of students who use unit analysis and special case analysis is more than it would be had we provided an

arithmetic solution to the given physics problems. Furthermore, symbolicsolutions are the norm at the



upperlevelof the physics curriculum where evaluating solutions is more common. Catering to the

problem-solving practices of upper-division courses allow for continuity of tasks across levels.

a) b v 9
™
o, I [ ™
™~ 4 1 m, m,
: M »‘ ¢ < ¢
W = mg ™~ d - g — Mg b E‘mz Vo
— M J ¥ om,+m, 2 om, tm, o
+q
—_— im ny; —m
v = 2gd(sinft — ucos gl E = il i x i Vgp = 2 v+ z 11)2[-
et — 411.50 % (%% + dz);fz My + Mg Wy + Mg

Figure 1.4: Figures and given expressions for the assigned tasks: (a) the velocity of a block at the bottom of an incline with
friction; (b) the electric field at a point some distance from three point charges of equal magnitude; (c) the final velocities of
two masses in an elastic collision. For each task, students were asked (i) “Without knowing the correct answer, how would
you go about checking if your solution is reasonable?” and (ii)“Using the approach(es) you described in part (i), determine
whether or not this is likely the correct result

While choosing questions for the tasks, we were carefulto choose questions with complex or
multi-step solutions. This decision was made for two reasons. First, we wanted to dissuade students
from solving for the expression again, so we chose ex pressions that they could not re-derive quickly.
Secondly, we did not want students to evaluate based on recalling the “correct answer”. Consequently,
we chose complex solutions to minimize instances in which students said an answeris reasonable
because they rememberthe equation from class, homework, orany other part of coursework.

The choice to ask studentsto check whetherthe given solution was “reasonable” was
purposeful. We chose to not ask the students to check whetherthe given expression was “correct” in
orderto avoid cueing students to solve for/ rederive the provided solution. We reasoned that the word
“correct” might cue studentsinto thinking that the task prompted them to confirm that the provided
result was the exact solution to the posed physics problem. We anticipated that the word “reasonable”
would elicit students’ use of evaluation strategies. Essentially, we sought to investigate whether
studentswould use expert strategies to evaluate the solutions we provided, and so we designed the

tasks so that they would be easily evaluated using the expert strategies of unit analysis, special case

analysis and using reasonable numbers.



1.4 Data analysis

The analysis of our data was a multistep and iterative process. First, all written responsesonthe
first task we administered (inclined plane) were coded openly for the generalstrategy students used
e.g., solvingfor the given expression, solving fora known result, or plugging in numbers. We also scored
the responses from zero to three in order of clarity, zero being not clear at all, and three very clear. We
codedresponsesthat were both attempts and suggestions of how to evaluate the given expression.
Many students suggested evaluation strategies but did not attempt them. It was not clear whether the
students did not know how to execute the evaluation strategy or did not have enough time to
implement the chosen strategy. Also, some students treated the tasks as one question, i.e., they listed
evaluation strategies that they would use, and implemented said strategies in both parts of the task.
Consequently, the responses of both questions of each task were coded together.

Secondly, we compared our codes and classifications to Bing and Redish’s epistemicframes. This
comparison helped define the highest-level categories of our codes [20][21]. Thirdly, interviews onthe
inclined plane task helped furtherflesh out codes. Afterthe first set of (13) interviews on the point
charge task, we went back and recoded the written responses. The insight from the interviews helped
clarify some students’ responses, decreasing the number of responses initially coded as zeros and ones.
Insight from the interviews also helped us reassign a few responses to code categories to which they
were bettersuited.

Next, we compared our results with previous work on evaluation strategies. This comparison to
helped us collapse some codes into bigger categories based on the overall goal of a student’s work. For
instance, responses that suggested checking whether the solution was reasonable and responses where
student plugged numbersinto the given expression were then coded as using reasonable numbers in

accordance with previous work on teaching students how to evaluate [16], [18].



As our project progressed, student responses from interview and written responses on the
othertasks helped distinguish between similar codes and introduced new ones. Wheneveranew code
was created during the first coding of a newly administered task, the responses on earlier task s were
analyzed again for instances of responses that fit the description of the new code.

Finally, at every step of data analysis, code categories were decided upon through discussions
between the three researchers. One of the many products of these discussions was the binning of our

codes into large intermediate categories for ease of analysis and presentation.

1.5 Layout of dissertation

This dissertation was intended to be structured as three journal manuscripts framed by a common
introduction and conclusion. However, due to the SARS-CoV-2 pandemic, the manuscripts that were
plannedto be individual and mostly independent chapters were not completed when the time came for
the dissertationto be completed. Asaresult, this documentis a hybrid between a standard-format
dissertation and a multiple-manuscript format: the project literature review and background are
primarily in Chapter 2, while chapters 3, 4, and 5 each have their own introduction, methodology,
research questions, results, and discussion sections. The methodology described in Chapter 3 is valid for
the remaining work; the only difference is the inclusion of more advanced studentsin later chapters,
which is explicitly discussed in those chaptersand in the final, concluding chapter.

In chapter 2, we explore evaluation and situate it in the fields of physics, mathematics, and cognitive
science. We then delve deeperintothe phenomenon of evaluation using the theoretical frameworks of
epistemological frames, proofs and justification in mathematics education research, and metacognition.
In chapter 3, we outline and categorize the evaluation strategies that we observed first-year students
use, responding primarily to the first and second research questions. In chapter4, we focus on an

evaluation strategy called grouping, and explore the phenomenon fromthe perspective of mathematical
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reasoning, symbolicforms, and chunking; this is primarily respondingto the second research question.
In chapter5, we focus on how the use of evaluation strategies differs overthe physics curriculum using
quantitative data and case studies at the introductory and junior/senior levels, thus responding to the
third research question. In chapter 6, we summarize and reflect of the results of our projectand discuss

future extensions and applications of our work.
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CHAPTER 2

2. LITERATURE REVIEW
In this section, we explore the significance of evaluation from the perspectives of problem solvingin
physics, the use of mathematics in physics, and mathematical modeling. We then delve deeperintothe
phenomenon of evaluation using the theoretical frameworks of epistemological frames, proofsand

justification in mathematics education research, and metacognition.

2.1 ProblemSolvingin Physics and Mathematics
2.1.1 Evaluation as a part of critical thinking, and problem solvingin physics and mathematics

Evaluation is an important aspect of critical thinking, and consequently problemsolving, in
mathematics and physics. One widely acknowledged goal of undergraduate science, technology,
engineering and mathematics (STEM) education is the development of critical thinking [22]. Critical
thinking can be defined as “the intellectually disciplined process of actively and skillfully conceptualizing,
applying, analyzing, synthesizing, and/or evaluating information gathered from, orgenerated by,
observation, experience, reflection, reasoning, orcommunication, as a guide to belief and action” [23].
Consequently, it comes as no surprise that one goal of every science departmentatany university is to
help students develop the skill of thinking critically. In physics and mathematics, one vehicle for teaching
critical thinking is thorough problem solving.

Problem solving in mathematics involves critical thinking because it entails settling a conjecture
using the logical consequences of information from mathematical definitions, assumptions, and
theorems. Consequently, many models of problem solving in mathematics education research explicitly

include evaluation[5], [6]. Forinstance, according to Polya, problem solving involves understanding the
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problem, devisinga plan to solve the problem, carrying out the plan, and looking back to verify that the
solution is reasonable forthe given problem [5].

Similarly, problem solvingin physics teaches critical thinking as it entails actively assessing the
situation putforth in a problem statement, deciding on what details to considerorignore in the
problem based on the given context, and applying the appropriate physics conceptsto arrive at a
solution to the problem. Consequently, many models of problem solving in physics explicitly include
evaluation [4], [7]. In physics, evaluation entails checking to make sure the solution of a problem obeys
the laws of physics, is reasonable, and satisfies the constraints relevant to the context of the problem[1].
For instance, according to Wright and Williams, problem solving involves describing what is happeningin
the problem, isolating the unknown, substituting in the knowns, and evaluating the d erived solution [4].
Even when evaluationis not listed in a problem solving rubric, it is acknowledged as an important stepin
problem solving [24]-[26]. However, one finding from the research in problem solving is that students
do notspontaneously evaluate theirresults while solving physics problems [26].

In PER, a few studies have described the range of sophistication of students’ problem solving skills
and approaches [20], [26]—[29]. Some of these studies have been phe nomenological while others have
described the spectrum of students’ work using frameworks including epistemicgames and frames. For
instance, in a phenomenological study, Walsh and colleagues observed students’ approaches to problem
solving ranged between a scientific approach, structured plug and chug approach, unstructured
structured plug and chug approach, memory based approach, and no clear approach [28]. Forinstance, a
scientific approach is characterized by a qualitative analysis of the problem scenario, a plan fora
solution, implementation of a plan based on prior qualitative analysis, and use of physics conceptsto
guide the solution, and evaluation of the result. Onthe otherhand, a structured plug and chug approach

is characterised by a qualitative analysis of the problem scenario based on required formulars, plans
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based on a solution based on variables, a systemicimplantation of the plan, a reference to physics
concepts that guide the solution, and evaluation of a solution. We will discuss problem solving from the

perspective of epistemicframesand games in section 2.3.

2.1.2  Evaluation as a part of mathematical modeling

Evaluation is also an important part of the mathematical modeling process [8], [9], [30], [31].
Mathematical modeling involves using mathematical representations to symbolize and describe the
behaviorof a system. Perrenet and Zwaneveld[9] studied many models of mathematical modelingand
concluded that overall, models of mathematical modeling include translating between a mathematical
and non-mathematical world in both directions. They also found that all models of mathematical
modelingincluded evaluation; validating a mathematical result to make sure it fulfils the needs of the
non-mathematicalworld being modelled. Forinstance, according to Blum and LeiR (figure 2.1), modeling
entails interpretinga mathematical result, and validating it in the context of the real world situation

beingmodeled [8].

3 1 Understandihg
mathematical Constructing
real model model and 2 Simplifyirig
and problem problem Structuring
3 Mathematising

2
1
real situation 4 Workin
and problem ml d situation modcl 9

mathematically

4 =
- Sinterpreting
8 6 Validating
mathematical 7Exposing
real results Ek\—/ results
rest of the 5
mathematics

world

Figure 2.1: The modelling cycle according to Blum and Leif3 (2007)
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There are many ways to modelthe behavior of a system. Forinstance, the relationship between two
guantitiesin a system can be mathematically described using covariational reasoning. In this paper, we
use the definition of Carlson and colleagues; covariational reasoningis the cognitive activity that entails
coordinating two varying quantities while considering the ways in which they change in relation to each

other[32]. Carlson’s covariation framework includes five developmental stages of covariation that are

increasingly sophisticated and complex [33]. These stages are called mental actions and they are

summarizedin Table 2.1.

Table 2.1: Mental Actions of the covariation framework (Carlson, 1998)

Mental Action
(MA) Description Behaviors
MA1 Coordinating the value of one o Labeling the axes with verbal indications of
variable with changes in the coordinating the two variables (e.g., y changes
other with changes in x)
MA2 Coordinating the direction of e Constructing an increasing straight line
change of one variable with e Verbalizing an awareness of the direction of
changes in the other variable change of the output while considering changes
in the input
MA3 Coordinating the amount of e Plotting points/constructing secant lines
change of one variable with e Verbalizing an awareness of the amount of
changes in the other variable change of the output while considering changes
in the input
MA4 Coordinating the averagerate- | e Constructing contiguous secant lines for the
of-change of the function with domain
uniform e Verbalizing an awareness of the rate of change
of the output (with respect to the input) while
considering uniform increments of the input
MA5 Coordinating the instantaneous e Constructing a smooth curve with clear
rate-of-change of the function indications of concavity changes
with continuous changes in the e Verbalizing an awareness of the instantaneous
independent variable for the changes in the rate-of-change for the entire
entire domain of the function domain of the function (direction of concavities
and inflection points are correct)
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2.1.3 Mathematics in mathematics vs. Mathematics in physics

The use of mathematics (mathematical reasoning) in physicsis a widely studied subjectin PER [10]—
[12], [34]. Competence in the use of mathematics in physics includes knowledge of both computational
procedures and mathematical concepts. Problem solving in physics is unavoidably mathematics
intensive sothe use of mathematics (mathematical reasoning) in physicsis a heavily studied subjectin
PER [10]-[12], [34]. Proficiency in mathematics is essential for successin physics, and a goal of almost
every physics course. Competence in mathematics includes knowledge of both computational
procedures and mathematical concepts. In the rest of this paper, we define computation asthe act of
performing “mathematicalmoves”, procedures and operations such as algebraic manipulation, taking
derivatives, taking cross products, and multiplying matrices.

Studies of the use of mathematics in physics demonstrate that mathematics and physics are
interconnectedin a strong, productive, and multifaceted manner. Forinstance, Uhden and colle agues
claim that the use of mathematics in physics has three aspects: it serves as a tool (pragmatic
perspective), itacts as a language (communicative function), and it provides a means for logical
deductive reasoning (structuralfunction) [12]. The authors assert that mathematicsin physics goes
beyond the structural function of establishing quantitative relationships between physical quantities.
For example, sometimes theoretical explanations in physics are enabled by the deductive nature of
mathematical formalism. Consequently, the use of mathematics in physics includes butis notlimited to
problem solving in physics.

Redish and Kuo assertthat the use and meaning of mathematicsis different for mathematicians and
physicists [10]. They claim physicists load physical meaning onto symbols and equations while
mathematicians do not. Another source of this difference is that physicists and mathematicians have

different goals forthe role of mathematics. While mathematicians tend to use mathematics to explore
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mathematical formalisms, physicists tend to use mathematics to model physical systems. Consequently,
mathematical reasoningin physics includes the ability to describe the laws of the physical world using
mathematical representations (sometimes referred to as “mathematization”[12]) and to determine the
physical consequence of mathematical manipulations of these laws.

Consequently, one mark of a physicist is the ability to integrate physics and mathematics in a way
that makes sense physically. Forinstance, when calculating the work done by a force ona charge

movingalong a path, a student must recognize that the equation W, = fbaF_- ds is symbolic

representation of the relationships between the work done and the projection of the force along the
direction of motion. The student must know how to successfully take an integral as well as a dot
product. The student must also know that conceptually, taking a dot product is selectingthe component
of the force applied that is in the same direction as the displacement, while integrationis “summing up”

the work done overinfinitesimal distances along the path.

2.1.4  Evaluation in models of using mathematics in physics.
In PER, there have been a few efforts to model mathematical reasoningin physics [10]-[12]. In the
“zeroth order” model, from Redish and Kuo [10] (Fig. 2.2), in orderto use mathematical reasoningin

physics, one must first select the physical system one wants to describe, and then decide what

Mathematical Mathematical
Representation Representation

Modeling Interpreting

Physlcal
System
Evaluating

Figure 2.2: Modelling mathematical reasoning according to
Redish and Kuo (2015)

characteristics of the system one should focus

Processing
on or ignore. Next, one maps the physical

structuresinto mathematical ones, creating a

mathematical model. After modeling the system,

Physical one then must process, or use one’s knowledge

System

of mathematics to transform the initial

description of the system. In this step, one might
17



solve an equation or derive an equation. Next, one interprets what the results say about the physical
system, and finally one evaluates whetherthe results were derived correctly and whetherthey
adequately describe the physical system at hand. If the derived behavioris found to be inadequate or

incorrect, the modelis then refined.

Activation Construction
of the tool of the model

reasoningin physics is the ACER framework (Fig. 2.3) by
[Execuhon - meJ Wilcox and colleagues [11]. The ACER framework was
mathematics
‘ specifically designed to guide and structure
[Re"ec"on on [m] investigations of student difficulties with the

results

Anothermodelthat describes mathematical

Figure 2.3: Visual representation of the ACER sophisticated mathematicaltools used in upper-division

framework. Wilcox, Caballero, Rehn, and Pollock (2013)
physics courses. The steps of the ACER modelinclude

activation of the [mathematical] tool, construction of the [mathematical] model, execution of the
mathematics, and reflection on the results. Similar to the Redish and Kuo model, this modelis aimed at
helping physics students develop the skill of grounding mathematics in a physical system. However,
unlike the Redish model, which focuses on end products and states, the ACER modelfocusesonthe

process of getting from one state to another. Also, the steps Physical-Mathematical-
Model

Pure
Mathematics

‘ @ —— )
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Figure 2.4: A model of the use of mathematics
consecutively higher steps representing higher levels of in physics according to Uhden, Karam,
Pietrocola, and Pospiech (2012)
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mathematization. Notably, this modelintertwines physics and mathematical reasoningin
mathematizationin its physical-mathematical model, and explicitly states that mathematizationis done
in numerous little steps ratherthan one big step of processing or modeling as seenin the Redish model.
Unlike the Redish and ACER models, computation or other “pure mathematics” is represented as a
horizontal diversion, which returns to the same level; Uhden and colleagues’ modelthus separate pure
mathematical manipulations fromthe otherstepsinvolved in using math in physics.

In the first model from Redish (Fig. 2.2), mathematical reasoningin physics includes evaluatinga
resultin the context of the physical systemit is supposed to describe [10]. Similarly, the ACER
framework (Fig. 2.3) entails reflecting on the results of solving a physics problem [11]. Lastly, in the
Uhdenetal. model (Fig. 2.4), mathematical reasoningin physics constitutes validating, checkingthat a
physical-mathematical modelis consistent with the real world [12].

All three models emphasize andillustrate the grounding of mathematics in a physical system. All
three models of using mathematics also include a ste p of evaluation; evaluating in the Redish square,
reflection onthe resultsin the ACERframework and validation in the Uhden etal. model. All of the
models also show that evaluation strategies involve integrating physics and mathematics in ways that

make sense physically [2].

2.2  Previousresearch on evaluation strategies

A few PER studies have explored student use of validity checks/evaluation strategies [2], [16]—[19].
In a study that explored students’ ability to reason mathematically, Loverude [2] asked physics students
in an upper-level mathematical methods in physics course to evaluate whetherexpressions for the
acceleration of masses onan Atwood machine were correctand why. He reported that when asked to
evaluate an expression for the acceleration of masses onan Atwood machine, about 10-15% of the

students attempted to solve the problem, while 20-50% of the students cited the presence orabsence
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of avariable in the expression. Roughly 15% of the students described the physical mechanism at play in
the physical situation and less than 5% of the students employed limiting case analysis. Loverude
reported that this task was challenging for the students even though solution evaluation is typical of a
physicist’s practice.

In a study showing the impact of teaching evaluation strategies on student achievement, Warren
found that learning evaluation strategies made students better self-evaluators and problem solvers [16].
Warren also asserts that checks may help establish global and local coherence of physics knowledge. In
their study, Sikorski, White, and Landay [18] introduced students in a junior-level electricity and
magnetism course to three validity checks; unit analysis, limiting cases, and using reasonable numbers.
Theyfound that students checked units most often, afinding also replicated by Warre n[16] as well as
Burkholder, Blackmon, and Weiman [19], followed by checking limiting cases, and then using reasonable
values. Also, they found that while performing limiting cases, most students gave a mathematicalform
of the limits without providing a reason why they expected the physical systemto act the way it did (or
claim it did). They also found that students had a hard time with reasonable values because they had not
developed intuition for whatvalues were reasonable for different contexts. Lenz, Emigh, and Gire
suggest that students need explicitinstruction on how to perform special case analysis if they are
expectedto use it to evaluate solutions [17].

Loverude asserts that tasks such as unit analysis, testing expressions with limiting cases, using
approximations, identifying errorsin solutions, and predicting the effects of changes in problems can
help students develop mathematical reasoning skills as they force students to tie their use of
mathematics to the physical context of the problemsthey encounter[2].

To show how evaluation strategies are used and embody mathematicalreasoning, consider the

masses on a frictionless pulley in an Atwood machine. While examining the validity of an expressionfor
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the acceleration of the masses, first, a student could also ensure that the units of the expression reduce
to that of the quantity of acceleration (m/s?). The student could perform a special case analysis. For
instance, the student could ensure that if the two masses onthe pulley are equal, the expression does
not explode orbecome infinite, and the acceleration is exactly zero. They could also ensure thatif one of
the massesis removed, the expression reduces to the acceleration due to gravity (g).

In summary, evaluation is an important aspect of critical thinking, and consequently problem
solving, in mathematics and physics. Models of problem solving in both mathematics and physics
education researchinclude evaluation. Furthermore, evaluation is part of the mathematical modeling
process. Evaluation is also an essential aspect of mathematicalreasoningin physics. Prior studies on the
use of evaluation strategiesin PER have shown that students do not spontaneously evaluate solutions to
problems but can learn how to evaluate. Studies have also shown that learning to evaluate [16] and
teachingvia the lens of mathematization can improve students’ performance in problem solving [34].
The position of evaluation in models of problem solvingin physics, and mathematical reasoning make
evaluation strategies a great avenue forintegrating physics and mathematics in ways that make sense

physically.

2.3  Frameworks in physics, mathematics, and cognitive science

To furtherexplore the phenomenon of evaluation, we examine evaluation through the lens of
frameworks in physics education, mathematics education, and cognitive science. From physics
education research, we adopt the framework of epistemological games and frames; from mathematics
education research, we explore evaluation through the lens of proofs/justification; from cognitive

science, we explore evaluation from the perspective of metacognition.
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2.3.1 Frameworks in PER

2.3.1.1 Epistemological games and frames

In PER, studies of the use of mathematics in physics have examined the integration of mathematics
and physics by implementing and building upon resources from the fields of education and psychology.
Two of such borrowed tools are epistemological games and frames.

Framing as we will use it was first introduced by social psychologist Erving Goffman [35]. Frames are
structures of expectations that dictate how individuals interpret situations or events [36]. A frame
answers the question "what sort of activity is this?”[35]. For instance, when one visits a restaurant, the
type of restaurant dictates the processto getfood. At a fast-food restaurant, one would go up to the
counterto orderfood while at a high-end restaurant, one would wait to be seated. In these scenarios,
the type of restaurantis whatframes the activity. Epistemological frames were importedinto PER to
describe problem-solving strategies in physics, initially at the introductory level, but eventually at more
advanced levels as well [20], [21], [29], [37].

Bing and Redish used the lens of epistemological frames to analyze students’ justification of their
approachesto solve physics problems [20]. According to the authors, there are four epistemological
frames students can activate when confronted with a problem: invoking authority, calculation, physical
mapping,and mathematical consistency. In the invoking authority frame, students justify their problem-
solving approach by citing that information that comes from an authoritative source, e .g., a physics
professor ortextbook, is accurate. This frame is also characterized by recalling equations, facts, and
properties of physical quantities without conceptualjustification, and the absence of extended chains of
reasoning. Inthe calculation frame, students justify their problem-solving approach by arguing that
algorithmically following a set of established computational steps lead to a dependable result. T his
frame s also characterized by a focus on technical correctness and mathematical formalism. In the
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physicalmapping frame, students justify their problem-solving approach by arguing that a mathematical

representation of a physical system should correctly characterize the physical scenarioit is meantto

describe. This frame is also characterized by the presence of extended chains of reasoningand

attachment of physical information to symbols, sighs and operations. Finally, in the mathematical

consistency frame, students justify their problem-solving approach, by citing that certain mathematical

concepts can be the underlying structure of different physical scenarios. This frame is also characterized

by analogies with mathematical ideas.

Epistemic games are the set of rules and strategies that guide inquiry [38]. First put forth by Collins

and Ferguson, epistemicgames describe how to carry out investigations of phenomenain different

disciplines. The authors called these courses of action “games” because they were notjustinquiry
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Figure 2.5: Schematic diagram of the mapping mathematics to
meaning game. Tuminaro and Redish (2007)

strategies or methods, buttheyalsoinvolveda
complex system of rules, strategies, and moves
associated with particular representations. The
authorsidentified four components of an
epistemicgame: epistemicform, entry
conditions, moves, and exit conditions. Epistemic
forms are target structures that guide a scientific
guery, while the entry conditions of an epistemic
game determine whenitis appropriate to play
that game. The movesin an epistemicgame are
the actions that can be taken at different stages
of the game. Finally, exit conditions determine

whenit is appropriate to stop playing the game.
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Tuminaro used epistemicgames as a cognitive framework foranalyzing and describingintroductory
students'use and understanding of mathematics in physics [29]. He analysed videos of students working
on regular back-of-the-chapterhomework problems in an algebra-based introductory physics course. He
identified six epistemic games with varying levels of sophistication of mathematical sensemaking with
the physical context: Mapping meaning to mathematics, mapping mathematics to meaning, physical
mechanism, pictorial analysis, recursive plug and chug, and transliteration to mathematics. These
epistemicgames both govern and limit what knowledge students think is appropriate to apply at a given
time. Theyalso shed light on the specific differences between the problem-solving abilities of novices
and experts. The mostrelevant game here is mapping mathematics to meaning (Fig. 2.5), which involves
solving physics problems by using equations to describe physical scenarios and processes. Tuminaro
further categorized the epistemicgame into three epistemicframes. The mapping meaning to
mathematics and mapping mathematics to meaning games were catalogued underthe quantitative
sense making frame. The physical mechanism and pictorial analysis games were catalogued underthe
qualitative sense making frame. Finally, the recursive plug and chug, and transliteration to mathematics
games were filed underthe rote equation-chasing frame.

While Tuminaro’s epistemic frames address how students solve a problem, Bing’s frames address
why students justify a problem solving approach. However, there are also similarities between the
framesin both studies. For instance, Tuminaro’s rote equation chasing frame could be likened to Bing’s
invoking authority and calculation frames, as all three frames depend heavily on trusting an authority
(professor, textbook, etc.), recall, and calculations. Similarly, Tuminaro’s qualitative sense making frame
could be likened to Bing’s physical mapping frames as both frames depend heavily on the physical

context of the given physics problem.
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Furthermore, there are similarities between the observations of Walsh and colleagues, Tuminaro
and Redish, and Bing and Redish. For instance, Walsh and colleagues’ unstructured plugand chug
approach and Tuminaro and Redish’s rote equation chasing frame, and Bing and Redish’s calculation
frames, are similar as all three are involve calculations without sensemaking. Onthe otherhand, Walsh
and colleagues’ scientificapproach and structured plug and chug approach are similar to Tuminaro and
Redish’s qualitative sense making frame and Bing and Redish’s physical mapping frames, as all three
groupsinvolve grounding the use of mathematicsin the physical context of a physics problem.

These three studies touch on expertise in physics problem solving. For instance, there is a hierarchy
of approaches observed by Walsh and colleagues such that the scientific approach is more sophisticated
than the structured plug and chug approach, the unstructured plugand chug approach, memory-based
approach, and no clear approach, in that order. Similarly, there is a hierarchy of approaches observed by
Tuminaro and Redish such that approachesin the quantitative sense making frame are more
sophisticated than approachesin the rote equation chasing frame. Redish and Kuo assert that while
novices tend to activate the calculation and invoking authority epistemological frameworks, experts
tend to activate the physical mapping and mathematical consistency e pistemological frameworks[10].

According to Bing and Redish, a critical part of the novice to experttransitionin physics is learning to
integrate differentkinds of knowledge into the solution of a problem [20], [21]: the more sophisticated
and expert-like students become, the more flexible students are in their framing and the more likely
they are to develop hybrid frames. The authors suggest that students should be instructed in such a way
that their physical intuition is first activated, then the physical system is modelled with mathematics and
finally the result of modelingis checked for mathematical consistency. Redish and Kuo also assertthat

the epistemological shift from invoking authority and calculation framesto physical mapping and
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mathematical consistency epistemological frames is oftenimplied, part of the hidden curriculum for

upper-leveland graduate courses.

2.3.1.2 Understanding physics equations: Symbolicforms

Anotheraspect of mathematical reasoningin physicsis making sense of equations. Todelve into
how students’ make sense of equations, we focus on the epistemic complexity of equations, grouping,
symbolic forms, and chunking. However, for the sake of organization, chunking will be discussed in
section 2.3.3.2, as it is a frameworkin the cognitive sciences.

According to Bing and Redish, equations are epistemologically complex as they embed a lot of
information[20]. Specifically, an equation provides a concise system for recalling encoded rulesand
previously derived results, encodes a calculational scheme, a physical relation among measurements,
and fits within a large web of mathematical ideas. First, an expression encodes a calculational scheme.
Forinstance, if an objectstarts at x; = 2m and maintains an average velocity of 6m/s for 3 seconds,
xf = x; + (v)At tells one how to combine values to obtain the final position xr = 2m + (6%) (3s) =
20m. Secondly, an expression encodes physicalrelation among measurements so that average ve locity
tells how far an object travels per given length of time. (v) At represents how faryou move in a given
time interval. Adding that to where the objectstarted, x;, mustyield the final position x¢. Thirdly, an
expression provides a concise system forrecalling encoded rules and previously derived results. No one
starts all physics problems fromfirst principles every time. A physicistsees xr = x; + (v)At and thinks

“that is what the final position is.” An equation also fits with a large web of mathematical ideas. For

instance, xr = x; + (v)At can be derived from the definition of average velocity by simple algebraic
manipulation. It is the area underthe curve of a velocity-time graph during the At interval. It also is

recognizable as an example of the base-plus-change symbolicform [39].
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Symbolic forms [39] are descriptions of students’ conceptualization of a physics equations. While
this work does not directly describe what we are referringto as grouping, it is one of the few bodies of
work explicitly relating to physics student sensemaking with mathematical symbols. A symbolic form is
made up a symbolpattern and a conceptualschema. A symbolpatternis a recognizable abstract
template of an equation. For instance, thetemplate [ | =[ ]isthe patternforan equation where
two expressions are equal, whilethetemplate[ ]+ [ ]+[ ]showsmanytermsaddedtogether.
Each[ ] can befilled in with one or more terms. A conceptual schemais the internalized knowledge of
mathematics that is associated with a symbol pattern. However, there can be more than one conceptual
schema associated with a mathematical operation. Forinstance, one conceptual schemathat can be
associated with addition of terms, which could be represented by thetemplate[ |+[ ]+ 1,is
that a whole is composed of two or more components. So, aconceptual schemais the conceptthat is
expressedinanequation, while the symbol patternis how this conceptis represented symbolically. The
symbolic form combining the template and schemaabove is called parts of a whole; examples of this
would be an expression for the total energy of a system or for the components of a vector [40]. Another
relevantformis opposition, represented by thetemplate[ ] —[ ]andwiththe schema®“...influences
that work against each other.” Symbolic forms allow students to “(a) construct expressions, (b)
reconstruct partly remembered expressions, (c) judge the reasonableness of aderived expression, and
(d) extractimplications from a derived expression”[39].

Equation interpretationis also aided by reasoning strategies called interpretative devices (originally
called representational devices by Sherin) [36], [39], [41]. According to Sherin, there are 3 classes of
interpretative devices: narrative, static, and special case. Inthe narrative class, equations are
interpreted as telling a story that describe a changing situation. The narrative class is made up of 3

interpretative devices: changing parameters, physical change, and changing situation. While using
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changing parameters, an equation is interpreted by allowing some terms or variables to vary while other
terms/variables are held fixed. Forinstance, a student might assume that some termsin an equation are
held fixed while others are allowed to change. For instance, while working with the equation a = F /m,
a studentcan inferthat if the mass decreases, but force appliedis constant, the acceleration must
increase. While using physical change, an equation s interpreted by allowing some terms or variablesto
vary while otherterms/variables are held fixed. However, in this case, the parameters that are allowed
to vary are those that actually vary during the motion/scenario that the equation describes e.g., the
velocity in the expression X, F = mg — kv. Finally, while using changing situation, an equation is
interpreted by comparing the situation the equation describes with anothersituation that is very
different.

In the static class, equations are treated like a snapshot of the moment, de scribinga momentin a
motion e.g., an equation, may be seen as only applicable when at the apex of the trajectory of a
projectile. Interpretative devices in this task include specific moment, generic moment, steady state,
static forces, conservation, and accounting. In specific momentinterpretations, an equation is viewed as
describing one peculiar momentina motion, e.g., whentwoforcesare in balance. In genericmoment,
an equationis viewed as describing any momentina motion or statements thatare true at any time
during a motion e.g., a free-body diagram. In steady state moment, an equation is viewed as describing
a system where no parameters vary with time. A static forces interpretation is a specific case of a
genericmomentwhere an equationis projected into a free body diagram rather than a motion or
physical situation. In conservation, an equation is viewed as describing an application of conservation
principles, where each side of the equationis associated with a different momentinthe motionor
physical situation. Inaccounting, an equationis viewed as systematically accounting for all a quantity.

Here, the job of the equationis to describe how much or how many.
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Finally, in the special case class, an equation s restricted to certain case s or sets of cases.
Interpretative devices in this task include restricted value, specific value, limiting case, and relative value.
In restricted value device, an equation s interpreted by restricting the range of some quantitiesin the
expression. In specificvalue device, an equation s interpreted by restricting a quantity in the expression
to a particular value. Compared to specificmoment where an equation s valid for describing a particular
moment in motion, in special case, the behaviour of an expressionis consideredin a range that is
narrower than its window of validity. A limiting case is a specificversion of the specific value where a
quantity is assigned an extreme or limiting value. One drawback of the limiting case device is that it does
not allow for detailed examination of the validity of an expression overa large range. Finally, in relative
values, two quantitiesin an expression are compared to each other, and the value of one is restricted

relative to the value of the other.

2.3.2 Frameworks in Mathematics Education Research

In mathematics education research, evaluation has been studied from the perspective of proofs or
justifications. According to Sowder and Harel, there are three types of student’s justification in
mathematics: externally based proof schemes, empirical proof schemes, and analytical proof schemes
(Fig. 2.6) [42]. Externally based proof schemes are further broken into authoritarian, ritual, and symbolic
proofs. Authoritarian proofs entail justifications that are based on sources like a textbook, teacher’s
statements, and a more knowledgeable peer. Ritual proofs entail justifications based on form rather
than correctness, forinstance, believing a proof just because it is arranged in a two-column format.
Symbolic proofs entail justifications based on manipulating symbolsin a mathematical expression

without attaching contextual meaning to them.
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Empirical proofs entail justifications based on empirical evidence including perceptual proofs

(drawings) and examples thatinvolve repeating patterns. Lastly, analytical proof schemes are either

Externally based proof schemes transformational or axiomatic.
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) ) o hand, axiomatic proof schemes entail
Figure 2.6: Types of students' mathematical proof justifications (Sowder

and Harel 1998)
justifications based on following logical

sequences and consequences of pervious results. They also involve careful application of definitions,
assumption and theorems. Sowderand Harelalso claim that transformational proof schemeisa
necessary precedent to the axiomatic proof schemes.

Sowderand Harel's proof schemes are similar to the epistemicframes we have discussed. For
instance, Bing and Redish’s epistemicframes are similar to Sowderand Harel’s classification of students’
justifications. Sowderand Harel’s externally based proof schemes — particularly the authoritarian proof
scheme —is similar to Bing and Redish’s invoking authority frame. Sowderand Harel’s empirical proof
schemes are similar to Bing and Redish’s calculation frame. While the transformationaland axiomatic
proof schemes are similar to Bing and Redish’s mathematical consistency and physical mapping frames.

These frameworks willbe compared in more detail in section 3.5.
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2.3.3 Frameworks in cognitive science
From the perspective of cognitive psychology, grouping can be examined from the frameworks of

metacognition and chunking.

2.3.3.1 Metacognition

From the perspective of metacognition, evaluation strategies are part of self-requlation and
implementation of evaluation strategies is an indicator of epistemological beliefs about knowledge. Self-
regulation is the ability to plan, implement, and use feedback in the moment while carrying out the plan.
It involves planning, monitoring, assessment, decision-making and other conscious metacognitive acts
[14]. In the context of problem solving, the core of self-regulation is keeping track of one’s actions while
solving a problem and using the input from those observations to direct problem-solving actions.
Evaluating the solution of a problem can be considered self-regulation as it involves using information
aboutthe problemto getfeedback about the quality of the result in terms of its fit with the problem
context, and overall plan of action forsolving the problem. Evaluating a solution can be considered a
pause to answer the question “does this make sense?”

Furthermore, according to Vygotsky, self-regulationis a higher-order cognitive skill and thus should
be encouraged in students [13]. When students evaluate theirown work, they get the opportunity to
learn how to identify and correct their mistakes on their own [16]. Self-evaluation has been identified as
a necessary component of self-regulated learningand has been shown to promote self-regulated
learning in young students [43], [44].

Metacognition also involves beliefs and intuitions about knowledge. Forinstance, in the field of
mathematics, Schoenfeld asserts that metacognition deals with the ideas about mathematics that
students bringto work in that mathematics, and how these ideas shapesthe way they work in

mathematics [14]. Belief systems shape cognition — even when the beliefs are held unconsciously [6].
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Consequently, students’ problem-solving performance is not simply the product of what the students
know but, it is also a function of their perceptions of that knowledge, derived from their experience with
mathematics. During problem-solving, epistemological beliefs can determine which techniques will be
used or avoided, and how long and hard one will work on a problem, and the notions one has about
how mathematics knowledge is created and evaluated.

Furthermore, beliefs systems are at play when students do not perceive their mathematical
knowledge as being usefulto them in certain situations. Students think about mathematics problemsin
different “modes” like discovery mode, proof mode, formal computation mode, and confirmation mode.
To illustrate the effect of epistemological beliefs on student performance, Schoenfeld shared the story
of 45,000 students’ performance on a nationwide NAEP secondary mathematics exam. The students
were asked the question “An army bus holds 36 soldiers. If 1128 soldiers are being bused to their training
site. How many buses are needed?”. Inresponse, 29% of the students responded “31 remainder 12”,
18% responded “31”, 23% said “32”, and 30% did not do the computation correctly. The students that
said “31 remainder 12” did the computation without consideringthe physical context of the problem,
and treated it as requiring formal computation [14] .

Schoenfeld’s ideas can be adapted to physics education such that students’ problem-solving
performance is also a function of their perception of physics based on their experience with physics.
Many students treat school physics like it is completely divorced fromreal life [29] . Furthermore, the
modes that Schoenfeld mentions are consistent with epistemological framesin PER. Students think
about physics problems in different framesincluding invoking authority, plug and chug, and physical
mapping [20], [29]. For instance, responding tothe army bus question with the answer “31 remainder
12" is similar to workingin a plug and chug frame where astudent plugs numbersinto a physics

equation and derives anumerical answer without considering the physical context of the problem, or
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interpretingthe meaning of the number. Also, a scenario where students accept procedures at face
value and think that knowledge passed on “from above” is reminiscent of Bing and Redish’s invoking

authority frame.

2.3.3.2 Chunking

Another way that students make sense of equationis consistent with a phenomenon in psychology
and cognitive science called chunking. Chunking was first documented in 1965 by de Groot while
studying expertise in chess players[45]. However, the term chunking was coined by Simon and Chase,
who repeated and modified de Groot’s chess experimentin 1973 [46], [47]. Since then, chunking theory
has been studied by many cognitive scientists and has undergone several refinements. A widely adopted
definition of a chunk, as a collection of elements that have strongerassociations with one anotherand
weakerassociations with elements within other chunks, was provided by Gobet and colleagues[48].
Chunkingis studied in differentfields including psychology, cognitive science, computer science,
linguistics, and education, and has different meanings in different fields. Here we will limit our
conversation to chunking as it pertains to memory and perceptionin psychology and cognitive science.

In the context of memory, chunkingis the process whereby familiarity with a class of objects or
events leadstothe creation of a pattern of recurring networks of features or components [49].
Chunkingalso referstothe process by which the amount of information that can be storedin short-term
memory is increased by finding patterns within a set of itemsto be remembered[50].

According to chunking theory, chunks are single storage units of both meaning and perception that
are retrievable from long term memory in a single act of recognition [46], [47]. Chunks are accessed
through a process that probes for critical features of the representation or perceived stimuli and
compares those features to those of chunksin the long-term memory. This allows the perceptual stimuli

(e.g., circuit diagram, chess board, equation) to be easily recognized and categorized. Chunks are also
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linked to other information such as useful concepts, and what actions to carry out or plans to implement
giventhe specific patternsthat are recognized in the perceptualstimuli. In this way, a chunk acts like a
condition that can be satisfied by the recognition of a patternin the perceptual stimuli [51]. Once the
condition is satisfied, then the concepts, moves, and rules that are associated with the chunk or
recognized pattern are evoked from long-term memory.

According to the latest revision of chunking theory called template theory, large, frequently used
chunks develop into complex schematicretrieval structures called templates [52]. Templates are
automatically created during pattern recognition and can be referenced within shorttermmemoryasa
single chunk [53]. A template is made up of a core and a slot. A core is made up of a stable information.
A template also imposes a condition that must be satisfied for the template to be used. On the other
hand, a slot contains specific chunks/information that occur often but with some variation. The contents
of a slot can change rapidly with new perceptualstimuli. Slots also contain information related to the
domain of the stimuli including rules, facts, moves, problem solving strategies, procedures, and
processes that might have produced the perceptual stimuli.

Forinstance, in the template of a room, the core consists of a wall, floor and ceiling, while the slot
consists of the number of doors and windows. Templates are deliberately acquired sequencesinlong
term memory that are used to store identifiers for different perceptual stimuli so that related
information can be retrieved fromlongterm memory. Templates are also easily modified. The fact that
templates are easily and rapidly modifiable allow for rapid recall, accounting for the superior memory
skills of experts [54].

Deliberate vs. Automatic Chunking
From the perspective of memory, there are broadly two types of chunking: deliberate and automatic

[48]. Deliberate chunkingis conscious, explicit, intermittent, goal oriented and strategically intended to
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structure the material for memorization. Deliberate chunking produces chunks that are quite easy to
identify as they are explicitly defined by the individual whois chunking and can be justified. Onthe other
hand, automatic chunkingis implicit, unconscious, and continuous during perception. Automatic
chunking usually occurs in long-term memory and when developing expertise in adomain [48].

There are severalforms of deliberate chunking. Forinstance, deliberate chunking can be sequential
by similar terms, e.g., (aaabbbccc) is chunked as (aaa)(bbb)(ccc), orit can referto categorizing items,
e.g., (apple car plane lemon boat banana) becomes (apple lemon banana) and (car, plane, boat).
Deliberate chunking can also involve recodingitems, so that 11110110001 is chunked as 1969. Finally, it
involves using prior knowledge to memorize material, e.g., 1969 can be memorized as the year of the
moon landing.

Automaticand deliberate chunks can be used togetherorseparately. First, both types of chunking
can be usedindependently of each other. Forinstance, automatic chunking can be usedalone, e.g.,
whenlearninga first language and deliberate chunking can be used alone e.g. when usinga mnemonic
to briefly memorize a phone numberwithout committing it to long term memory. Both types of
chunking can occur togethere.g., when usingmnemonics where the information is consciously chunked
to access long term memory. Finally, there is memory in the absence of eithertype of chunking, for
instance, in the mechanical rehearsal of a phone number many times without any long-term memory
encoding.

Chunking and expertise

In psychology and cognitive science, chunkingis positively correlated with expertise. Expertise in
problem solving is associated with a large repertoire of chunks that are relevantto the problem at hand
[55], [56]. While chunkingtheory alone does not explain expertise from the perspective of memory, it

provides insight into observed expert behaviors. There are afew interesting consequences of chunking
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in memory as pertains to expertise. First, chunking allows experts to encode information with a smaller
number of units (chunks) than novices as their units encode more information. Secondly, chunking
allows experts to swiftly recognize patternsin perceived stimuliand automatically accessthe
information linked to these patterns such as potential plans or moves. To delve further or explore these
claims, we will discuss this relationship between chunking and expertise in the context of chess and
interpretations of electric circuit diagrams.

Chunkingis strongly associated with expertise in chess [45], [46], [52], [57], [58]. Chessis a domain
that has beenstudied in the context of problem solving and expertise because of its complexity. In the
seminal experiment on expertise, De Grootfound that experts chess players were betterat recalling
positions of previously seen chess boards than novice chess players [45]. While a grandmaster could
recall the positions of almost all the pieces, a strong amateur struggled to recreate half of the chess
board. Furthermore, experts perceived the chess boards not as individual pieces but in large complexes
that included information such as threat, potential moves and move sequences [54]. These large
complexeswere later called chunks by Chase and Simon, who repeated and modified De Groot’s chess
experiment[46], [47]. Eye-tracking experiments by de Groot and Gobet also showed that expertchess
players looked at the board in groups of pieces rather than piecesindividually [45], [52], and that
experts have more, and larger, chunks than novices. Lastly, Chase and Simon [46], [47] found thatfor all
participants, performance onrecall tasks was better with board with chess positions that are possible in
an actual game than boards with random positions. However, even on the recall task for the randomized
positions, experts still outperformed novices. Experts have better recall than novices for random
perceptual stimuliin theirdomain of expertise. This skill difference in random material is explained by
chunking because since experts have more chunks than novices, they are more likely to recognize these

chunks evenin random positions /configurations [52], [54].
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Chunkingis also strongly associated with expertise in the interpretation of circuit diagrams. In an
experiment similarto De Groot’s chess experiment, Egan and Schwartz asked expertand novice subjects
to reconstruct from memory circuit diagrams that they were previously shown [59]. There were afew
notable results from this study. First, like in the chess experiment, participantsinthe circuits experiment
recalled elements of the circuit diagrams in groups (chunks) and experts (electricians) recalled larger
chunksthan the unskilled subjects. Secondly, the expert participants recalled the drawings
systematically while unskilled subjects did not. As predicted by chunkingtheory, Eganand Schwartz
foundthat experts were able to quickly identify a concept that characterized an entire repre sentation
and relates many groups of elements together. Consequently, the technicians grouped elements of the
circuits into functional units and not just spatial proximity; they grouped the elementsinto overarching
components such as a filter and an amplifier. The expertsubjects' knowledge and understanding of
relationships within the functional units helped themto link spatially segregated groups of symbolsin
recall, and enabled them to retrieve symbols systematically, because functional units are conceptually
related to categories of the displayed representationin long-term memory. Forinstance, skilled
technicians know thata powersupplyis likely to include a source, rectifier, filter, and regulator.

The systematicrecall of the electric circuit drawings by expertsin this study is also consistent with
the definition of a chunk as a condition. Chunking observed in this study seemedtoinvolve
systematically retrieving elements of the representation by agenerate-and-test process that examines
representations to verify local details suggested by the overarching concepts relevant to th e display.
Once this condition is satisfied, then the concepts, moves, and rules that are associated with the chunk
or recognized pattern are evoked from long-term memory. Forinstance, once an expertfigured out that
the electric circuit was a power supply, they searched the circuit forelements needed forapower
supply.
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Lastly, while the average number of chunks recalled did not increase with increased study time, the
average size of the circuit chunks that were recalled increased systematically. The authors explain this
by the fact that if expertsubjects know the conceptual category of adrawing, it seems reasonable that
they would expound the details of the drawing, ratherthan rememberentirely different sections of it,
when given additional study time.

Chunk Decomposition

Otherresearch shows that the reverse process exists as a phenomenon, labelled chunk
decomposition. Chunk decomposition is the act of breaking chunksinto constituent chunks. According
to Knoblich, Ohlsson, Haider, and Rhenius [49], chunk decomposition is the mind’s response tofailure in
problem solving. According to Ohlsson [60], when solvinga problem, if the available chunk does not
parse the problem situation in a way that is helpfultowards finding a situation, decomposingthe
inappropriate chunksinto their component features might pave the way forfinding alternate routesto
solving the problem.

The authors posited that the probability that a chunk will be decomposed is indirectly proportional
to the “tightness” of the chunk, which is a measure of the perceptual divisibility of a chunkinto other
chunks, i.e., the extent to which the components of a chunk are each a meaningful perceptual pattern or
chunkthemselves. Tight chunks have the lowest probability of being decomposed into smaller chunks.

To testtheir theory, the authors gave participants a matchstick problem: a false statement written
with Roman numerals, arithmetic operators, and equalssigns, all constructed out of matchsticks (Fig 2.7).
The goal of the problem is to move only one matchstick in such a way that the original false statement
becomestrue mathematically. A move consists of moving, sliding or rotating a matchstick.

In terms of chunk tightness, composite numerals such as Il and IV were categorized as loose chunks

because they can perceived as containing the chunks|,l, and I,V respectively. In contrast, the numerals|,

38



and V are tight chunks because they are perceived as being a single unit. One could argue that the
numeralV can be brokenintothe symbols \ and /, however, this division is unusual and not meaningful
in this contextand therefore notachunk. Finally, the plus and equal signs have features of both loose

and tight chunks. First, they decompose into potentially meaningful components. Specifically, the plus

Il_ “ III ”n

sign can be decomposed into the components “— “and “I”, while the equal sign can be decomposed into

oo u

two “=“, all usefulsymbolsin this context. Onthe other hand, both plus and equalsigns are hardly ever
decomposed inthis wayin prior experience. As aresult, both operators are classified as intermediate
chunks. To solve a matchstick problem, different chunks need to be decomposed. Forinstance, movinga
sick from a symbollike VI requires that the chunk forVI is decomposedintoits componentsV and .

The authors found that as postulated,

the probability of a chunk being u \/ R [[ Il H =ﬂ= [[ ﬂ H

decomposed decreased with the tightness
(a)

of the chunk. On all versions of the research

task, problems that required decomposition i] H = H |] Il =1 I] H H

of tight chunks were solved less frequently b)

and took more time to solve than problems Figure 2.7: Two examples of matchstick arithmetic problems by
Knoblich, Ohlsson, Haider, and Rhenius (1999)

that requires only decomposition of loose
chunks.

In summary, chunkingis a phenomenon in psychology and cognitive science thatis consistent with
grouping. Chunks are storage units of both meaningand perception thatare retrievable fromlong term
memory. They are also linked to otherinformation such as useful concepts, plans, and rules. From the
perspective of memory, chunking can be deliberate and/orautomatic. Chunkingis strongly associated

with expertise. Chunking allows an experttorecall and encode relevantinformation. Chunks can also be
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decomposed into constituent chunks. The probability that a chunk will be decomposed isindirectly
proportional to the extent to which the components of achunk are each a meaningful perceptual

pattern or chunk.

2.4 Summary of literature review

To deeply examine evaluation strategies, we adopt the frameworks of epistemological frames,
proofs/justifications in mathematics, and metacognition. While there are overlapsin the arguments
fromthese perspectives, the common denominatoris the insight they provide into evaluation strategies.
Like the studiesin our literature review, these theoretical frameworks also advocate evaluationasa
crucial skill that should be developed and encouraged in students. From the epistemological framing
perspective, we want our students to be in a frame where mathematics and physicsis blendedin
productive manner, e.g., inthe physicalmapping and mathematical consistency frames. Similarly, from
the mathematical proof perspective, ideal evaluation strategies are in the analytical proof schemes
because they entaillogical reasoningand attaching contextualmeaning to mathematical symbols and
representations. Finally, from the metacognition perspective, evaluationis a great tool because it is part
of self-regulation and the ideal evaluation strategies are rooted in a belief that physics is not divorced
fromreal life. As we will show later, in the context of problem solving in physics, evaluation entails
making sense of equations. Sensemaking of equations can be described by chunking theory, symbolic

forms, and interpretative devices.
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CHAPTER 3

3. SURVEY OF EVALUATION STRATEGIES USED BY FIRST-YEAR STUDENTS
3.1 Introduction
Despite the important role of using evaluation strategiesin thinking like a physicist, metacognition,
expert problem solving, and modeling, there has been little research focused on evaluation. Models of
problem solving in both physics and mathematics claim that evaluation is important. However, most
researchin problem solving is focused on deriving the right result or correct application of physics
concepts, how students use mathematics during problem solving, and how students think about
different questions that use the same underlying physics concepts [11], [24], [27], [29], [61], [62].
Models of modeling and mathematization also include evaluation. Research on the use of mathematics
in physics has focused on helping students attach the correct physical proce ssesto corresponding
mathematical tools but such studies do not focus on evaluation. Previous rese arch in problem solving
shows that students do not spontaneously evaluate their results while solving physics problems but can
adopt the practice [6][17]. However, there is little research on what students dowhen prompted to
evaluate solutions, and what they do if not using expertevaluation strategies.
To focus on students’ understanding and use of evaluation strategies, we seek toanswerthe

following research questions:

1. Towhat extentdostudents use evaluation strategies when prompted?

2. Towhat extentare existing frameworks for problem solving and reasoning consistent with

students’ use of evaluation strategies?
3. How doesstudents’ use of evaluation strategies fit current models of problem solving,

justifications, and reasoning from PER and adjoining fields?
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The primary purpose of our researchis to explore the use of evaluation strategies as a tool for
helping students meld their knowledge of mathematics and physics productively. Ourgoal is to add to
the efforttoward understanding how students develop mathematical reasoning by examining how
evaluation strategies can help students consolidate their physics and mathematics knowledge thus

making them better problem solvers, self-learners, and physicists.

3.2 Research design and methods

To answerthese questions, we designed tasks that prom pted students to evaluate solutions to
physics problems. The provided solutions were in form of mathematical expressions that described the
physical quantity that was being sought or calculated in the problem statement. These tasks were given
in both interview and written form and administered at different levels of the curriculum as well as with
different problem contexts. However, for the scope of this paper, we focus on three introductory-level
tasks (see Fig. 3.1). In each of these tasks, students were given a correct expression fora quantity: the
velocity of a block at the bottom of an incline with friction; the electric field at a point some distance
fromthree point charges of equal magnitude; or the final velocities of two masses in an elastic collision.
The students were first prompted to describe how they would go about checkingwhetherthe
expression was reasonable and then asked to use their suggested approaches to determinewhetherthe

expression was likely to be correct.
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Figure 3.1: Figures and given expressions for the assigned tasks: (a) the velocity of a block at the bottom of an incline with
friction; (b) the electric field at a point some distance from three point charges of equal magnitude; (c) the final velocities of two
masses involved in an elastic collision
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In the context of the Blum and Leis modeling cycle [8], one could say that our research tasks ask
studentsto pick up fromthe end of arrow 4 (mathematical results). In our prompt, we pose a real
situation and problem and then simplify it as a problemin terms of the laws of physics. Next, we
mathematize the problem so that it is in a mathematical form of variables and symbols and use this
mathematical form of the problemto geta mathematical result. We expected our students to continue
fromthe end of arrow through step 7 i.e., interpret and validate the results in the context of the real
world.

The written tasks were administered in the calculus-based introductory physics sequence for
engineersata public research university in New England. The textbook used for the courses was Physics
forScientists and Engineers: A Strategic Approach by Knight [63]. By the time the tasks were
administered in both interview and written formats, all participants had covered the relevant physics
contentin class. Instruction consisted of lectures, traditional laboratories, and conceptual tutorials in
recitation. However, lectures were taught by different instructors with varying emphasis on quantit ative
and conceptual explanations. The coursesin which the inclined plane and point charge data were
collected were taught by the same instructor. Both courses had both lecture and recitation component,
but the weekly homework was almost completely quantitative. On the other hand, the course in which
the conservation of momentum task data was collected had two sections co-taught by different
instructors so that students received similar instruction and assessment. The courses had both lecture
and recitation components and weekly homework had both quantitative and conceptual components.
The written data collection depended on the way that the course instructor thought would optimize
participation, including short in-class quizzes with or without an offer of extra credit. Interview subjects

were volunteers, solicited in the course of interest. Interview data were also collected in different ways
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to optimize participation, including offers of cash ($5). Some of the interviews were individual, while
others were conducted with pairs of students.

While it is not possible to eliminate all potential variables, the phenomenadescribed appearedin
our data across variation in our approach, format, and level. The interviewees were first year students,
and juniors. The first yearinterviewees were enrolled in the calculus based introductory physics

sequence courses while the juniors were all physics majors.

3.3 Data analysis

Written data were analyzed using modified grounded theory/phenomenography [64] as the analysis
was in part based on previous literature and there were some expectations of certain categories. For
instance, interviews were conducted afterthe tasks had been conducted in written form, thus data
acquired from interviews were analyzed with some expectation of certain categories. Also, data analysis
was done with previous work like Loverude’s study and Bing’s epistemological frames in mind. We
hoped to be able toidentify recurring themes in student responses/reasoning. Our research design and
data analysis have focused on emergent patternsin the data. Written data were open-coded, with
phrasesin a response categorized based on an overall theme. Forinstance, on the inclined plane task,
responsesin which students suggested pluggingin numbersto checka velocity value were coded as
“plug in numbers.” Toanalyze interview data, we transcribed the videos and coded for approaches that
were also presentin the written data, thenfor new onesthatemergedin the interview. Like the written
responses, the interview codes were not based on the presence orabsence of certain words or phrases
but in the overall approach with which the student seemed to tackle the prompt.

On both the written and interview formats of the task, there were many different kinds of responses
given, and most students suggested and/or used more than one approach. Furthermore, several

(written) responses were not clearin describing what the studentwould do e.g., illegible handwriting or
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incoherentsentence. Inorderto account forthis, we rated writtenresponsesfrom0to 3 based on
clarity of explanation (3 being the clearest). After performinginterviews in an attempt to clarify and
shed light on the written responses, we re-analyzed the written responses for clarity; some of the

response ratings were changed when deemed appropriate.

3.4 Results

In this section, we report results from written and interview responses at the introductory Level of
the physics curriculum. We also presentthe relative prevalence of strategies across tasks. As we will
reportin a subsequent chapter, we did not observe any additional strategies in upper-division courses.
At the introductory level, we collected 215, 174, and 191 responses on the inclined plane, point charge

and bubble skating task respectively.

3.4.1 Evaluation strategies observed

We broadly classify the evaluation strategies observedin ourdata into three categories: comparing
to the physicalworld, checking through computation, and consulting externalsources. Strategies in the
comparing to the physical world category involve evaluating the given expression by checking whetherit
is consistent with prior physics knowledge, experience,and intuition. Strategies in the checking through
computation category involve evaluating the given expression using computation withoutinterpreting
the physical meaning of the given expression. Finally, strategies in the consulting externalsource
category involve evaluating given expressions by checking with a trusted externalsource. Figure 7 shows
the different strategies and the classification scheme.

For each category, we presentthe strategies roughly in reverse order of sophistication, from most to
least sophisticated. Foreach strategy observed, we describe defining attributes and key features of

corresponding responses. While most of the evaluation strategies observed inthe data cut across the
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tasks at the introductory level, a few of them are specific to only one task. Thus, except when explicitly
stated, the discussed evaluation strategy is presentin all three task responses. However, to explain each

code category, we primarily use examples from responses to the inclined plane task, foreasier

Evaluation Strategies

Comparing to the Checking through Consulting external
physical world computation sources
A A

Checking for
agreement with Checking the

correctness of

Checking for Solving for given Computing for a

common sense,
intuition, and laws
of physics

A

realistic numbers

Performing an

expression

trusted result

A

computational steps

Arithmetic
substitution

experiment

Algebraic

Using reasonable
substitution

Special Case analysis
P ¥ numbers

Canonical evaluation Solving for a known

Unit analysis

strategies

Covariational
reasoning

Grouping

Quantity roll call

Checking for
expected behavior

Figure 3.2: Breakdown of categories of evaluation strategy

comparisons between categories. Acomprehensive list of codesand corresponding sample responses

can be foundin the appendix.

3.41.1 Comparing to the physical world

The evaluation strategies in this category involve investigating the ability of the expressionto
describe the physical world. All the strategies in this category also explicitly or implicitly involve the use
of knowledge of mathematics, mathematical computation, knowledge of physics, and familiarity
with/intuition about the physical world. During the implementation of these strategies, students may
use variables/symbols or use numeric values of physical quantities. Evaluation strategies using numerical

valuesinvolve attaching or extracting physical meaning from a numerical answer. This category of
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responsesis broad. As a result, we divide this category into two sub-categories: checking for agreement

with common sense, intuition, and laws of physics, and checking for realistic numbers.

a. Checking for agreement with common sense, intuition, and laws of physics

Strategiesin this sub-category focus on checking for an agreementbetween the given expression

and common sense, intuition, and laws of physics. This subcategory includes six strategies of special case

analysis, unit analysis, covariational reasoning, grouping, variable roll call, and checking for expected

behavior. Onthe inclined plane task, about 37% of students gave responses coded in this sub-category.

i. Special case analysis

This strategy involves checking whetherthe given expression is consistent with real world

a. Without knowing the correct answer, how would you go about checking if
your solution is reasonable?

e I
15 equel 1.8% beavscitisi
b. Using the approach(es) you described in part a, determine whether or not
\ 1 . 1
this is likely the correct result. leds s e Jf-‘-;\éJ j RS

Figure 3.3: An example of a student’s response coded as special case analysis
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to physically happen at the chosen conditions or limits. We observed both arithmeticand algebraic
versions of this strategy. In the arithmetic version of the strategy, students use numbersin place of the
variables in the expression and interpret the numericanswer in the physical context of the special case
being probed. An example of a response thatinvolves the arithmetic version of the special case analysis
strategy is shownin Figure 3.3. This example was coded as using special case analysis because the
student checks whetherthe given expression is consistent with the law of physics underthe conditions

6 = 90° and 8 = 0°. The student stated that when 8 = 0°, the velocity should be zero because there is
no incline, and when 8 = 90°, the velocity should be 9.8% (this is incorrect). The students then
implemented the condition 8 = 90°, but arrived at theresult v = 14? . This result led the studentto
conclude that the equation was incorrect. This example was also coded as arithmetic special case

analysis because the student substituted numbers for variablesin the expression while implementing

the special case conditions.

ii. Unitanalysis
This strategy involves evaluating the given expression by checking whetherthe expression has

expected dimensions or units. An example of a response in this groupis "/ would check to see if the units

Lo , . . . |m? . .
were reasonable, as velocity is m/s and in this case, it is /5—2 = m/s." This example was coded as using

unit analysis because the student checked if the units of the expression was that of velocity (""'/s). As in
the special case analysis, there were arithmetic versions of the strategy in which students substituted
numbersin place of the variables in the expression while paying attention to the units of the final
numerical result (See Fig. 3.4.).

The example in figure 3.4 was coded as using unit analysis because the student checked whether the

units of the given expression came outto— . This response was also a coded as using arithmetic unit
S
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analysis because the student substituted numbers for variables in the expression while determining the

units of the equation.
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Figure 3.4: An example of a student’s response coded as using unit analysis

iii. Covariational reasoning
This strategy involves evaluating the given expression by using covariational reasoning to check
whetherthe expression behaves as expected, i.e., by citing an expected variation between the given
variable and anothervariable in the given expression. Examples of responses that use covariational
reasoninginclude:

“the velocity increases with the 6 increasing which makes sense”.
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and
“solve forvelocity again with a value of 8 that’s close to the original value. If the velocities are
similar, then that would prove it’s a reasonable answer.”

The first example was coded as using covariationalreasoning because the student evaluated the
expression by citing that it has the expected covariation between the velocity and the angle of the
incline 6. Likewise the second example was coded as using covariational reason because the stated that
the velocities corresponding to similar values of 8 should be close. Note that this student does not state
the direction (increase or decrease) of expected change in eitherthe velocity or angle of incline. This
type of covariational reasoning will be furtherdiscussed in section 3.5.3. Nonetheless, the student
expectedachangein 6 to lead to a coordinated change in the velocity. Sometimes, students employed
an arithmetic version of this strategy, pluggingin numbersforthe variablesto check if the expression
produces the expected covariational behavior. An example of thisiis:

“a highervelocity should result fromasmaller u and alarger 8 ascompared to a higher uand

lower 9. v = \/(9.8 ;n—z) (5m)((sin45) — 0.2 cos 45)) should give a higher velocity than v =

\/(9.8 sz) (Sm)((sin 20) — 0.7 cos 20)) which has both higher 8 and lower u decreasing the

velocity.”
The above example was coded as using covariationalreasoning becausethe student stated that
velocity should increase with increasing 8 and deceasing u. However, itis also an example of arithmetic
covariationalreasoning because the student also substituted numerical values for variables to check for

the expected covariation between the velocity, the angle of the incline 8, and coefficient of friction .
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iv. Grouping
This strategy involves making sense of the given expression by identifying agroup of symbols within
an expression and describing the physical significance of the group. We describe this as grouping, which
we define asidentifying a subset of a mathematical expression thatis bigger than one mathematical
symboland associating it with some physical significance. It is not uncommon forgroupsto be
separated by mathematical operators or the equalsign. An example of a grouping response is:
“ve? = 2gd(sin6 — pcos ). d is thedistance of the ramp (Ax). I’'m guessing g
(sin @ — pcos B) is the positive acceleration. The sin 6 « g would be for a frictionless incline.
Because there is friction, the force of friction can be u cos 8 (because cos 8 = N inthis case). So,
I guess this makes sense.”
This example was coded as using grouping because this student explicitly identified three groups
within the given expression: total acceleration g ¢ (sinf — p cos ), acceleration for a frictionless

incline (sin@ ¢ g), and the force of friction (u cos 8).

v. Quantityroll call
This strategy involves evaluating the given expression by checking whether expected quantities are
presentin the given expression as symbols. The quantities the students focus on are those they expect
to come into play in the context described by the task or the physics described by the given
mathematical expression. Examples of responses that uses the strategy of quantity roll call are:
“I would also look at the equation | derived and look to see if it included all the parts | need to be
able to calculate velocity and looking at the equation | notice it does not include mass, so | might
determine that it might not give me a correct answer.”
and

“Does it have u, 8, g, and d in it?”
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The first example was coded as using quantity roll call because the student expected the given
equation to include quantities that he thinks are needed to solve forthe velocity. Specifically, the
student expected the expression to include mass, and cites the absence of massin the equationas a
reason why the given expression might not be reasonable. The second example was coded as using
quantity roll call because the studentlisted the quantities they expect the given expression to contain.
Quantity roll call is distinguished from covariational reasoning because it accounts for mere presence of

a quantity and not for if or how the quantity affects another quantity in the given expression.

vi. Checkingfor generalexpected behavior

This strategy involves evaluating the given expression by checking that the expression generally
describes or agrees with prior knowledge of physics and intuition/common sense but do not fall into any
of our prior sub-categories. At the introductory level, many responses in this category are incomplete
and focus on a single aspect of the expression like its sign or direction. An example of a student
response that uses this strategy is “Make sure the solution is negative since the block is sliding in the —y
direction.” In the point charge task, responses citing the direction of the electric field are filed underthis
category. Responses that state that momentum orenergy should be conserved are filed under this

category for the bubble skating task.

b. Checking for realisticnumbers
Strategiesin this sub-category focus on checking numerical values of the given physics termor
variable. Since the expressionis supposedto describe the real world, the result of the expression should
be “life-like”. As seen below, notall responses provide operational definitions of terms like “feasible” or

“reasonable”. This subcategory includes the strategies of using reasonable numbers and performing an
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experiment. Onthe inclined plane task, about 25% of students gave responses coded in this sub-

category.

i Performingan experiment
This strategy involves suggesting that the given expression can be evaluated by performingan
experimenttosee whetheritis reasonable forthe physical context depictedinthe task. Anexample of a
studentresponse that uses this strategy is " Without knowing the correct answer, justdo an actual
experiment, measure the velocity, using known values check to see if the results match with what you
got”. This example is coded as using performing an experiment because the response included a
suggestion to perform an experiment, and forthe result of the experiment to be compared to the value

of velocity calculated using the given expression.

ii. Using reasonable numbers
This strategy involves evaluating an expression by substituting reasonable numbers (as determined

by the student) into the expression and checking whetherthe resultis also reasonable. This category
also includes responses that suggest checking the magnitude of the numericalvalue of the given
guantity to see whetheritis feasible given the context of the task. Responses in this category vary from
those that just say thatthe given expression should be “reasonable” (interpreted as feasible) tothose
that explain what “reasonable” means. Examples of responses in this sub-category are:

“see if answer feels possible”

“vou should be ableto tell if v is too slow or too fast for example, if d =10m, a v of 100,000m/s

wouldn’t make sense”

and
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“If lhad values ford and 8, and u | would plug these (along with the value for g) into the
equation to see if the resultant velocity seemed reasonable. Otherwise, | would make up

reasonablevalues ford and 68, and u. d = 5m,0 = 45°,u = 0.30. v =

\/[2 (9.8 sz) (Sm)] [sin 45 — 0.3cos 45] = 48.5 % This seems like a relatively high value, so

I’d say this is unreasonable."
The first example was coded as showing the using reasonable numbers strategy because the student
suggested checkingto see if the result “feels possible”. The second result stated that the value of the
velocity of the box should be “neithertoo fast nor too slow”. Finally, the last response explicitly outlines

reasonable values for all the quantities in the given expression.

3.4.1.2 Checkingthrough computation

The evaluation strategies in this category involve evaluating the given expression using approaches
that emphasize mathematical computation. In the context of this paper, we define “computation” to
mean algebraic manipulation, calculation, and mathematical operation. Checking through computation
is a broad category coveringa spectrum of responses. As aresult, we divide this category into three sub -
categories: solving for the given equation, computing for a trusted result, and checking the correctness of

computational steps.

c. Solving forgiven expression
Responsesin this sub-category involve not evaluating the expression at all but rather directly solving
the original problem from the beginning or first principles. At the introductory level, this category of
response is presentin all tasks and is the most frequent response. This group includes responsesin
which students suggest and or attempt to compare the solutions of solving for the given expression

using two different methods. On the inclined plane task, about 54% of students gave responses coded in
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this sub-category. On the inclined plane task, 9 of the 13 interviewed students considered starting over
to be a way of checkingif their solutions were correct. On the other hand, about 7% of the written
responsesinvolved students comparing the value of or expression for v obtained by two methods, e.g.,
comparing the velocity obtained from conservation of energy to velocity derived using kinematics.
Examples of responses coded as solving for given expression are
“I would check if my solutionis reasonable by first determining the velocity of the block usinga
differentverified equation.”

and

m
“Splitting up the forcesinto x and y axis, then using 2, F = ma and usinga = %—:to find the

velocity. X Fy = mgsin 8 — Nusin 6. X Fy = sin 6 (mg — Np)”.

The first response was coded as using solving for the given expression because itincluded the
suggestion to solve for the given expression using another means (“a different verified equation”). The
second example involved solving for the velocity from first principles: first using Newton’s second law to
getacceleration, and then using kinematics to solve for velocity using the already calculated
acceleration.

Finally, a few responses in this category involve integrating the given expression to get an “original
equation”. At first, it was not clear what students with such responses were trying to do. However,
interview results showed that some studentsinterpreted the word “derived” in the task prompt as
“took the derivative of,” i.e., differentiated. An example of such a response is:

“You could check youranswerthe derivative by taking the integral of v =

J/2gd (sin 8 — pcos @) and seeingif you get the original equation f(ng (sin® —
1
ucos 0))? dv.”
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The above example was coded as interpreting the word derived as “took derivative” because it

includes taking an integral to get the original (given) expression forvelocity.

d. Computing fora trusted result
Responses in this sub-category involve using mathematical moves to produce a known arithmeticor

algebraic result. All responsesin this category entail a sizeable amount of mathematical computation
aimed at confirmingthat a law of physics (e.g., conservation of energy) is obeyed orthat the value of a
constant or known quantity (e.g., g) is numerically correct. These are distinct from the strategies above
because responses in this category generally tested for computing whethertwo sides of an equation
were indeed equal, ratherthan, say, comparing a numerical result to known quantities. On the inclined
plane task, about 8% of students gave responses coded in this sub-category. There are three strategies

in this sub-category: arithmetic substitution, algebraic substitution, and solving fora known.

i.  Arithmeticsubstitution

This strategy involves evaluating the given expression by assigning numbers to quantities in the
given expression and use them to check that, numerically, a physics rule or concept holdsfor the given
expression. Here, the trusted rule or physics concept being probed depends on the context of the task.
In the inclined plane task, students checked for conservation of energy, while in the bubble skating task
students checked for conservation of momentum, conservation of energy, and adherence to the laws of
1-dimensional kinematics. In context of the bubble skating task context, an example of a response that
usesthe strategy of arithmetic substitution to verify that the expression is consistent with conservation
of momentum is shown in figure 3.5. This example was coded as using arithmetic substitution because
the student chose values forthe masses, and initial velocities of the skater, and plugged the numbers

into the given expression to find the final velocities of the skaters. The student then usesthe masses,

56



initial and final velocities of the skatersto find the initial and momentum of the skater. The student
concluded that the given expressionis correct because the initial and final momentum of the skaters

were equal.

ii.  Algebraicsubstitution
This strategy involves evaluating the given expression by substituting the given expressioninto
anotherequation to confirmthat a trusted physics conceptor rule is followed. As with the arithmetic

version of this strategy, students generally check against a trusted physics rule or principle relevant to

You obtain the following results:
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where mj and m; are the masses of the balls, vy and v are the velocities of the balls before
the collision, and vy and verare the velocities of the balls after collision, res pectively.
a. Without knowing the correct answer, how would you go about checking if your solution
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Figure 3.5: An example of a student’s response categorised as using arithmetic substitution
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the context. Usually, the equations representing these physics rules include the quantity/termthatis
beingevaluated. Forinstance, in the inclined plane context, any law of physicsinto which the equation s
substituted must containa “v”. Likewise, inthe bubble skating context, the expression to be substituted
into must contain a “v¢”. If the given expression is consistent with a known law or equation of physics,
thenit is reasonable. In the bubble skating task, an example of a response that uses the strategy of
algebraicsubstitution is shown in figure 3.6. This example was coded as using algebraic substitution
because the student substituted the given expression into the equation for conservation of energy to

checkif the leftand right hand sides of the equation were equal.

iii. Solving fora known
This strategy involves evaluating the given expression by using a given quantity or its numerical
value to solve for a known or assumed-given quantity. To determine whether the original expression is
reasonable, the student compares the value orexpression of the calculated quantity to its given or
known value. An excerptfroman interview onthe inclined plane task showingthe use of this strategy is:
“Well if  solve for v [...]you can also isolate like a variable otherthan vand make sure thatyou
havethat [value of chosen variable] number like a constant. So, if | were to isolate for dor
isolate for g then I’d know that answer [value of g or d]. So, if | gotaround the same answer
then it should be the same. [Rearranges given expression to solve for g]... | was going to solve for
a constantthat wealready know... so if we plug in the numbers that we supposedly got [forv],

we should technically get something around that [points at 9.81] answer.”
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This response was coded as using solving for a known because the student suggests using the
calculated value of the velocity to solve for quantities g (acceleration due to gravity) or d (the length of
theincline).

You obtain the following results:
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where m; and m: are the masses of the balls, vy and vz are the velocities of the balls before

the collision, and virand verare the velocities of the balls after collision, respectively.

a. Without knowing the correct answer, how would you go about checking if your solution
is reasonable?
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b. Using the approach(es) you described in part a, determine whether or not this is likely
the correct result.
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Figure 3.6: An example of a student’s response categorised as using algebraic substitution

e. Checking the correctness of computational steps
This strategy involves evaluating the given expression by checking the correctness of the
computation algorithm or steps taken to compute the given mathematical expression. Examples of

actions performedinthe responsesin this category include checkingto see that the correct numbers are
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pluggedinto the calculator, making sure numbers have the correct sign and checking that mathematical
operations are carried out correctly. On the inclined plane task, about 3% of students gave responses
coded in this sub-category. Inthe point charge task, this sub-category alsoincludes responsesinvolving
looking overa friend’s work; this may reflect the fact that the task promptis framed such that the
equationto be validated is the result of a friend’s work. An example of response a using the strategy of
checkingthe correctness of computational steps is:

“I would check to see if thevalues of each variable were put into the equation correctly”.
and in the point charge context, an example of a response in this category is:

“...ask to see friend’s steps throughout his attempt to solve the equation”.

The first example was coded as using checking the correctness of computational steps strategy
because the student suggested checkingto see whetherthe values of the quantitiesin the expression
were substituted in correctly. The second example involves checking the steps of the work of a friend
(whohad solved for the given expression). Inthe point charge task, the given expression was presented

as the result of a friend’swork.

3.4.1.3 Consulting external sources

The third major category of strategy involves evaluating the given expression by consulting an
externalsource (e.g., class notes, textbook, Google) or person (e.g., T.A., professor) as an authority on
correctness. This category represents asmall percentage of responses and is sometimes absentin data
sets. However, takinginto account both written and interview data, this response category is presentin
all three tasks. On the point charge task, about 13% of students gave responses coded in this category.

Examples of responses in this category include:

“I would ask my TA or go to the PLC [Physics Learning Center] for help if | couldn't figure it out”

“..in reality, I’d probably check online”
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“I would check my notes to see if the derived expression matched what I learned in class.”

The first example was coded as using consulting external sources because the student suggested
asking herT.A. or going to the Physics Learning Center. In the second example, the student mentions
that she would check online, and in the third example, the students states that she would consult her
class notes. In the interview version of the inclined plane task, when students were asked how they
normally check their work, 6 out of 10 students mentioned checking with the professorand comparing
answers with friends. When asked how a physicist would respond to the prompt, 4 out of 7 stude nts

said that a physicist would check the textbook or consult other physicists.

3.4.2 Summary of observed categories

When asked to evaluate the solution of physics problemsin three different contexts, first-year
students used a variety of strategies which we classified into 3 groups: consulting externalsources,
checking through computation, and comparing to the physical world.

The prevalence of the observed strategies for each task, at the introductory level, is shown in Figure
3.7. Note that multiple codes could be attributed to the same student even in one task, so the totals for
a given task often add to more than 100%.

As mentioned earlier, the most prevalent strategies are solving for the given expression, which is in
the checking through computation group, and checking for agreement with common sense, intuition,
and physicallaws, which is part of the more sophisticated comparing to the physical world group. The
major contribution from the latter category was in checking forexpected behavior, which as mentioned
above largely consisted of simple but reasonable checks, e.g., matching signs to directions.

In general, the majority of strategies used were either computation-based or, we argue, novice
versions of more expert strategies that connected the expression to the physical scenario. See the

Discussion for more details. Checking through computation was a very common category of response,
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particularly the sub-category of solving for given expression. Over half the studentresponsesin the point
charge andincline questions were coded as this sub-category. A similar fraction of responses were
categorized as comparing to the physical world, though some caution is appropriate as the more
common responses in this category were less sophisticated responses from the checking for expected
behavior group. The strategies commonly mentioned in prior literature as desirable, namely unit
analysis, special cases, and checking for reasonable numbers, were not at all commonin our data set,
with underten percent of responses identified with each category for most of the tasks.

Relatively few studentsin our sample were categorized as consulting externalsources, and this
response appeared primarily in the point charge task.

Of note as wellis the wide variation within any single strategy across the three tasks. Some
strategies were used only on one task or much more on one task than the others, while other strategies

were used on all three tasks but with very different prevalence.
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Figure 3.7: Prevalence of evaluation strategies used by first year students
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3.5 Discussion

To discuss our results, first, we compare the strategies we coded in our data to strategies observed
in prior study of evaluation strategies. Many of the evaluation strategies observedin our data; including
special case analysis, unitanalysis, using reasonable numbers, solving for the given expression,
covariational reasoning, and quantity roll call; have been reported in prior research on evaluation [2],
[16]-[19], albeit sometimes with different names. However, compared to the results of Loverude’s study
[2], a greaterfraction of our students attempted solving for the given expression. Unlike Warren [16] or
Sikorskiand colleagues [15], we did not find any systematictrend in the prevalence of the use of unit
analysis, limiting cases, or using reasonable numbers. The strategies of arithmeticsubstitution, algebraic
substitution, and solving for a known, grouping, consulting externalsources, and performing an
experiment have not been reportedin any prior study to our knowledge.

As described above, previous literature tends to focus on a subset of the strategies we identified:
special case analysis, unitanalysis, and using reasonable numbers. As these are mentioned as strategies
taught to physics students [16]—[18], we classify these as canonical evaluation strategies. The other
strategies we observed are thus categories as non-canonical.

To delve furtherinto ourresults, first, we present some of generalnotes on the findings, and
connectour observations to mathematical modeling, and prior research on evaluation strategies. We
also examine our results from the perspective of using mathematics in physics. Next, we dissectour
results using the frameworks of epistemological framesin PER, proofs/justifications in mathematics
education research, and metacognition. For each of these theoretical frameworks, we discuss all 3
groups of evaluation strategies. We end with some insights from classroom practices and implications

for teaching.
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3.5.1 General Observations

There are three majorgeneral observationsin our results with introductory students. First, most
students did not evaluate solutions to physics problems using an approach that an expert would
consideran evaluation strategy. Second, many students used evaluation strategies that emphasized
computation. As a result, either due to the limitations of their knowledge or of the strategy, many
students were unable to complete the evaluation task successfully. Third, many students used

evaluation strategies that are not canonical but nonetheless useful.

3.5.1.1 Mostintroductory students did not use expert-like evaluation strategies

On every task at the introductory level, only a few students used the canonical evaluation strategies,
as seenin Fig. 3.7 (b). The most prevalent was using reasonable numbers, used mainly on the inclined
plane task, by about 20% of students. Special case analysis and suggestions to performan experiment
were seen atthe 0%-10% level, and primarily on the inclined plane and bubble skating tasks.

Even when students did use canonical evaluation strategies, theirimplementation was not always
expert-like. Forinstance, within using reasonable numbers responses, there was arange of
sophistication in terms of how specific students are about what “reasonable” means. The response “see
if answerfeels possible” is not specificabout what reasonable means. However, this responseis clearer:
“vou should be ableto tell if v is too slow or too fast for example, ifd =10m, a v of 100,000m/s wouldn’t
make sense.” The 3rd response provided in section 3.4.1.1.a.iii (on page 50) is even more explicit about
what “reasonable” means, because the student gave specific “reasonable” values for the mass of the
block, the coefficient of friction, the incline length, and the angle of incline. Thus, while using reasonable
numbers is a potentially productive direction, its utility is diminished when students don’t know whatis

considered “realistic” or if they lack the physical intuition in some cases.
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Previous studies showed that students do not check their work spontaneously [26]. Ourstudy
instead focused on how, and indeed whether, students evaluated the solution when explicitly prompted
to do so. We observed that when explicitly asked to evaluate the solution to a physics problem, many
introductory students did not do so. Essentially, the evaluation strategies experts recommend are, for

the most part, not what first-year students employ to perform the same task.

3.5.1.2 Many students used evaluation strategies that emphasized computation

Our second observation was that instead of using canonical evaluation strategies, many students
attempted evaluating the given expression using strategies that were based on checking the correctness
or accuracy of computational procedures. Thisis shown in the frequency of the use of evaluation
strategies that are based on computation (checking through computation strategies), e.g., solving for the
given expression, checking the correctness of computationalsteps, and solving for a trusted result.
Essentially, these strategies reflect the notion that if the given expression s correct, it must be
reasonable, andif it is reproducible thenit is correct.

Forinstance, on everyintroductory-level task, about half of the students suggested and/or
attempted solving the problem from first principles, which was the most popularresponse to the
prompt at this level. Solving forthe given expression is based on trust in the computational steps used to
obtain the given expression. Inthe inclined plane task for instance, the use of this strategy implies a
belief that the known methods of solving for the velocity of the block (Newton’s second law, kinematics,
and conservation of energy) are always accurate and so, if the computational steps of these methods
are correctly followed, the resulting expression should be correct.

Similar to solving for the expression, checking the correctness of computational steps entails being
punctilious about following the computational steps that are relevant to solving the problem statement

posed on the task. Specifically, checking the correctness of computationalsteps entails checking details
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such as ensuring that signs of quantities have been correctly carried through, the appropriate equations
have been used, and numbers have been correctly plugged into the equation or calculator. Solving fora
known result also involves performing a substantial amount of mathematical operation to prove the
given equationis correct.

Students’ preference for computation is further shown by the existence of arithmetical versions of
strategies like covariationalreasoning, unit analysis, and special case analysis. In the arithmetical
versions of these strategies, students make decisions based on arithmetical computation instead of
more qualitative processes. Forinstance, in the arithmetical version of covariational reasoning, a few
students plugged in numbers for quantities to check whetherthe expression produces the expected
covariational behavior. The preference forarithmetical versions of these strategies may reflect the lack
of qualitative tools available to students and the familiarity with arithmetical substitutionsin most
course assessments. This is consistent with other literature on novice understanding of problem solving;
novices are less comfortable manipulating termsin multi-symbol expressions, and thus more likely to
plug in numberssoonerin a problemthan experts would [26].

Implementing these computation-intensive strategies can be quite cumbersome. With this amount
of computation also comes the potentialto make arithmetic errors. Forinstance, on the bubble skating
task, none of the students who attempted algebraic substitution finished the computation at all. While
the evaluation strategies in checking with computation involve little to no physical interpretation of the
given expressions, both algebraic and arithmetic substitution strategies include recognizing the laws of
physics at play, such as the law of conservation of energy for the inclined plane task and the law of

conservation of momentum forthe bubble skating task.
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3.5.1.3 Students used evaluation strategies that are not canonical but nonetheless useful

Our third observation was that some of the observed non-canonical strategies are sophisticated and
useful (covariationalreasoning and grouping), while others are unsophisticated but nonetheless an
efforttoward expertevaluation, e.g., quantity rollcall and checking for general expected physics

behavior.

a. Non-canonical, sophisticated strategies

While covariationalreasoning is not a strategy that a physics expert would necessarily consideran
evaluation strategy, we believe thatit should be considered a sophisticated strategy because itinvolves
interpreting the expression as a dynamic mathematical description of what happens physically,
consistent with the covariational reasoning literature [32]. Some students coordinated the change in
value of one quantity with changesin the other, whichis the type 1 mental action (MA1) of covariation.
This use of MA1is shown in the examples “solve for velocity again with a value of 0 that’s close to the
original value. If the velocities are similar, thenthat would prove it’s a reasonable answer”. Other
studentresponses were classified as a type 2 mentalaction (MA?2), as they considered the direction of
change of one variable with the changesin the othervariable: “the velocity increases with the ©
increasing which makes sense”. We believe that this strategy, while often not discussed in physics, is
nevertheless expert-like; when students use covariational reasoning, notonly do they load meaning
ontothe symbols and equation, they also leverage the quantitative relationships between physical
quantities [10], [12].

For the sake of comparison, Carlson etal. reported on a study with high-achieving second semester
calculus students; they stated that while the majority of students were able to use categories MA1

through MA3, the higherlevels were used inconsistently by most students[32]. Their sample had
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difficulty with L5 reasoning, prompting them to recommend thatinstructors ‘take into account the
complexity of acquiring L5 (instantaneous rate) reasoning.’

Anothersophisticated but not canonical strategy was grouping. Groupinginvolves students
extractingthe story that the equation tells about the physical scenario it describes. Groupingalso
involves reformatting and/or picking apart the given expression to get a form that looks familiar and can
be interpretedin the context of the task. It is worthwhile to distinguish this version of grouping from the
procedural resource defined by Wittmann and Black [65]. In their study, students were grouping terms
to then perform primarily algebraic operationsin a separation of variables problem. The grouping
identified here, while symbolically similar, is motivated by physical significance ratherthan algebraic
convenience. We believe this strategy is sophisticated and our data suggest thatits prevalence asa
response category changes as students advance through the physics curriculum. This strategy will be
furtherexploredin chapter4, including its relationship to constructs from cognitive science, such as

“chunking” and “chunk decomposition”.

b. Non-canonical, unsophisticated yet useful strategies

Quantity roll call and checking for expected behavior are non-canonical, unsophisticated evaluation
strategies. These strategies allow students to decide whetherthe given expressionis false, but they do
not help a studentverify thatthe expression is reasonable. However, they are useful attempts at expert
evaluation. Quantity roll call involves checkingto see whetherthe quantities that are expected to affect
the derived physical quantity are present. Inthis sense, quantity roll call might be considered “proto-
covariationalreasoning” or a less sophisticated form of covariationalreasoning, as the given quantity is
a function of other physical quantities represented in the expression as variables. However, it does not

go as far as covariational reasoning to explicitly claim that a change in one variable affects another, or
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mathematically describe how the given quantity would change if there is a change in anothervariable in
the equation.

Similarly, at the introductory level, checking for general expected physics behavior entails broad
checks like confirming the direction of vectors or signed quantities, e.g., direction of the net electric field
in the point charge task. This strategy requires some knowledge of physics and the physical
interpretation of the mathematical expression, e.g., connecting negative signs to a particular direction.
However, like quantity roll call, checking for general expected physics behavior is not necessarily an
accurate or complete evaluation strategy: it can be usedto rule out a proposed solution but cannot
speak fully to whetherthe solutionis reasonable. Forinstance, an expression forthe electricfield of a

point charge could have the correct vector direction and include appropriate quantities (r, g, k) but go
as 1/r or 1/r3 instead of 1/1,2: all relevant quantities are present, with appropriate effects on the

outcome (field decreases with r), but the specificdependence is incorrect. This would require a unit
analysis to discover. However, both quantity rollcall and checking for general expected physics behavior

strategies are valuable because they involve making meaning with mathematics and physics.

3.5.1.4 Contextdependence of strategy prevalence

A key observation from the data is that the strategies chosen by students seemto be highly
dependent onthe task. We see some strategies appearing at much greaterratesin certain tasks than
other. For example, grouping is much more prevalentin the point charge andinclined plane tasks than it
is in the bubble skating task. Checkingfor realistic numbersis a somewhat common strategy in the
inclined plane and bubble skating task, but fairly uncommonin the point charge task. This phenomenon
suggests a few observations.

First, prior discussions of evaluation (and of problem solvingin general) appearto treatskills as

generically applicable butthis is likely to be an oversimplification. Checking for realistic numbers s likely
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to be a more accessible strategy for classical mechanics problemsthan it is for electricity and
magnetism, for which students have much less intuition about reasonable values of quantities. Unit
analysis may similarly be less usefulfor tasksin later parts of the introductory physics curriculum with
unfamiliar and esotericunits. The assumption that evaluationis a set of skills that transfers readily
across the physics curriculum may need to be examined.

Second, there is some reason to believe that students are being more selective in their choice of
task-specific strategies. Strategies that are not productive in a given task contextare largely not present
in the responses from higherlevelcourses. Forinstance, in the bubble skating task, grouping and
quantity roll call are not present beyond the first-year level. This may reflect that more experienced
students recognize that grouping and quantity roll call are not productive on that task. On the flip side,
because of the salience of the termsin the electric field expressions, grouping can be a productive
strategy in the point charge task context;indeed, itis more prevalentin the more advanced sample.

Finally, this trend is in keeping with many prior PER results suggesting the importance of context.
This task and context dependence also supports the need for multiple instruments using different
physics contentto fully explore the variety and prevalence of problem-solving strategies. A single
guestion asked of a single population should not be expected to span the space of any study of broad

skills or knowledge.

3.5.2 Connectingresultsto previous research on mathematical modeling and the use of
mathematics in physics
Here we discuss how our findings fit into the models of mathe matical modeling and mathematical
reasoningin physics that were described in section Il. Overall, we see that, when evaluating expressions,
mostintroductory students either get stalled in the modeling process or repeat a step that was already

takenratherthan continuing along the modeltrajectory.
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Using the Blum and LeiR modeling cycle [8], our task prompts students to begin at the
“mathematical results” point, after “working mathematically,” which refers to computation, and
continue through steps5, 6, and 7, i.e., interpretand validate the results in the context of the rea
world. However, ourresults show that this is not the typical process taken by students. Instead of
moving between and connecting the mathematics world and the rest of the world, the many students
who used evaluation strategies in the checking through computation category remained in the
mathematics world. For instance, students who solved for or rederived the given expression we re
completing step 4; they used the mathematical model of the problemto solve for the mathematical
solution. Similarly, studentswho solved fora knownresultrepeated step 3 and 4, butthis time
mathematically reformulated the problem as solving fora different quantity or known mathematical
result. Thus, these students focused on the mathematical result and did not relate it to the physical
world. On the other hand, students who used strategies in the comparing to the physical world category
did as they were prompted and performed steps 5through 7 of the Blum and LeiR modeling cycle [8],
connecting “mathematics”to the “rest of the world” .

By incorporating the interpretation of the given expression in the context of the physical systemit is
supposedto describe, evaluation strategiesinthe comparing to the physical world category implicitly
involve mathematization and mathematical reasoning because they involve interpreting the equation as
a mathematical representation of the laws of physical world and determining the physical consequences
of mathematical manipulations of these laws. In this way, these evaluation strategies are consistent with
Redish and Kuo [10] (Fig. 2.2) and with Uhden and colleagues [12] (Fig. 2.4), connecting the post-
computational physical-mathematical model (the given expression)to the real world (the physical

scenario).
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While using these strategies, students load physical meaning onto symbols and equations, a
characteristic that differentiates physicists from mathematicians [10]. Unlike strategies in checking with
computation, strategies in the comparing to the physical world category always involve attaching or
extracting physical meaning from a result. It could be argued that arithmetic versions of comparing to
the physicalworld strategies are less sophisticated than their qualitative counterparts because they
bypass decisions such as deciding what approximations are valid or appropriate. However, whetherin
arithmetic or algebraic forms, strategiesin the comparing to the physical world category are expert-like
because they involve recognizing and interpreting the given expression as a mathematical
representation of the physical world. Thus, we interpret these students’ attempts as applying novice
tools to an expert-like strategy. By tying physical meaning to mathematical symbols and operations, this
category of strategies also involves grounding mathematics in physics: integrating physics and
mathematics in ways that make sense physically [2],{10]—[12]. Allthe strategiesin this category also
explicitly or implicitly involve the use of knowledge of mathematics, mathematical computation,
knowledge of physics concepts, and familiarity with and intuition about the physical world.

To show how evaluation is consistent with mathematical modelingand models of using
mathematics in physics, consider checking limiting casesin the context of the inclined plane task. First,
the student has to assume that the equation is a mathematical description of what happensin real life;
the velocity of a block is influenced by gravity and is a function of the angle of the incline and the friction
between the block and ramp. Next, to check that the expression accurately predicts the real world, we
considerwhat is expected to happen under certain conditions, e.g., when the ramp is upright and when
it is completely flat. Next, we mathematize the verticaland horizontal casesas 8 = 90°and 6 = 0°,
respectively. Next, one evaluates the expression at these limits with technical mathematical operations

including multiplication and subtraction. Then one interpretsthe result of the evaluation of the given
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expression at the two special-case angles in the context of the inclined plane problem and checks
whetherthe results are valid and representative of the realworld when the incline is upright (8 = 90°)
and whenitis flat (8 = 0°). Special case analysis uses knowledge of mathematicsincluding algebra and
trigonometry. Italso requires the knowledge of physics including Newton's first law and motion under
the influence of gravity. Essentially, performing validity checks forces students to tie their knowledge of
mathematics, mathematical computation, and mathematical formalism to the physical context of

problems with which they are confronted [2].

3.5.3 Connectingresultsto frameworks in mathematics and physics education
To delve even deeperinto our results, we examine them using the frameworks of mathematical

proofs and justification in mathematics education, epistemological framesin PER, and metacognition.

3.5.3.1 Mathematical proof and justification

From the perspective of the theoretical framework of mathematical proof and justification,
strategiesin the comparing to the physical world category are consistent with Sowderand Harel’s
analytical proof schemes[42]. This group of strategies emphasize unpacking the contextual meaning of
symbolsin the given mathematical expression. The category involves following logical sequences,and
careful application of definitions, assumptions, and theorems, e.g., knowing the underlying physics
concepts that apply in certain scenarios, mathematical representations of physical situations, and the
corresponding physical consequences of mathematical operations. In the context of our prompt, these
ideas translate to invoking and applying the laws of physics under certain assumptions (e.g., special
cases). Onthe other hand, evaluation strategies in the checking through computation category are
consistent with the symbolic proof scheme because theyinvolve treating variables and numbers as

though they are devoid of physical meaning. Finally, strategiesin the consulting with external sources
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strategy are consistent with Sowder and Harel’s authoritarian proof scheme, as they refer to situations
where studentsrely on sources like a textbook, teacher’s statements, and a more knowledgeable
classmate to justify or validate a result.

From the perspective of epistemological frames in physics, evaluation strategies in the comparing to
the physicalworld category are consistent with Bing's physicalmapping frame [20]. When using this
group of strategies, students support theirarguments by pointing to the quality of fit betweenthe
mathematical symbolicrepresentation (the given expression)and the physical situation it is meantto
describe. This group of strategies also involves the use of extended chains of reasoning and entails
attachment of physical information to symbols, signs, and operations. For instance, both performan
experimentand check answer magnitude are based on the belief that the since the expression s
supposedtodescribe the real world, the resulting value of v should be realistic even if an operational
definition of realistic is not offered.

On the otherhand, strategiesin the checking with computation category are generally consistent
with Bing and Redish’s calculation frame: students rely on algorithmically following a set of established
computational stepsto lead to a trustable result. These strategies are also characterized by a focus on
technical correctness and attention to mathematical formalism and include minimal connection
between variables and the physical quantities they represent.

Lastly, the consulting with externalsources category is consistent with Bing and Redish’s invoking
authority frame, as it cites the information from these externalsources are accurate. A common feature

of responsesis the absence of extended chains of mathematical reasoning.
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Table 3.1: Summary of comparison between results and existing frameworks

Framework >

Category,

Mathematical
Modeling
(Blum& LeiR, 2007)

Proofs/Justification
(Hareland
Sowder,1998)

Metacognition

Epistemic Games
(Bing &Redish,
2009)

Comparingto

Performedstep 5

Analytical proof

1. Developedself-

Physical Mapping

the physical through 7. scheme regulation and frame
world self-evaluation

skills.

2.Physicsis not

divorced from

real-life.
Checking Repeatedsteps 3 Symbolic proof 1. Mathematical Calculation
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3.5.3.2

Metacognition

In terms of the more cognitive aspects of metacognition [14], students who use evaluation

strategiesin the comparing to the physicalworld category exhibit self-regulation, as they are able to

step back and use input from otherobservations, such as intuition and formal mathematics and physics

knowledge, to guide inquiries about the validity of a given expression. However, students who use

strategies in the checking with computation category use input from the correctness or mathematical

accuracy of their calculations as a guide to inquire about the validity of the given expression. Even

though this input is not obtained from the physical world, at least, the powerto check is self-centered

rather than externally validated. Lastly, students who use the strategy of consulting with external
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sources have not developed the skill of self-evaluation and so depend on external sources to make
decisions regarding the validity of the expression.

In terms of epistemological beliefs about physics [6], [14] , the use of evaluation strategiesin the
comparing to the physical world category reflects a belief that physicsis not divorced fromreal life, and
that the mathematical expression is a dynamic description of the laws of the physical world. The
students who use these strategies seem notto hold a belief thatinstructors are the only authority on
knowledge. They also perceive physics and physics knowledge to be usefulin a real-world context. On
the otherhand, the use of strategiesin the checking through computation category seemto reflecta
beliefin mathematical formalism and prescribed regimen for solving physics problems with little to no
emphasis or importance ascribed to interpreting the mathematical operations performed or the physics
principles invoked while solving the problem. Finally, the use of consulting with externalsources reflects
a belief that textbooks and physics professors are reliable sources of physics knowledge and can be
invoked as authorities to check the validity of a mathematical expression that describes a physics
scenario. This is further shown by instances when students said a physicist would check the textbook or

consult other physicists to evaluate the solution of a problem.

3.5.4 Implications about and for instruction

Even though evaluation is one of many components of the problem-solving process, evaluation
strategies incorporate several expert-like skills: meld knowledge of mathematics and physics, develop
critical thinking, develop self-evaluation skills, and improve generalunderstanding of physics.

The aim of instruction in physicsis notjustto increase students’ knowledge of mathematics and
physics, but to also teach students how to decide what types of knowledge counts as valid proof of a
new result. The use of evaluation strategies forces students to tie theirknowledge of mathematics,

mathematical computation, and mathematical formalism to the physical contexts of problems with
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which they are confronted. This suggests that instructional activities that have studentslearnto use
these checks can develop that knowledge integration between worlds. Prior research shows that
teaching from the perspective of mathematization, i.e., explicitly emphasizing the coherence between
physical meaning and mathematical formalism, can improve student achievement [34].

In addition to integrating mathematics and physics knowledge, using evaluation strategies give s
students an opportunity to see that physics is self-consistent [16]. For instance, when students use
special analysis in the context of the inclined plane, theirassociations for inclined plane problems not
only include Newton’s second law and conservation of energy, butalso expands to Newton's first law,
kinematics, and motion undergravity. In this way, the students also develop expert-like traits as they
see the underlying physics laws at work in a scenario instead of just surface attributes (in this case, an
objectonan incline plane) [66].

Some of the evaluation strategies we observed in ourdata and filed underthe comparing to the
physicalworld category are not whatan expert would suggest, e.g., covariational reasoning, grouping,
and quantity roll call. However, these strategies are productive attempts at evaluating as they are in
agreement with mathematical modeling and models of using mathematics in physics. Consequently, as
instructors, when we ask students to evaluate a solution, we should look for these strategies in student
work and give credit to and applaud students who use these unusual evaluation strategies.

Strategiesin the checking through computation category and arithmeticversions of strategiesin the
comparing to the physical world category make up a significant chunk of students’ responses atthe
introductory level. This result is not surprising as it reflects the culture of the traditional physics
classroom. We teach our students — perhaps unconsciously —that physics is following a set of
procedures and algorithms and so that is all they know. Consequently, when prompted to evaluate a

solution, students perform mathematical operations and follow procedures of solving physics problems

78



because thatis all they know and have been taughtto do. Competence in mathematical computationis
not wrong, it is a skill that is necessary to successin physics. However, a physicist also needsto be able
to mathematize by blending mathematical formalism and computation with physics concepts and
physical meaning. As a result, one goal of physicsinstruction should be to help students ground their
knowledge and use of mathematics and mathematical proceduresin the p hysical world.

Our findings on the prevalence of consulting with externalsources as a validation strategy suggest
that one outcome of an introductory physics course is that a few students think that the one way to
know if a solution is reasonable is by asking an external authority. Since self-evaluationis a necessary
aspectof self-regulated learning [43] and a possible catalyst for the development of authentic scientific
reasoning [22], a teaching goal should include explicit instruction on how to evaluate one’s own work
[67]. Instruction should also include dissuasion from relying on the instructor and othersources as the
sole source of knowledge or authority on evaluation and encouragement to consider alternate methods

of evaluation.

3.6 Conclusion

In summary, to investigate students’ use and understanding of evaluation strategies, we asked first-
year students to evaluate the solution to a physics problemin three contexts. We found that students
used a slew of evaluation strategies to evaluate the given expressions, including a few strategies such as
grouping and performing an experiment that have not been documented before. We divided the
observed evaluation strategies into three groups: consulting external sources, checking through
computation and comparing to the physical world. We found that most introductory students did not
evaluate solutions to physics problems using expert-like strategies, many students used evaluation
strategies that emphasized computation, and students used evaluation strategies that are not canonical

but nonetheless useful. The analysis of our results showed our characterizations of these groups to be
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consistent with prior research in mathematical modeling, the use of mathematicsin physics,
proof/justifications in mathematics education, and control and beliefs about knowledge in

metacognition.
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CHAPTER 4

4. GROUPING ASAN EVALUATION STRATEGY
4.1 Introduction

One widely acknowledged goal of undergraduate science, technology, engineering and mathematics
(STEM) education is the development of critical thinking [22]. In physics, one vehicle for teachingand
assessing critical thinking is problem solving. Evaluation is an important aspect of critical thinkingand
consequently problem solving in physics [23]. In physics, evaluation entails checking to make sure the
solution of a problem obeys the laws of physics, is reasonable, and satisfies the constraints relevant to
the context of the problem [1]. Examples of evaluation strategiesinclude performing dimensional
analysis, considering limiting cases, using approximations, predicting the effects of changesin problems
and identifying errorsin solutions [2]. The ability to evaluate a solution is one of the unspoken examples
of what it meansto “think like a physicist”[3].

Evaluation is also a component of the use of mathematics (mathematical reasoning) in physics, a
heavily studied subjectin PER [10]—[12], [34]. Studies of the use of mathematics in physics demonstrate
that mathematics and physics are interconnected in a strong, productive, and multifaceted manner.
Uhden and colleagues claim that the use of mathematics in physics has three aspects: it servesas a tool
(pragmatic perspective),itacts as a language (communicative function), and it provides a meansfor
logical deductive reasoning (structuralfunction) [12]. The authors assert that mathematicsin physics
goes beyond the structural function of establishing quantitative relationships between physical
guantities. For example, sometimes theoretical explanations in physics are enabled by the deductive
nature of mathematicalformalism. Similarly, Redish and Kuo assertthat the use and meaning of
mathematics is different for mathematicians and physicists: in particular, physicists load physical

meaning onto symbols and equations while mathematicians do not [10].
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Models of mathematical reasoningin physics emphasize and illustrate the grounding of
mathematics in a physical system[10]-[12].These models also include a step of evaluation, and show
that evaluation strategies involve integrating physics and mathematics in ways that make sense
physically [2]. Similarly, evaluationis a step in models of mathematical modeling[8], [9]. Evaluation is
also an acknowledged step of problem solving in both physics and mathematics, and it is usually listed in
problem solving rubrics[4]-[7], [24]—-[26].

A few PER studies have explored student use of validity checks or evaluation strategies [2], [16]—
[19], [68]. These studies have reported and described students’ use of the commonly taught evaluation
strategies of unit analysis, limiting cases, and using reasonable numbers. They have also documented
students’ use of non-traditional evaluation strategies including solving the problem, citing the presence
or absence of a variable in the expression, describing the physical mechanism at play in the physical
situation, and performing a limiting case analysis.

In the previous chapter, we presented acomprehensive list of evaluation strategies observed at the
introductory level [68] when students were asked to check the validity of mathematical expressions
describing physical scenarios in different contexts. We identified 3 broad categories of responses:
consulting externalsources, checking through computation, and comparingto the physicalworld. The
responsesinthe comparing to the physical world category include a subcategory that we labelled
“grouping.” We define grouping as identifying a subset of a mathematical expression, or ‘group,’ that is
bigger than one mathematical symbol, and associating it with some physical significance in the given
physical scenario or context. Itis not uncommon for groups to be separated by mathematical operators
or the equal sign. Groupinginvolves making sense of termsin an expression and explaining its

significance using the physics at play.
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One example of a response that we have classified as using grouping comes from a student response

to the written version of the inclined plane task (see Fig. 4.1). The studentresponded:
“ve? = 2gd(sin @ — pcos@). d is the distance of the ramp (Ax). I'm guessing g ¢
(sin @ — u cos @) is the positive acceleration. The sin 8 « g would be fora frictionlessincline.
Because there is friction, the force of friction can be u cos8 (because cosf = N inthis case). So,
| guessthis makessense”.

We classify this response as grouping because the studentidentifies agroup of symbols g e
(sin @ — u cos @) and associates them with the acceleration of the box onthe incline. The studentalso
identifies sin 8 g as the acceleration of the box without the friction between the box and the incline,
and u cos @ as the force of friction. These and othertypes of grouping will be described furtherin
section IV.

We first noticed groupingin introductory interviews when students were asked to evaluate an
expression forthe electricfield due to three point charges at some distance from the charges. During
the interviews, 4 out of 5 pairs of students employed groupingto evaluate the given expression. The
frequency of grouping during interviews on the point charge task prompted us to look through written
results on the task as well as interview responses in other contexts. We believe that the process of
groupingis driven by physics as the students do not justfocus on mathematical operationsin the
expressions but on theirsignificance of the situation at hand.

The goal of this chapter is to define and describe the phenomenon of grouping. To do this we will
show and classify instances of grouping in the three task we administered. We will also describe an
compare grouping to the phenomenon of chunking in cognitive science, and through framework of

symbolic formsin PER.
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4.2 Research Design/ Methods

4.2.1 Research Questions

Despite the importance of evaluation as part of critical thinking, problem solving, mathematization
and metacognition, there has been little to noresearch focused on how, where, and when physics
students develop and employ the skills of evaluation. For instance, eventhough evaluationis an
important aspect of problem solving, However, most research in problem solving is focused on deriving
the right result or correct application of physics concepts, how students use mathematics during
problem solving, and how students think about different questions that use the same underlying physics
concepts [11], [24], [27], [29], [61], [62]. Research on the use of mathematicsin physics has focused on
helping students attach the correct physical processes to corresponding mathematical tools but such
studies do not focus on evaluation. Similarly, studies involving metacognitionin PER tend to focus on
studentreasoning during problem solving. To focus on students’ understanding and use of evaluation
strategies, we seek toanswer the following research questions:

1. How dostudents make sense of an expression when they check its validity?
2. Towhat extentdo frameworks in education research and psychology describe grouping?
3. What determinesthe prevalence of grouping as an evaluation strategy?

The primary purpose of our research is to explore the use of evaluation strategies as a tool for
helping students meld their knowledge of mathematics and physicsin a way that is both usefuland
profitable. Our goal is to add to the effort towards understanding how students develop mathematical
reasoning by examining how evaluation strategies can help students consolidate their physics and

mathematics knowledge thus makingthem better problem solvers, self-learners and physicists.
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4.2.2 Task design and administration

To answerthese questions, we designed tasks that prompted students to evaluate solutions to
physics problems. The provided solutions were in form of mathematical expressions that described the
physical quantity that was being sought or calculated in the problem statement. These tasks were given
in both interview and written form and administered at differentlevels of the curriculum as well as with
different problem contexts. However, for the scope of this paper, we focus on three introductory-level
tasks (see Fig. 3). In each of these tasks, students were given a correct expression fora quantity: the
velocity of a block at the bottom of an incline with friction; the electric field at a point some distance
fromthree point charges of equal magnitude; or the final velocities of two masses in an elastic collision.
The students were first prompted to describe how they would go about checking whetherthe
expression was reasonable and then asked to use their suggested approachesto determinewhetherthe
expression was likely to be correct.

The written tasks were administered in the calculus-based introductory physics sequence, primarily
taken by engineering majors, at a public research university in New England. The textbook used forthe
courses was Physics for Scientists and Engineers: A Strategic Approach by Knight[63]. By the time the
tasks were administeredin both interview and written formats, all participants had covered the relevant
physics contentin class. All the students received instruction through lectures, traditional lab oratories,
and conceptualtutorials in recitation. However, lectures were taught by different instructors with
varying emphasis on quantitative and conceptual explanations. The coursesin which the inclined plane
and point charge data were collected were taught by the same instructor. Both courses had both lecture
and recitation componentbut, weekly homework was almost completely quantitative. Onthe other
hand, the course in which the conservation of momentum task data were collected had two lecture

sections taught by differentinstructors, butinstruction was coordinated between the instructors so that
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students received similarinstruction and assessment. The courses had lecture, recitation, and laboratory

components; weekly homework had both quantitative and conceptualcomponents. The written data

collection depended on the way that the course instructor thought would optimize participation,

including short in-class quizzes with or without an offer of extra credit. Interview subjects were

volunteers, solicited in the course of interest. Interview datawere also collected in different ways to

optimize participation, including offers of cash ($5). Some interviews were individual, while others were

paired. While it is not possible to eliminate all potentialvariables, the phenomenadescribed appeared

in our data across variation in our approach, format, and level.
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Figure 4.1: Figures and given expressions for the assigned tasks: (a) the velocity of a block at the bottom of an incline with
friction; (b) the electric field at a point some distance from three point charges of equal magnitude; (c) the final velocities of
two masses involved in an elastic collision

4.3 Results

We first noticed groupingin 4 out of 5 pair interviews at the introductory level on the point charge
task. This prompted us to reexamine the written datain search of similar responses that we may have
overlooked orcoded differently earlier. This was challenging because written responses do not give the
levelof insight into in-the-moment thinking as interviews. Itis possible that a student’s expression might
have also grouped terms implicitly while working on the task. As it turned out, upon reexamination, we

foundinstances of grouping in both written and interview responses on all three tasks.
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In this section, we demonstrate how we apply the definition of grouping by identifying and
describing specific occurrencesin our data. We will present examples fromthe inclined plane, point

”

charge, and bubble skating tasks respectively. Each set of responses is described as “grouping for____”,
in which the expressed physical interpretation of the group is identified explicitly. At the end of the

section, we discuss the frequency of the different types of groupingin different tasks, and at different

levelof the physics curriculum.

4.3.1 Data analysis

In this section, we will first discuss how we analyzed ourgeneral data set. Then, we will focus on
how we analyzed the data set specificto the strategy or phenomenon of grouping. The strategy of
groupingis subset of the strategies observedin our dataset. Consequently, allthe general design and
data analysis processes apply to our data set specificto grouping. However, we also performed some
data analysis steps exclusively on the responses coded as showing grouping.

Our overall research design and data analysis have focused on emergent patternsin the data.
Written and interview data were analyzed using modified grounded theory/phenomenography, as the
analysis was in part based on previous literature and there were some expectations of certain
categories. We hopedto be able to identify recurring themesin student responses/reasoning. Written
data were open-coded, with phrasesin a response categorized based on an overall theme. Forinstance,
ontheinclined plane task, responses wherestudents suggested pluggingin numbers to check a velocity
value were coded as “plug in numbers.”

Interviews were conducted after the corresponding written data was collected. Consequently, data
acquired from interviews were analyzed with some expectation of certain categories observedin the
written data. To analyze interview data, we transcribed the videos and coded forapproaches that were

also presentin the written data, thenfornew onesthat emergedin the interview. Like the written
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responses, the interview codes were not based onthe presence orabsence of certain words or phrases
but in the overall approach with which the student seemed to tackle the prompt.

On both the written and interview formats of the task, there were many different kinds of responses
given, and most students suggested and/or used more than one approach. Furthermore, several
(written) responses were not clearin describing what the studentwould do. In order to account for this,
we rated written responsesfrom 0to 3 based on clarity of explanation (3 beingthe clearest). After
running interviews in an attemptto clarify and shed light onthe written responses, we re-analyzed the
written responses for clarity and some of the response ratings were changed when deemed appropriate.

We found many evaluation strategies in students’ responses, and these strategies were discussed in
chapter 3. However, in this chapter, we will focus on the strategy of grouping. As a result, we will only
focus on students’ responses that were coded as using grouping. Responses were coded as using
grouping when theyincluded an explicit connection between segments of and/or the entirety of the
given expression and its corresponding physical meaning as determined by the student. In addition, we
also looked out for segments of the interviews where students explicitly referred to portions of the
given expression or pointed to equations they had written on the board while they talked about the
scenario the equation described. Furthermore, as we will show in the show in section 4.3, we
characterized responses coded for groupingin the form “grouping for x” where x represents the physical
significance students’ associate with parts of the equation. For instance, in the inclined plane task, we

furthercoded students’ responses as “grouping forforces”, and “grouping for energy”.

4.3.2 Groupingin the Point Charge Task

The first set of examples of grouping we show are in the context of the point charge task, in which

2x

[i + —3] i (Fig.4.1). In this task, we observed three types of

2
x (x2+d?)z

students were asked to evaluate " qe
Tt€o
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grouping: grouping fordistance, grouping for projection, and grouping for electric field. In the point
charge context, responses were coded as showing grouping at the introductory, sophomore, and junior

levels.

4.3.2.1 Groupingfor distance
This type of grouping involves associating parts of the expression with the distance between the
charges and the point at which the electric field is being evaluated. Inthe following excerpt froman
interview, two first-year students evaluate the given expression:
Ev:So 1/x?, that’sthe distance for the charge in the middle.
Em: Charge in the middle, yep. So, we are just going to make sure that this [line earlier drawn

from the bottom charge to point p] is the right one.

2x

. 2
Ev: So, that [1/x2] makessense. And then GiraD

Em: So that’s the distance, if this [x-axis] is what we’re calling x, that’s x2 + d?is r so that would
make sense. And then there’s two of them, thatis why it is raised to the three halves.

The students were classified as grouping for distance because they connected agroup of symbols to

a distance onthe diagram. First, they identified that Z represents “the distance forthe charge in the

middle.” They also concluded (incorrectly) thatthe (x? + dzﬁ makes sense because x? + d?isthe
[square root of the] distance from an off-axis charge to point p. The students called this distance “r.”
They also rationalized that the three-halves power is because there are two off-axis charges.

From the written data at the first-yearlevel, examples of responses that were categorized as

grouping for distance include:
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. . k L . .
“I will look @ the equation E' = Z—;ql & compare what is written to the equation. g is the

charge, k is i, xis the radius @zero, Vx2 + d2is the radius when +qis @d or -d. | think the
0

resultis correct because thereisa k & g. The it is separated by the 2 different radi[i].”
and

“..the algebralooks alright as well, with the distance being 2 hypotenuses & x.”

4.3.2.2 Groupingfor projection
This type of groupingis more complicated than the previous examples, as it involves associating
segments of the expression with the projections (or “components,” in the words of some students) of
the electric field vectorin the x and y directions. In the following interview excerpt, two first-year
students evaluate the given expression:
Martin: Off the top of my head | don’tknow why we add it [2x in numerator] on but if it's
because of the components of the electric field caused by these [circles top and bottom
charges] point charges and the formula says you have to add it onthen | would agree with that.
Nate responded to this, drawing xand y components of the electric field due to the top and bottom

charges. He then continued:

Nate: This [ 2x 3] termis, umm, due to this [x component of top charge E-field] and this [x-

(x2+d?)z

component of bottom charge E-field] combined, so that is where you get the 2x in the
numerator.
In the above conversation, Martin expressed uncertainty about the physical meaningof the 2x in
the expression and Nate proceeded to explain. He broke down the electric field vectorinto x and y
components, showingthat the y components of the E-field cancel, so that the x components of the

electric field of the top and bottom charges add up to yield the 2x in the given expression. Inthe rest of
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the interview, Nate and Martin did not explicitly connect the termsin the expression (asawhole) to the
electric fields due to the charges. However, another set of first-year students (Dom and Jake) did so.

We also show two examples of written response thatincluded grouping for components:

w_ 4
TTEY

“I do not know there is the outside the bracket but everything within the bracket looks

3
reasonable forthe fact that “(x? + d?)2" would calculate for the y-component of the force.”

L . 1 . N
“check to make sure everythinginthe bracketsis the 3 of each charge in the [ direction.

1 X X

=+ 5+ 5 | The distance from the point to +d is vxZ + d2, so the field would
x (x2+d?)z  (x2+d?2)2

be ﬁ the x componentis found using the fact that cos Q—W when multiplied by
VX

the field, (—3/, likely right.”

Written responses were coded in this category if they included explicit references to components or
projection, or statements like “in the i-hat direction”. Anotherexample of a response coded as showing
grouping for distance and projection from the written data at the sophomore levelis shownin Figure

4.2. Inthis example, the student connects x% and x? + d? to the distances from the middle charge, and

-. y we | z. L - L off axis charges to point
Z i L Q';rg'f‘
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o b et tndiceckion o 4, 5% P — electric field.

Figure 4.2: A written response showing (successful) grouping for
distance and projection at the sophomore level
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4.3.2.3 Groupingfor electricfield
This type of groupinginvolves associating segments of the expression with the expression for
electric field due to a point charge. In the following excerpt, Jake and Dom make sense of and evaluate

the given expression.

Jake: ... if you are to multiply this [#] in here [xi2 + 2—x3] you will get that [ ! ] back so
0

(x2+d2)5 471'(:'0.96'2
. 1 L . . .
we know at least this [L — )] part of the equationis accounting for the first [middle] charge,
41€eg \ X2

and without checking this [2—x3], we know it looks like we are going to be using this same,
(x2+d?)2

this [draws a box around ——in !

1 ] bit right here, which would be assuming the g's are the
4mmEQ  ATIEXZ

same, which they are according to this diagram. Then this [i] would just be constant.
0

In distributing 4:6 into the rest of the expression, Jake compared the given expressiontothe
0
equation forelectric field (E = 1 ). He recognized that the 1_ termaccounted for the electric
4T €T 4T € X2

field of the “first” (middle) charge, while 2—x3 was connectedtothe othertwo charges and
(x2+d2)z

accountedforthe distance to each charge using trigonometry.

From the written data, an example of a

g
response that was coded as showing grouping !1 —— J » dyle haryl bl Hm
/ U ' v/
. - . oY T ot
for projection is shownin figure 4.3. This s ,-u‘»-fm J fof@ *
kq /
student explicitly connects the term —2 to the / i o b
12 aeld =7 ( 4 / - I / ( -
/ )*1’ Il ] J ()j( R /
- : L2 IR
electric field of the middle charge, and /  ° o 42
2 kas cosgto the x components of the to
vd2+12 l P P Figure 4.3: A written response coded as showing for grouping for E-

field and projection at the first year level
and bottom charges.
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4.3.3  Groupingin the Inclined plane task

The second set of examples we show are in the context of the inclined task in which students were

askedto evaluate v = \/ng (sin @ — ucos 8), (figure 4.1). In this task, we observed five types of
grouping: grouping for projection, kinematic quantities, forces, energy, and distances. Inclined plane

responses were coded as showing grouping at the introductory, sophomore, and junior levels.

4.3.3.1 Groupingfor projection
This type of groupinginvolves associating the trigonometric portions of the expression with
projectionsin the x and y directions. Itis not unusualforthis type of groupingto be associated with the
orientation of the coordinate system assumed while the given expression was derived.
In the following excerpt from an interview, a first-year student attributes part of the given
expression tothe rotated coordinate system of the inclined plane:
“And | think that that’s there [points at(sin & — ucos 6 )] because um | assume that your axis is
your traditional x y [draws axis parallel and perpendicularto floor], but if you were toturn it
[gesturestilt and points to coordinate system perpendicularand parallel to incline], | don’t think
you’d have to use to those angles.”
In the excerpt above, the student attributed the presence of the trigonometricterms to the fact that

IM

the given expression was derived with reference to a “traditional” coordinate system. She expressed
that the expression would not contain both termsiif it had been solved for using an incline-oriented
coordinate system.

From the written data at the introductory level, examples of responses that were categorized as

grouping for componentsare:

“2gd sin 8 y component, ptcos @ x component...”
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“Cosis x, sin is y...I think if you drew the [coordinate system] at angle like [inclined coordinate
system], your x componentwould be the only part to have any friction, but that might not be

the case here.”

4.3.3.2 Grouping for kinematic quantities
This type of grouping involves associating part of the expression with the direction of motion,
velocity, and acceleration of the box on the incline. Responses coded as grouping for motion usually
connectedthe trigonometrictermsin the equation to the direction of motion, velocity, and acceleration
of the box sliding down the incline.
In the following excerpt from an interview, one first-year student associated part of the expression
to the velocity of (and force of friction on) the box sliding down the incline:
“...it would make sense because you’ll have friction going this way [draws an arrow labelled p
and pointing up slope of incline] so slowing down the velocity which is going to be equal to the
acceleration timesthe distance. ‘2’ | am not too sure about...So, then velocity would be slowing
down as it is accelerating that way [gesticulates going down the incline].”
In the excerptabove, the student attributed the presence of the group gd to the velocity of the box
which is slowed down by the friction which is acting in the direction up and parallel to the incline.
From the written data at the introductory level, an example of a response that was categorized as
grouping for acceleration is:
“ve? = 2gd(sin @ — pcos@).dis the distance of the ramp (Ax). I'm guessing
g- (sin @ — p cosB) is the positive acceleration. The sin 6. g would be for a frictionless incline.
Because there is friction, the force of friction can be foundto be u cos8 (because cos8 = Nin

this case)”.
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In this response, the student associates the term g(sin 8 — u cos 8) with the acceleration down the
incline. The studentfurtherassociates the termsin 6 g as the acceleration for a frictionless incline and

the term pcos @ as accounting for friction.

4.3.3.3 Groupingfor forces
This type of groupinginvolves associating part of the expression with forces at play in the box sliding
down an inclined plane scenario. Like the previous two types of grouping in this task, it is not uncommon
for responses coded as grouping for forces to referto trigonometrictermsin the equation.
Examples of written, introductory level responses categorized as grouping forforces are:
“... ucos@ associated with normal force.”
“..Because there s friction, the force of friction can be foundtobe u cosé (because cosf = N
in this case).”
From the written data at the sophomore level, aresponse categorized as grouping for forces is:
“I would check if it makes sense (each part) such as the signs and make a story of it soto speak.
2gd makes sense, the velocity of the block is in proportion with gravity and distance, to see how
far it hastravelled. sin 8 would be the y component of the force, cos 8 would be the x-
component (with p forfriction). Makes sense except d. d should be an x value but not the total

distance, that would mean the block at the top has the same velocity as the bottom. Incorrect.”

4.3.3.4 Groupingfor energy

This type of groupinginvolves associating terms of the given expression with energies at play in the
box sliding down an inclined plane scenario. In the following excerptfrom aninterview, one first-year
student associated part of the expression to the potentialenergy and energy lost to friction of the box

sliding down the incline:
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“it [2gd sin 0] is almost like a potential energy function if you had massin it and then this

[2gdp cos O] is like a friction... so it’s the potential energy minus the friction like so you are losing
the friction... it makes sense because you have energy minus energy...yourwork is going to be
your potential energy you lose here (points at top and bottom of incline) minus this [ 2dgp. cos 0]
so minus what you have to fight as the friction resists it trying to go down... your work is
opposed by the friction so they will not be additive...”

Here the student connected the segment 2gd sin 6 to the potential energy without the mass
included. He also connected the secondterm (2d gu cos ) to the energy lost due to friction resisting
the motion of the block. In a prior segment of the interview, he had attempted to solve forthe velocity
of the block using conservation of energy. Inthe process, calculated v? = Wl using the expression
U = hgm. So, this mighthave made him perceive the segment [2gd sin 8] as the potential energy
without the mass.

From the written data at the introductory level, an example of a response that was categorized as
grouping for energy (and distance) is shown in figure 4.4. This response was coded as grouping for
energy and distance because the student explicitly connected d sin 8 to the height of the incline, and
U cos 8 to the energy lost to friction.

From the written data at the juniorlevel, an example of a response that was categorized as grouping
for forcesand energyis shownin figure 4.5. in this response, the student explicitly connected mg sin 8
to the force pushing the box down the ramp, and mgp cos 8 to the force of friction pushing up the
ramp. The studentalso connected mgd(sin 8 — p cos@) tothe work done on a block as it goes down

the ramp.

96



a. Without knowing the correct answer, how would you go about checking if
your solution is reasonable?
—
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b. Using the approach(es) you described in part a, determine whether or not
this is likely the correct result.

B —
by 7 2. y = }}/‘) Lf/ .f' (4n £ ” ,L{ ( ,,,“,b)':)
h =dtin B - MO 50) ~
LT/"“/’ /.'>'~ - y )'/'C o ] 4
4 S C 0

/Y):))/ M otoe t@f?p-rz} + 7lenn T™HS Y

p 2
4 nT M e
) 80

Figure 4.4: An example of a student's response at the first-year level showing grouping for distance and energy

4.3.3.,5 Groupingfor distances
This type of groupinginvolves connecting parts of the expression with the physical dimensions of

theincline including its height, length, and hypotenuse. Inthe following excerpt from an interview, one

first-year student associated part of the expression to the height of the incline:
“...like why is that here? | can go backand ask myself like why doesthat make sense as an
answer. Forme, | am going to write this [writes v2 = 2gd sin 8 — 2gducos 0]. That makes
sensetome...To meif 2g is pulled out then d times sin 8 would give me this [Draws an incline
labelled with height h and length d ], well would give me the side here [ points at side 4] and
thenducos ...l would be given this side [adjacent] which makes sense in my head because
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there is a coefficient of friction...to me that makes sense because it has both components but its

movingin the x-direction due to friction”

b. Using the approach(es) you described in part a, determine whether or m)_l)
this is likely the correct result. _
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Figure 4.5: A Junior’s response coded as grouping for forces and energy

In the above excerpt, the student connected portions of the expression to the height of the incline.
First, she reparsed the equationinto v2 = 2gd sin 8 — 2gdpucos 6, a form she claimed made more
sense to her.She then rewrote the first part of the reparsed expressionas 2g(d sin ) and finally
grouped dsin 0 as the height of the incline. She also associates the term ducos 6 as the adjacentside of

theinclined plane.

In the following excerptfrom an interview, anotherfirst-yearstudent associated part of the

expression with height of the incline:

“..like you would apply the variables to each thing you know that like this is the 2gd is the two

times gravity and the distance [...] and sin 0 at least to me will represent where its starting at
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theincline at zero [points at height of incline]... so | am using I’'m like breaking apart each thing
that | have and applyingit to make sure that it actually goes with the equation like it makes
sense. That’show | would checkit.”

In the above excerpt, the student connected sin 0 to the height of the incline. Perhaps more
importantly, she also gave herdefinition of what we would later call grouping; breaking apart the
expression and making sure each segment makes sense with the physical scenario the expression is
supposedto describe.

From the written data at the introductory level, examples of responses that were categorized as
groupingforincline dimensionsinclude:

“sin 6 associated w/ height (h). 1 cos 8 associated with normal force.”
“It makes sense thatthe velocity is equalto g. d because the block must travelthat distance,
while accelerating. This is multiplied by the sin 8 minus the coefficient of friction of the cos 8, or

adjacent, part of the triangle that the block travels down.”

4.3.4 Groupingin the Bubble Skating Task

The third set of examplesis in the context of the conservation of momentum task, where students

mp—mp

2m. 2m my—m . .
were asked toevaluate v,y = —ZmZUZi JVop = v + m;m: vy; (Fig. 4.1). In this

mi+my 1 mq+ mi+m;

task, we observed four types of grouping: grouping for mass combinations, groupingfor momentum,
grouping forvelocity, and grouping for mass ratios. Unlike the other tasks, responses code as showing
groupingin the bubble skating task were only presentin the written data at the introductory level.
Above the introductory level, there was only one instance of a response coded as grouping: a junior

during an interview.
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4.3.4.1 Groupingfor mass combinations
This type of grouping involves associating terms of the given expression with behaviors/
combinations of the massesinvolvedin the collision. In this type of grouping, students connect mass
termsin the equation to mass changing, bouncing off, or sticking to each other. Examples of responses
that were categorized as grouping for mass combination are:
"Neithervelocity equations should have 2m, or 2m, since this is an elastic collision, they are
neverone combined mass".

"The above method seemto be more inelastic collisions involving masses added together.”

4.3.4.2 Groupingfor momentum
This type of grouping involves associating terms of the given expression with the momentum of the
massesinvolvedin the collision. Atthe introductory level, examples of responses that were categorized
as grouping for momentuminclude:
"Looks correct as you’ll have a sum of velocities fractionally related by mass to the velocities, so
momentum”.
“They are finding the averages of the massesin the equations (not exactly but similar process)
and multiplying it by velocities to get momentum, the format looks similar to finding
uncertainties.”

Outside the introductory level, the response that was categorized as grouping for momentumiis:

“We have this weird mass equation [21;22] multiplied by a velocity plus this weird mass
1 2

2 . . . . . ”
[m T:n ] equation multiplied by a velocity. That looks like a momentum.
1 2
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4.3.4.3 Groupingfor velocity
This type of groupinginvolves associating terms of the given expression with the velocities of the
masses involved in the collision in the given scenario. Examples of responses that were categorized as
grouping for velocity include:
"...The equations will not give the correct answerbecause itis giving the combined velocities for
1and2"
"...youcan’t add factors of the initial velocities togetherto get the final velocitiesin the way that

is presented here”.

4.3.4.4 Groupingfor mass ratios
This type of groupinginvolves associating terms of the given expression with mass ratios in the given
scenario. Examples of responses that were categorized as grouping for mass ratios include:
"This is likely notthe correctresult. They are using fractional masses forsome reason.”
“They are finding the averages of the massesin the equations (not exactly but similar process)
and multiplying it by velocities to get momentum, the format looks similar to finding

uncertainties.”

4.3.5 Prevalence of grouping responses

The prevalence of responses coded as showing grouping in the written data is summarizedin Table
4.1 and Figure 4.6. Inboth the inclined plane and point charge tasks, the prevalence is higher in the non-
introductory levels than the introductory level. In the bubble skating task, the use of grouping

disappearsin the sophomores. (The task was not administered in writing to the junior/senior cohort.)
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4.3.6 Summary of results

In summary, there are three important points from the results presented above. First, although
there are no previous reports on grouping, we find that it is a strategy thatis widely used to evaluate
physics equations. We have described examples of grouping observed in all of the contexts on which we
have collected data. Groupinginvolves explicitly tying segments of an equation to a physical quantity or
process. Groupinginvolves students saying the story that the equation tells about the physical scenario
it describes.

Secondly, the prevalence of grouping as a strategy in sensemaking and validity checking seemsto
vary with context. Forexample, we identified more examples of groupingin the point charge task than
in the bubble skating task. However, it is possible that grouping is happening, but we are unable to

identify it due to limitations of ourdata set.

Table 4.1: Summary of the prevalence of grouping in written versions of tasks

Task/groupingtype First-year Sophomore Junior/Senior
Point charge 11% (n=170) 32% (n=22) 50% (n=18)
For distance 11/18 6/7 5/9
For projection 6/18 3/7 2/9
For electric field 9/18 3/7 8/9
Inclined plane 6% (n=211) 27% (n=11) 30% (n=20)
For projection 4/12 1/3 0/6

For force 5/12 2/3 2/6
For energy 1/12 0/3 2/6
For distance 5/12 0/3 2/6
For kinematic

quantities 4/12 0/3 3/6
Bubble Skating 5% (n=190) 0% (n=22) N/A
For mass

combinations 6/10 0

For momentum 3/10 0

For velocity 2/10 0

For fractions 2/10 0
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Thirdly, we claim that grouping is a sophisticated strategy that reflects mathematical sense -making.
Because grouping seeks to explicitly associate mathematical symbols with a physical inte rpretation, it
implicitly stems from the belief that physics equations are mathematical representations of the laws of
the physical world and therefore should accurately describe the physical scenario paintedin the
problem statement. As aresult, students might evaluate an expression by checkingto see if it reflects
expected aspects of the physical situation, e.g., the distance from the charge to the point where electric
field is being evaluated or the force of friction. Grouping can also involve reformatting a given
expression) as in the distribution for the electric field example) to produce aform that can be

interpreted inthe context of the task /problem statement.

Grouping across the physics curriculum

N w B (9] D
o o o o o

Percentage of students

=
o
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Point charge Inclined Plane Bubble Skating

Task context
M Intro M Sophomore Junior

Figure 4.6: Summary of the prevalence of grouping in written responses
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Specifically, groupingis a demonstration of the communicative and structural functions of
mathematics in physics [12] by loading meaning onto symbols and expressions, a behavior of physicists,
but not mathematicians [12]. Specifically, when students use grouping, the given mathematical
expressionis usedto tell the story of the physical scenario it describes, and the equation statement
facilitates the use of logical deductive reasoning.

Consequently, groupingis a productive strategy because itis students using mathematics in physics
as physicists desire [10], [12]. The students were making sense of the physical world/context of the
problem using the given mathematical equation. In this way, the students were exhibiting the desired

physics learning outcome of coherence between physical meaning and mathematical formalism.

4.4 Discussion
4.4.1 Connectingour results to cognitive psychology

To delve furtherinto the phenomenon of grouping, we compare it to the phenomenon of chunking
in cognitive science. We illustrate how chunking matches grouping by discussing the characteristics that
grouping shares with chunking including the definition and nature of chunks (automaticvs deliberate),
the nature of characterization, the structure of chunk templates, the process of chunk decomposition
and correlation with expertise.

First, groupingis consistent with the definition of chunkingand the nature of chunks. Like chunking,
groupinginvolves gathering of elements that have strong associations with one another. Inresponses
that we categorized as showing grouping, symbols of the equation were gathered together. Like chunks,
these groups were also assigned meaning. Furthermore, like chunks, groups seemto be familiar as the
students state the significance of an identified group. Consistent with chunking, these statements of the

physical significance of identified groups often include useful physics concepts relevant to the physical
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contexts of each task including the vector nature of the electric field, conservation of energy, the work-
energy theorem, conservation of momentum, and the nature of elastic and inelastic collisions.

Secondly, grouping shares characteristics with both automatic and deliberate chunking and may
reflecta combination of these behaviors. Forinstance, grouping has characteristics of automatic
chunkingas it involves instantly recognizing the forms of the given expression. Itis hard to determine
whether groupingis implicit or explicit as the nature of our research task requires students to explicitly
explain their reasoning. Itis not clear, however, whether grouping is associated with long term memory
as is automatic chunking. On the other hand, groupingalso has elements of deliberate chunking. For
instance, by the nature of our research task, groupingis conscious and explicit since students are asked
to explain their reasoning. During interviews, one student described what we later coded as grouping as
“so | am using, I’'m like, breaking apart each thing that | have and applying it to make sure that it actually
goes with the equation like it makes sense. That’s how | would check it.” Like deliberate chunking,
groupingis goal-oriented, the goalbeingto determine whetherthe given expressionis reasonable by
connectingit to the physical context. Like deliberate chunks, groups are explicitly defined by the student
and are readily explained, described, and justified.

Specifically, groupingis very similar to characterization since it involves grouping terms for meaning,
utility, or significance. Groupinginvolves gathering symbols in equations based on their physical

significance and not just spatial proximity. Thus, for instance, in the point charge scenario, the sequence
of variables x?, and —are associated with the distance from the charge to point p while 1/4me is
chunked as k, Coulomb’s constant. Similarly, in the inclined plane context, ¢t cos 8 is chunked as the

energy lost to friction. Finally, in the conservation of momentum context, 2m, and 2m; are

characterized as the masses being stuck together.
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Some of the responses categorized as grouping are consistent with chunking template theory.

Specifically, in the point charge task, it seemsthatsome students are workingwiththe template E =

kq/rz. First, this is a patternthat the students recognize from seeing the equation in class and working

with it in homework and lab. The core of this template specifies the presence and placement of the
symbolsin the expression, e.g., k and g in the numeratorand 2 in the denominator. This template also
contains slots that contain variables that can be altered: the charges that produce the electric field, and
the distance between the charges and the point at which the electric field is being evaluated.

A quick look at the results of the inclined plane tasks suggests thatthere are many associations
students have with the given expression for velocity, including force and energy. Consequently, grouping
for forces, energy, and distances are consistent with force, energy, and distance templates, respectively.
The cores of the templates define how the problem context givesrise to certain forces, energies, and
distances, e.g., the presence of abox, coefficient of friction, and an inclined plane. The corresponding
slots are differentkinds of forces, energy, and physical dimensions at play in the context. Forinstance,
the slot of forces can be filled with forces of friction and gravity. The slots for energy can be filled with
kinetic energy, potentialenergy, and energy lost to friction. The slots for dimensions are fille d with
height, base, or length of the incline. Students’ familiarity with the templates or slots make them salient
and thus easy to recognize and group.

In the bubble skating task, responses coded as grouping formomentum are consistent with the
template m * v The core of the template includes the mathematical relationship between, and the
presence and placement of the symbols in the equation. The slots are the masses and velocities (initial
and final) of the bodies involvedin the collision. Eventhoughthe given expression is one of velocity, this

momentum template may be salient because the equation has the perceptualform [v] = [M][V] +

[M][V] as highlighted by the studentin section [4.x.x.x]. Furthermore, the salience of this template may
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be due to the students’ experience with the canonical equation formomentum: p = mv andmvy; +
MUy = MUy + MUy
In our observations, salience of terms is aided by reparsing the given expression to familiar or

recognizable form. For instance, in the point charge task, grouping for electric field entails implicitly or

2x q 1 q 2x
—(x2+d2)3/2] to get| —

].Thenixi2 is

- s q . 1
explicitly multiplying Ethrough into [x—2 + e | ames P ra) meq

chunked as the electric field of the middle charge and is chunked as the electric field due to

2x
(xz +d2)3/2

the top and bottom charges. Similarly, some rewrote ) to highlight the

2x 2( x
(x2+d2)3/2 as (x2+d2)3/2

association between the term andthe two equidistant point charges, e.g., sample responses

2x
(xz +d2)3/2
in section 4.3.1.2.

Likewise, in the inclined plane context, many responses coded as showing groupingincluded

reparsingv = /2gd(sin @ — ucos@) as v = /2(gd sin @ — gdp cosf) orevenv? = 2(gdsin 6 —
gducos@) . These new representations might have aided the recognition of chunks gd sin 8 as the
potential energy of the block at any point on the incline, d sin 8 as the height of the incline, and
gducos@ as the energy lost to friction as the block comes down the incline. Note thatthe energy
examples of these terms are notactually energy terms; they are missing a mass, possibly suggestinga
furtherreparsing.

Groupingis also consistent with chunk decomposition since pointing out the chunks within the given
expression issomewhat like breaking the expressioninto its constituent chunks. In this regard, following
the steps of Knoblich, Ohlsson, Haider, and Rhenius [49], we believe that the ease of decomposing the
giveninto chunks is dictated by chunk tightness: how easy it is to perceptually divide the given

expression into usefulchunks. Inthe context of our study, a usefulchunkis a term that is familiar and
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recognizable in the context of physical scenario outlined in a research task. As with chunking, we believe
that reparsing the given expression facilitates chunk decomposition.

Implementing the definition of a useful chunk, we believe that the tightest expression is that of the
bubble skating task as perceptually, it does not resemble anything that students have seen before or
have experience with. The tightness of the expression might explain why grouping was not a productive
evaluation strategy for the bubble skating context as grouping does not provide enough information for
a decision to be made about the validity of the expression.

On the otherhand, the expressionsin the inclined plane and point charge tasks are loose as they
both contain groups of symbols that are familiar to students. As we have discussed above, and shownin
our results, the expression in the inclined plane taskis associated with the following quantities:
projection, kinematic quantities, forces, energies, and distances. Similarly, the expression in the point
charge taskis associated with distances, projection, and electricfield. However, unlike the bubble
skating task, these associations are productive to evaluating the respective expressions.

We believe thatthe projection termin the expression forthe point charge task is tighter than
projectiontermin the expression forthe inclined plane task. Both the inclined plane and point charge
tasks were coded as including grouping for projection. However, the terms that are associated with

projectionin the inclined plane (sin 8 and cos 8) may be more salient than the term associated with

. . . . —X
projectionin the point charge task ((x2+d2)1/2

).The projectiontermin the point charge taskis less
familiar to students. This difference in salience might explain why some students had issues with the
projectiontermin the point charge task, and why fewer students were categorized as grouping for
projection than distance and electric field.

Lastly, consistent with chunking theory, grouping seems to be correlated with ex pertise [45]-[47],

[53], [54]. Onboth the point charge and incline plane task, the percentage of students categorized as
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using this strategy increased as students moved up the physics curriculum. In written responses,
chunking does not show up afterthe first year. This is probably because students became more
sophisticated and realized that the tool was not productive in that problem context. Due to the small
size of our data sample, it is hard to tell if the size of groups increased as students moved up the physics
curriculum. However, it is worth looking into as the percentage of juniors coded as grouping for electric
field (the biggest group) in the point charge task was higher than the sophomores and first years.

In conclusion, we argue that groupingis a form [instantiation] of chunkingin physics problem
solving. First, grouping is consistent with the definition of chunking and the nature of chunks as
describedin prior literature. Grouping shares characteristics with both automatic and deliberate
chunking. Specifically, groupingis very similar to characterization since it involves grouping te rms for
meaning, utility, or significance. Groupingis also consistent with chunking template theory. Afew
templates are identified cross all three tasks. The salience of some grouped termsis aided by reparsing
the given expression tofamiliar or recognizable form. Groupingis also consistent with chunk
decomposition, since pointing out the chunks within the given expression is somewhat like breaking the
expression intoits constituent chunks. We believe that the expressioninthe bubble skating task is
tighter thanthe expressionsin the othertask because it does notresemble expressions that students
have seen or had experience working with. Lastly, consistent with chunking theory, grouping seemsto
be correlated with expertise. Truly identifying groups created by chunking is more problematic and
could be verified more precisely by examining eye movement (eye tracking) and exploring pausesin

speech [58][69].
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4.4.2 Connectingour results to frameworks in physics and mathematics educationresearch

To zoom out of our in-depth comparison of grouping with chunking, we now examine grouping from
the perspective of frameworks in physics and mathematics education. Specifically, we compare grouping
to Sherin’s symbolicforms and interpretative devices [39], [41].

Some of the kinds of groupingthat we coded for share semblance with symbolic forms. Specifically,
some of the responses that were coded as grouping are consistent with the parts of a whole, opposition,
and coefficient symbolic forms.

Responses coded as grouping for electric field in the point charge task include associating each term
in the expression to part of the total field due to individual charges (Erotq; = E1 + E» + E3), thus
invokingthe parts of a whole form. Expressions for the electric field due to a set of point charges exhibit
properties of superposition uponinspection, possibly cueing the connection of individual terms with
individual charges (and locations).

In the inclined plane task, responses coded as showing grouping for forces are consistent with the
opposition symbolicform. The expression forvelocity is made up of two groups: a force of gravity group
in opposition of the force of friction group. This explains responses coded as groupingin which students
say that friction opposes motion. Responses coded as showing grouping forenergy are consistent with
the whole— part symbolic form such that the expressionis grouped into the total potential energy of the
system minus the energy lost to friction. Similarly, grouping the expressionfor xandy velocity
componentsis consistent with parts of a whole.

Finally, in the bubble skating task, responses coded as grouping forvelocity are consistent with a
combination of the parts of a whole and coefficient symbolic forms such that the given expressionisa
sum of terms that are coefficients of the initial velocities of the skatersinvolvedin the collision. We

believe thatthe mathematical operators (— and +) separating terms make them more salient.
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From the perspective of interpretative devices [41], groupingis used as a narrative or static class
device. Whenstudentstellthe story of the given equation, they allow some terms or variables to vary
while others are held fixed. However, the parameters that the students allow to vary are those that
actually vary during the scenario that the equation describes, just like in the use of the physical change
interpretative device. Sometimes, when using grouping, an equation is interpreted by comparing the
situation the equation describes with a different situation, e.g., when students compare the inclined
plane task to one where there is not friction between the box and the incline. In the point charge task,
students use the genericmomentinterpretative device because the expression foran equation is
viewed as describing any momentin a motion or statements that are true at any time during a motion.
This is because inthe steady state momentinterpretative device, the equation for electricfield
describes a system where no parameters vary with time.

In addition to Sherin’s symbolicforms and interpretative devices, other frameworks give some
insight into the use of grouping as an evaluation strategy. In Chapter 3, we described how grouping and
otherstrategiesin the comparing to the physical world categories fit with the frameworks of epistemic
framesin PER, proofs and justifications in mathematics education research, and metacognitionin
cognitive science. From the perspective of epistemicframes in physics, grouping is consistent with Bing's
physicalmapping frame [20]. While using grouping, students support theirarguments by pointing to the
quality of fit between the mathematical symbolicrepresentation (the given expression)and the physical
situation it is meantto describe. Students also attach physical information to symbols, signs and
operations. Groupingis also consistent with the mapping mathematics to meaning epistemological
game. When grouping, students develop a conceptual story about the physics equation that they have
been givento evaluate. However, unlike the context of the epistemicgame, our students are not trying

to solve a problem; instead, they are evaluating the solution to one.
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From the perspective of proofs and justification, grouping fits in the transformational proof scheme.
Groupinginvolves perceiving the underlying structure behind patterns, including unpacking the
contextualmeaning of symbolsin a mathematical expression and involving reasoning aimed at settling
the conjecture putforth:in this case, evaluating the given expression. Finally, from the perspective of
metacognition, groupingis consistent with control and the ability to self-evaluate. Groupingis also

consistent with a belief that physicsis consistent with the real world.

4.5 Conclusion

The main intent of our study was to probe the kind of strategies students use when they evaluate
the solutions to physics problems. In analyzing tasks that probe student use of evaluation strategiesin
problem solving, we documented severalinstances of students making sense of an expression by
grouping terms into sub-expressions that have physical significance (e.g., Coulomb’s Law). While we
expected strategies like solving for the given expression, unit analysis, and special case analysis, we did
not expectthe strategy of grouping because it was not observed in prior studies on evaluation
strategies. We outlined instances and examples coded as showing groupinginclined plane, point charge
and bubble skating tasks. We also gave some generalnotes on our results and argued forthe
sophistication of grouping from the perspective of the use of mathematicsin physics. To delve into the
phenomenon of grouping, we presented an in-depth comparison between grouping and the
phenomenon of chunkingin cognitive science. We also briefly examined grouping fromthe perspectives
of epistemicgames and frames, proofs and justifications, and metacognition.

The consistency of grouping with chunking, symbolic forms, and epistemicgames suggests that
groupingis a generalsensemaking strategy that we could see in non-evaluation examples. Because of
the coupling of mathematicaland physical meaning, grouping should be considered an expert-like skill,

consistent with frameworks that model mathematical reasoningin physics [11], [20], [29]. Chunking

112



theory suggests that groupingis correlated with expertise. Consequently, we encourage physics
instruction to include the strategy of grouping wheneveritis a productive to an equation or physics
context. Groupingis not a canonical evaluation strategy; however, itis a sophisticated evaluation and

sensemaking strategy thatinstructors should look out forand encourage whenthey see.
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CHAPTER 5

5. EVALUATION STRATEGIES: EXPERT, NOVICE, AND THE JUICY IN-BETWEEN
5.1 Introduction

One preeminent goal of a science education us the ability to think critically [22]. One way that
physics fosters critical thinking is through problem solving. In physics, evaluation entails checking to
make sure the solution of a problem obeys the laws of physics, is reasonable, and satisfies the
constraints relevantto the context of the problem [1]. Examples of evaluation strategies include
performing dimensional analysis, considering limiting cases, using approximations, predicting the effects
of changesin problems andidentifying errors in solutions [2]. As described in earlier chapters, the ability
to evaluate a solution is one of the unspoken examples of what it means to “think like a physicist”[3].
Furthermore, in both physics and mathematics, there is consensus that expert problem solving entails
evaluation [5], [6], [26], [61].

Expertise is a well-studied areain many fields. For instance, psychologists have studied expertise
fromthe perspective of memory and perceptionin the fields of medicine, sports, chess, engineering,
and physics [54]. Physics education researchers have also studied expertise in problem solving. For
instance, novice vs. expert studies in PER have shown that experts categorize problems based onthe
physics concepts behind them while novices categorize them based on surface features such as a falling
objector an objectona ramp [66]. In mathematics education research, one finding from a study that
compares novice and expert problem solvingis that experts spent more time on planning a problem -
solving route/techniquethan novices do [6][14]. Novices tended to go straight to implementing
whatever problem-solving techniques they had in mind while experts spent more time planning and
reflecting on their progress. Other studies show that while experts base their solution techniques onthe

fit between mathematics and the laws of physics at play in a physics problem, novices tend to base their
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solution oninformation from an authority, or the correctness of computation or an algorithm [20], [21].
We add to this existing body of knowledge in two ways: a) we focus on the step of evaluationin problem
solving, b) we not only talk about the ends of the novice-expert spectrum, but we also examine phases

in between.

5.2 Research design/methods
5.2.1 Research questions
We aim to contribute to the prior research on evaluation by studying how students’ use of

evaluation strategies vary over the course of the major. To this end, we intend to answer the following

guestions:

1. What are the evaluation strategies that students employ to evaluate the solutions of physics
problems?

2. What are the similarities and differences between strategies used by students across the
physics curriculum?

3. What are some differences and similarities between novice and expert evaluation?

5.2.2 Research design

To answerthese questions, we designed tasks that prompted students to evaluate solutions to
physics problems. The provided solutions were in form of mathematical expre ssions that described the
physical quantity that was being sought or calculated in the problem statement. These tasks were given
in both interview and written form and administered at different levels of the curriculum as well as with
different problem contexts. However, to limit the scope of this paper, we focus on three introductory-
leveltasks (see Fig. 5.1). In each of these tasks, students were given a correct expression fora quantity:
the velocity of a block at the bottom of an incline with friction; the electric field at a point some distance

115



fromthree point charges of equal magnitude; or the final velocities of two massesin an elastic collision.
The students were first prompted to describe how they would go about checkingwhetherthe
expression was reasonable and then asked to use their suggested approaches to determine whetherthe
expression was likely to be correct.

The written tasks were administered in the calculus-based introductory physics sequence for
engineersata public research universityin New England. The textbook used for the courses was Physics
forScientists and Engineers: A Strategic Approach by Knight [63]. By the time the tasks were
administeredin both interview and written formats, all participants had covered the relevant physics
contentin class. All the studentsreceived instruction through lectures, traditional laboratories, and
conceptualtutorials in recitation. However, lectures were taught by different instructors with varying
emphasis on quantitative and conceptual explanations. The coursesin which the inclined plane and
point charge data were collected were taught by the same instructor. Both courses had both lecture and
recitation component but weekly homework was almost completely quantitative. On the otherhand,
the course in which the conservation of momentum task data were collected had two sections co-taught
by differentinstructors so that students received similarinstruction and assessment. The courses had
both lecture and recitation componentand weekly homework had both quantitative and con ceptual
components. The written data collection depended on the way thatthe course instructor thought would
optimize participation, including shortin-class quizzes with or without an offer of extra credit. Interview
subjects were volunteers, solicited in the course of interest. Interview data were also collected in
different ways to optimize participation including offers of cash (S5). Some of the interviews were
individual, while others were paired. While it is not possible to eliminate all potential variables, the

phenomenadescribed appeared in our data across variation in our approach, format, and level.
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Figure 5.1: Figures and given expressions for the assigned tasks: (a) the velocity of a block at the bottom of an incline with
friction; (b) the electric field at a point some distance from three point charges of equal magnitude; (c) the final velocities of
two masses involved in an elastic collision

The first question was largely answered in Chapter 3. However, in this chapter, we briefly revisit
categories that we found. We then show how the prevalence of these strategies evolve in different
populations. We explore these questions using both quantitative and qualitative data from stud ents’
responses to research tasks administered at different levels of the physics curriculum. Furthermore, we
examine our data from different perspectives including proofs and justifications in mathematics, the use
of mathematics in physics, and students’ understanding of equations.

To answer our research questions, we will be using both qualitative and quantitative data. The
guantitative data is from written student data at the introductory, sophomore, and junior/senior levels
of the physics curriculum. The number of written responses collected are summarized in table 5.1. The
gualitative data involves case studies of two pair interviews, one fromthe introductory leveland the
otherfromthe junior/seniorlevel of the physics curriculum. The introductory case study was one of five
pair interviews, while the junior case study was one of three pair interviews. These two pairs of
individuals were chosen because they were agood representation of otherinterviews of their
colleagues for the same level of the physics curriculum. Every strategy used in both interviews was also
usedin at least one otherinterview foreach respective curriculum level. Both groups of students were
also the most concise in their answering of the questions on the tasks. Consequently, these pair of

interviews allow us to hit the most points of comparison between both groups of students. They
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highlight the differences between upper-division and lower-division students and speak to the trends
that we saw in our overall qualitative data set. The responses of the chosen pair of students are
consistent with many hours of interviews with both upperand lower division students. The students’
responses are also consistent with evaluation strategies that we observed in students’ written

responses.

5.2.3 Data Analysis

Written data were analyzed using modified grounded theory/phenomenography, as the analysis was
in part based on previous literature and there were some expectations of certain categories. For
instance, interviews were conducted afterthe tasks had been conducted in written form, thus data
acquired from interviews were analyzed with some expectation of certain categories. Also, data analysis
was done with previous work like Loverude’s study and Bing’s epistemological frames in mind [2], [20].
We hopedto be able to identify recurring themes in student responses/reasoning. Our research design
and data analysis have focused on emergent patternsinthe data. Written data were open-coded, with
phrasesin a response categorized based on an overall theme. Forinstance, on the inclined plane task,
responsesin which students suggested plugging in numbers to check a velocity value were coded as
“plug in numbers.” To analyze interview data, we transcribed the videos and coded for approaches that
were also presentin the written data, then for new onesthatemergedinthe interview. Like the written
responses, the interview codes were not based onthe presence or absence of certain words or phrases
but in the overall approach with which the student seemed to tackle the prompt.

On both the written and interview formats of the task, there were many different kinds of responses
given, and most students suggested and/or used more than one approach. Furthermore, several
(written) responses were not clearin describing what the student would do [give example]. Inorderto

account forthis, we rated written responses from0to 3 based on clarity of explanation (3 beingthe
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clearest). After performinginterviewsin an attemptto clarify and shed light on the written responses,
we re-analyzed the written responses for clarity; some of the response ratings were changed when

deemed appropriate.

Table 5.1: Summary of the number of written responses collected

Number of Students
Year Inclined | Point Bubble
Plane Charge | Skating
First Year 215 174 191
Sophomore 11 22 22
Junior 20 18 N/A

5.3  Findings

In earlier work, we described in detail the kinds of evaluation strategies observed atthe
introductory level of the physics curriculum. Here we presentinstances of the use of evaluation
strategies at the intermediate and junior/seniorlevel. We use quantitative data to see whole group
trends, with particular emphasis on how the students’ responses compare at differe ntlevels of the
physics curriculum. Thus, the quantitative data addresses the firstand second research question. Then,
to illustrate some of the phenomenon that we observe in the quantitative results, we take an extended
look at a pair of interviews as case studies that encapsulate similarities and differences betwe en lower-
and upper-division students. Consequently, we will use qualitative data to answerourthird research

question.
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In chapter 3, we broadly classified the evaluation strategies observed in our data into three
categories: comparing to the physical world, checking through computation, and consulting external
sources (Figure 5.2)[68]. Strategies in the comparing to the physicalworld category involve evaluating
the given expression by checkingwhetheritis consistent with prior physics knowledge, experience, and
intuition. Strategiesin the checking through computation category involve evaluating the given
expression using computation without interpreting the physical meaning of the given expression. Finally,
strategiesin the consulting external source category involve evaluating given expressions by checking

with a trusted external source.

Evaluation Strategies

Comparing to the Checking through Consulting external
physical world computation sources
A A
r I .Y

Checking for

agreement with Checking for Solving for the given Computing for a Checking the
common sense, realistic numbers expression trusted result correctness of
intuition, and laws A . A . | computational steps
of physics -
Performing an Numeric
A experiment substitution
Special Case analysis Using reasonable Arljge.bra.\c
numbers substitution
. ) Canonical evaluation .
Unit analysis : : Solving for a known
strategies

 ——
Covariational
reasoning

Grouping

Variable roll call

Checking for
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Figure 5.2: Breakdown of categories of evaluation strategies

5.3.1 Quantitative Data
We presentthe results of coding students’ written responses in three different contexts at the first

year, sophomore, and junior levels of the physics curriculum. For efficiency of representing these data
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sets, some tothe code categories have been combined. Unless explicitly stated, any evaluation strategy
that is missing from/unmentioned in the graph was not used by students in the given task context.
Figure 5.3, 5.4, and 5.5 show the changes in the prevalence of the use of evaluation strategiesin the

inclined plane, point charge and bubble skating contexts respectively.

121



Inclined Plane Task

100
90
80
70
60

50

40

30

2

1 .1
. - N

Consulting Checking the Solving for given Computingfora Checking for Checking for

Percentage of students

o o

external sources correctness of expression trusted result realistic numbers agreement with
computational common sense,

steps . intuition, and
\ laws of physics

M First Year (N=215)  ® Sophmore (N=11)  ® Junior/ Senior (N=20) "'

Comparing to the physical world: Inclined plane

100
90
80
70
60
50
40
30
20
1

Percentage of students

o

Performing Using  Checking for Variable roll Grouping Covariation Unitanalysis Special case
an reasonable expected call reasoning analysis
experiment numbers behavior

o

M First Year (N=215) ™ Sophmore (N=11) M Junior/ Senior (N=20)

Figure 5.3: Prevalence of evaluation strategies across the curriculum in the Inclined plane task
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There are a few observations that we can make about our quantitative results. First, we observe a
shift from the use of evaluation strategies thatrely on computation in our first-year student population,
to the use of evaluation strategies that verify the ability of the equation to describe the given physical
scenario in our juniorstudent population. This is an expected trend, but we have documentedit, and
shown some specificexpressions of the underlying changes that cause this trend. Most notably, on all
three tasks, the use of sophisticated strategies such as special case analysis and unit analysis increases
considerably amongthe sophomore and juniorstudent populations. Inthe inclined plane and point
charge task, the percentage of student population that use strategiesin the checking through
computation category is smaller at the sophomore and juniorlevels than at the introductory level, while
the percentage of students that use strategies in the comparing to the physicalworld category is greater
at the sophomore and junior/seniorlevels than at the introductory level.

Secondly, ourdata suggest that students at the sophomore and junior/seniorlevelare more
selective in their choice of task-specificstrategies. Strategies that are not productive in a given task
contextare largely not presentinthe responsesthesestudent populations. Forinstance, in the bubble
skating task, grouping and quantity roll call are not present beyond the first-year level. This may reflect
that more experienced students recognize that groupingand quantity roll call are not productive in the
bubble skating context. Onthe flip side, grouping can be a productive strategy in the point charge task
contextandindeed it is more prevalentin the sophomore and junior student population.

Lastly, we observed that some strategies used by studentsin our introductory population are not
used by our sophomore and junior/senior student population. Specifically, the strategies of checking for
correctness of computation steps and consulting external sources are not used by any studentsin our

sophomore and junior/senior student population.
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The quantitative results appearto show the trend of a shift from strategies thatfocus on
computational correctness at the first-yearlevel, to strategies thatfocus on the fit between the given
expression and the physical scenario it describes atthe upperlevelof the curriculum. However, the low
number of surveyed students atthe upperlevelof the curriculum warrants the question of validity. How
real is the difference between students’ performance real considering the low N at the upperlevel? To
address this concern, we calculated the standard error of the mean of and performed the chi-squared
test of our measurements.

To perform this statistical test, we split every population that we surveyed into two groups: students
that used at least one sophisticated evaluation strategy, and students that used only unsophisticated
strategies. Forthis purpose, we considered the following strategies as sophisticated: special case
analysis, unitanalysis, using reasonable numbers, covariational reasoning, and grouping. Allother
strategies were considered unsophisticated strategies.

While this split obscures some of the subtle features of the dataset, it created a binary response
pattern for use of at least one sophisticated strategy, which allowed the use of simple statistical tools.
This allows us to considerthe question: were the rates of use of sophisticated strategiesin first-yearand
higher-level courses likely to arise simply by chance? Treating the responses as categorical and binary
enablesthe use of chi-squared tests for statistical significance. Figure 5.6 shows the percentage of
students ateach levelusing at least one sophisticated strategy, for each task; error bars show the
standard error of the mean. Table 5.2 shows the chi-squared analysis for the data.

The chi-squared tests show statistically significant differences atthe p<.05level between the first
years and all higher-level populations on all tasks, suggesting that more post-introductory students use

at least one sophisticated evaluation strategy than first-year students in all tasks. While a promising
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result, we note that this is a rudimentary statistical analysis; more detailed analysisin the future will
yield more robustresults.

Students using at least one sophisticated evaluation strategy
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120.00% 120.00% 80.00%
70.00%
100.00% 100.00% ’
60.00%
80.00% 80.00%
’ 0 50.00%
60.00% 60.00% 40.00%
30.00%
40.00% 40.00% ’
20.00%
20.009 20.00Y
7 & 10.00%
0.00% 0.00% 0.00%
At least One Sophisticated At least One Sophisticated At least One Sophisticated
M First-year H Sophomore M Junior H First-year B Sophomore M Junior B First-year ® Sophomore

Figure 5.6: Percentage of students at each level using at least one sophisticated strategy in each task context. Error bars show the
standard error of the mean

Table 5.2: Summary of p- values comparing first-year and post introductory
use of at least one sophisticated strategy in each task context

Task ! nPclgr:;d Point Charge Ell:abt?r:z
Level First-year
Sophomore .00495 <0.00001 .00521
Junior .0242 <0.00001 N/A

5.3.2 Case studies

For our case studies, we chose to examine two representative evaluation strategies used by our
students during pair interviews. In both interviews, the students were asked to evaluate an expression
for the final velocities of two skaters involved in a one-dimensional elastic collision (bubble skating task,
Figure 5.1). The introductory students, Frodo and Sam, performed arithmetic substitution: they assigned
numbersto variables in the given expression and used the result to check that numerically, a physics

rule or concept holds forthe given expression. In this case, numeric substitution was used to verify that
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the given expression was consistent with conservation of momentum. During the interview, the
students said they would do this (arithmetic substitution) if they had numbers, and the interviewer
suggested that the students could make up numbers. The interviewer did not provide numbers but
facilitated the students’ choice to choose theirown numbers. On the otherhand, our juniors, Jack and
Jill, performed special case analysis: they checked whetherthe expression describes the realworld or
laws of physics as expected under certain physical or corresponding mathematical conditions. We
outline and narrate these two evaluation strategiesin the excerpt below. First, we present excerpts
from the first-yearinterview, then we present excerpts fromthe juniorinterview. To make referencing

easier, we numbersegmentsforthe excerpts.

5.3.2.1 First year interview excerpts
To evaluate the given expression, the first-year students used arithmetic substitution. They assigned
numbersto the massesand initial velocities of the skaters. The students used these numbersand the
given equation to calculate the final velocities of the skaters. Finally, they used the masses and final and
initial velocities of the skaters to solve for their initial and final momentum. The values of the calculated
momentum were then used to verify that the given expression is consistent with conservation of
momentum. This processis outlined and narratedin the excerptbelow.
1.Sam: So your, momentum has to remain law of conservation of energy says that [trails off] |
don't know.
2.Frodo: Oh, | didn't think it was conservation of momentum and conservation of energy. We
already used those so that would not make any sense][...].
3.Sam: We could say that if this [mvy; + mv,; = mv; s + mvys]is the case, thenif these two

[skaters] have different masses and then the next part we had different velocities, then
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this [... ] this [mvy; + mvy; = mvyr + mv,] part would have to hold true wouldn'tit
if we put in the actual masses and velocities of both of them.

4.Frodo: | yeah, | agree with that. But | don't know. | justthink that we have to think of
somethingelse because we derived that from this. So it obviously going to be true, |
think. 1 don’t’ know, | could be wrong.

5.Sam: [...] | could probably just like make up like this is so many kilograms, this is so many
kilograms [...] and then | could justgo in, | could just putin two different speedsforthe
two velocities, and thensee[...] the momentum of those two [skaters] are equalto
each otherafterwards, [...]. But at the same time, | mean if the numbers come up
correctly then [...] it should equal to the same equation, which kind of says that it's
true...

6.Sam: Let's try this, let's say m; is equalto 2kg and then m, is equalto 5kg and thenv; is equal
to Im/s and thenv, is equalto 2m/s. [...] so v final has to be equal to m; — m,,so two
minus five kilograms overand m; + m, so two kilograms plus five kilograms times v;
which is Im/s[....].

2kg—5k
=T, gmye
2kg+5kg

2%5k 13
g % zm/s —
2kg+5kg 7

Sam [incorrectly] solvesfor v r =

Frodo first solves for the initial momentum:2kg * 1™/s + 5kg * 2™/ = 12kg ™/ . Then Frodo

2%2k 5kg—2k 10 .

solvestorv = * — = —— . Lastly, he uses nis valuetor v, ¢ an

ves for vy, I_yqmy 429229 7my kg ™/s. Lastly, h his value for v, and
2kg+5kg 2kg+5kg 7

76 _ —
Sam’s[wrong] value for v, tosolve forpy = ~ kg ™/s whichis notequal to the calculated initial

momentum. Once they bothrealize this inconsistency, they both go through their calculations.
7.Frodo: That's notright. Maybe | did something wrong. Maybe that's [inaudible] go back to this

[written work to calculate p;]
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8.Sam: [Goingthrough his calculations for v ¢]. So two minus five, that's fine. That's fine. Two
plus seven. That's fine. And then that's seven. That's seven. Two, two plus 10 time s
times two times two because v, . twenty. That’s three, Twenty minus three. ... Oh wait,
it's not13 it's 17 that's maybe, okay.

9.Frodo: So where oh seventeen so that changes to 34 which is four and six sevenths. That's still
wrongis it?

10.Sam: No cause it's, that's one plus sevenis eight plus four...

11.Frodo: Oh | was adding that to that my bad. That that's what| supposedtoadd it to.
Whoops. Alright.

12.Sam: So that's, numerically it makes sense.

5.3.2.2 Junior studentsinterview excerpts

To evaluate the give expression, the juniors used special case analysis. They checked if the given
expression was consistent with the laws of physics, and their intuitions and real life experiences under
certain physical or corresponding mathematical conditions. Specifically, the students checked the case
where the masses of the skaters were equal, and where the mass of one skater was much larger than
the otherand the initial velocity of one skaterwas zero. Foreach of these cases, the students calculated
the final velocities of the skaters using the given equations. The students then compared theirresult
with laws of physics, and real-life experiences. This processis outlined and narrated in the excerpt
below.

1.Jack: Yeah but that would, yeah that would be just checkinganotherboundary. Like let — Let
m; =10m, or something. Yeah like something much larger or a 100m,.

2.Jill: Yeah | think that if we picked another case it would be just more of the same.
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mp;—m;

3.Jack: [...] If that's a 100 m, andthat [ ] would justbe 99m, over 101m, that's roughly 1.

mp+m;

2m

. 2 .
This [m1+m2] would be basically zero. [...]

4.Jill: And | guesstheidea behind youridea of doinglimiting cases would be where one of the
velocitiesis zero. And one of them can be really large. [Already drew an arrow and dot to
representpy; and p,; respectively]. So, like thisarrow [draws arrow to represent p; ¢]
could be superbig, so that is consistent.
5.Jack: [Working out the algebra on the board] Roughly get v; r=v;; soif | justhad a really heavy
first object relative to my second object situation again and | like had a certain speed and
then hit it | wouldn'tlike you wouldn't stop me that much. Right. Like | would just keep
going. Yeah
[The students continue examining the special case of masses (m; = 100m, ) they (incorrectly) arrive at
theresult v,r ~ 2v,¢ + v,; and are uncomfortable withiit.]
6.Jack: Andif | do that on a second expression [Jill pointing to v, expression] on this one equals

we get 200m,. Jesusis that that's right. It's right. m; m,. Is that's right? Yeah.No I’'m

99m,

not crazy. Two times 100 is 200 right? [...]. o1
2

V,;. Doesthat make sense?

7.Jill: 1 don't know. Now I am worried. [Jack: | know!] because | was trying to think about it in
terms of my vector addition thing.

8.Jack: and equals 2vy; + v,;? Let me think about that for a second [Looks over his work on the
board].

8.Jill: [Looking over what Jack wrote on the board] wait. | think you're missing...

9.Jack: Did | miss something?

99m

10.Jill: This [The 99m, in 2 v,;] should be minus. m, — 100m,, so that’s
2

101m
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11.Jack: Oh oh oh. Oh. You caught me. You caught me. |I'm not sure. You are. You are right. So,
it's you. Ohyeah, that's a vector addition works.

[Now, they have theresult: v ¢ = 2v; 7 — vy;]

12.Jack: Yeah. Solet’s pick a case like setting v,; to be zero. | feellike | am confusing myself
now.

13.Jill: [...] something's odd. I'm confused because when you apply the same, whenyou plugin
this [v,r = 2v;¢] condition to both, thenyou're suggesting that the initial velocity. Or
the initial velocity of the first one is equal to the final velocity of the second one of the
first one which means that the final velocity of two should be zero for that to work out.

14. Jack: But wouldn’t it have to be moving because if we draw but wouldn’tit just wouldn't be
moving like if 1 if | like ran and hit you with a sphere and | didn't like stop then you
would just be movingalong in the same velocity as me?

15. Jack: So. the final velocity of the second objectis somehow twice the initial velocity. Like
how. Where did that come from?

16. Jill: Wait I'm sorry. OK. So, you said you’re trying to make

17. Jack: if I'm coming if I'm coming let's put this into numbers [make v,; zero.] So, let's have

let’s have this coming at me at some like wait.
18. Jack: Let’s just do velocity vectors | guessso v;; = 100 mileS/hour let's be crazy. | love

being crazy umm meters persecond whatam |, a monster? meters persecond.
Andso and then we have v,; = 0. This [vyf ~ vy;] says here that
vy still equals 100™/,. But then this one says that somehow this [vof = 2v;¢] would

be v,y =200 M/ — v,;. Yeah, that's minus zero. So how is that a thing?
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In our qualitative analysis of our case studies, we made some observations. To discuss our
observations, we will make a claim about a difference or similarity about how the first years and juniors
evaluated the given expression and then support it with excerpts from both interviews. Our
observations from the qualitative data are summarized in table 5.1.

First, we observed that to find consistency between the given expression and the laws of physics,
the first-year students sought to generate an arithmetic equality, while the juniorslooked for
consistency between the given expression, experience, and physics concepts under certain conditions.
Both the first-years and juniors evaluated the given expression by checking to see whetheritobeyed the
law of conservation of momentum. The first-year students went about this by evaluating the expression
numerically (fig. 5.7). Specifically, in segments 3 and 5, Sam suggested thatif actual massesand
velocities were substituted into the given equations, then the calculated final velocities should be
consistent with the statement of conservation of momentum [mvli +mvy; = mvyy + mvzf]. In
segment6,Sam and Frodo plugged in numericalvalues forthe masses and initial velocities of the
skaters, then used these numbersto solve forthe initial momentum and final velocities of the skaters.
Finally, they used their chosen values for masses and initial velocities and calculated values of the final
velocities of the skaters. Insegment 12, the students arrive at the result that the initial and final
momenta of the skaters are equal (pi =py = 12kgm/s ) indicating thatthe expression is consistent
with conservation of momentum and therefore correct. They do not reason with ratios or variables, and

indeed spend asignificant amount of time and effort on the arithmetic.
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Table 5.3: Summary of the similarities and differences between first years and juniors in the case studies

How dothe
students...

First years

Juniors

Find consistency

Generate arithmetic
equality

Find consistency between equation, ex perience
and physics concepts under certain conditions

View result

As an endin itself

Something from which to extract physical meaning

Engage variables

Use arithmetic equality
(e.g., m;=2kg, m,=5kg

Primarily use symbolicequality (e.g., m;=100m,)
but also use arithmetic equality.

Perform
operations

Perform mathematical
operations meticulously

Perform mathematical operations less strictly and
employ qualitative comparisons

Troubleshoot

Check calculation
procedures

Check calculation proceduresandalso try to
reconcile results with experience and physics
knowledge.

On the other hand, the juniors evaluated the expression by checking to see if it satisfied the law of

conservation of momentum under certain conditions. Specifically, here, the students perf ormed two

special case analyses: one forwhenthe massesare equal, and one for when one massis much larger

than the other. We focus on the second case where one massis much larger than the other. Insegment

1, the students decide to evaluate the case where one massis one hundred times larger than the other

(my; = 100m,). In segments 3through 5, they arrive at, make sense of, and agree with, the result Vif =

v1;- They conclude that the given expression is consistent with the laws of conservation of energy.
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Secondly, we noticed that while evaluating the given expression, both the first-years and juniors
used equations as a computationalmeans to verify the conservation of momentum. However, juniors
also extracted physical meaning out of the result of their computation, while the first-years seemed to
see theresultas an endin itself. In segment 6 through 12, while verifying that the given expression was
consistent with momentum conservation, the first years performed mathematical operations to confirm
that momentum is conserved. However, the only sense they make of theirresultis thatp; = py =
12kgm/s, so momentumis conserved. They do not triangulate this result with anythingelse or extract
more physical meaning from it. They also do not make physical sense of any intermediate results or
mathematical operations.
On the otherhand, while
verifying that the given
expression was consistent
with momentum
conservation, the juniors
made sense of theirresults

by corroborating it with

otherrepresentations of

Figure 5.7: Sam and Frodo using Arithmetic Substitution

conservation of energy and
lived experience. Forinstance, in segments4and 13, Jill crosschecksthe results v;y = vy; and vyp =
2vy5 by representing the velocities as vectors and confirming the vector diagrams are consistent with
conservation of momentum. In segments 5and 15, Jack makes sense of the results by comparing the
physical meaning of the mathematical result to a real-life scenario of runninginto Jill. In the rest of the
interview, Jack compares the m; > m,, case to the lecture demonstration known as Newton’s cradle,
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and the m; > m, to a giant boulderrolling towards him like the scene in the movie Raiders of the Lost

Ark.Not only did the juniors perform calculations, but they also corroborated their results with other

representations of their system and extracted physical meaning from their mathematical results.
Thirdly, we also observed that while evaluating the given expression/ finding consistency between

the given expression and the laws of physics, both first year students and juniors used arithmetic

Figure 5.8: Jack and Jill using Special Case Analysis

equalities. However, the juniors primarily used symbolicequalities and ratios. While verifying that given
expression was consistent with the law of conservation of momentum, the first-year students checked
for numerical equalities, using specific values forthe masses and initial velocities of the skaters. In
segment 3 through 12 of the excerpt, Sam and Frodo use the values m; = 2kg, m, = 5kg, v;; =
1m/s,and v,; = 2m/s to solve for final velocities and ultimately verify that the given expressions are

consistent with the law of conservation of momentum.
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On the otherhand, Jack and Jill do not use specific values for the masses of the skatersin their
special case analysis (fig. 5.8), using symbolicratios instead. Insegment 1 and 3, Jack usesthe ratio
my = 100m, to describe the case where the massis one skateris arbitrary larger than the other. Earlier
(before the excerpt segment), the pair use the ratio m; = m, to describe the special case of when both
massesare equal.

While examining the limit of one mass being much greaterthan the other, an expert would most
likely use the representation and symbolicequality m; > m,. Jack’s and Jill's choice of my = 100m,,is
an intermediate version between two numbers and a specific mass proportion; this provides insight
about the behavior between expert and novice evaluation and may suggest an avenue forinstructors to
help promote symbol-based evaluation.

However, similar to the first-year students, the juniors also used numerical values for variables while
verifying that given expression was consistent with the law of conse rvation of momentum. In segment
16, Jack plugged numbersinto the result v, ~ 2v;r. However, unlike the first-years, Jack did not use
this numberto checkfor an arithmetic equality or as an endin itself. Instead, he extracted physical
meaning from the result, using it to elaborate how unusualthe result v, ~ 2v; ¢ was.

Fourthly, we noted that while evaluating the given expression and finding consistency between the
given expression and the laws of physics, the first-year students performed mathematical operations
punctiliously while the juniors employed more qualitative comparisons. Inlines 6 - 12, Sam and Frodo
compute specificnumerical values for the initial momentum, finalmomentum, and final velocities of the
skaters. While solving for these quantities, no qualitative comparisons were made, and no
computationalresult or operations are approximated.

On the other hand, while verifying that given expression was consistent with the law of conservation
of momentum, the juniors were not strictin their computation for expressions. Insegment 3, Jack
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2m.

9 1 ” . .
- 10172 as “basically zero”. Atthe beginning of segment 6 and 13,
2

9
2 as “roughly 1” and
101m,

approximates

Jack describestheirresult for v,¢ as vor = 205 + vy; and vy = 2v;¢ respectively. Inthis way, the
juniorsare less strict/rigid about their calculations as they evaluate.

Finally, we also observed that while evaluating the given expression, both first-years and juniors
debugged their work by checking their computational procedures. However, in addition, the juniors also
tried to reconcile their results with intuition, experience,and knowledge of physics.

While evaluating the given expression, (line 7), Sam and Frodo realized that their calculated values
for p; and py did not match. To address this problem, they looked over their calculations again
meticulously, making sure that correct numbers have been entered and mathematical operations had
been carried out correctly (segment7-11). Insegment 8, Sam realized that he had incorrectly calculated
V15, and Frodo had used this resultto calculate ps. Insegment9 through 11, the pair re-did their
calculations forpys, and arrive at the correct results.

Similarly, while evaluating the given expression, the juniors arrived atthe result v, = 2v15 + vy;
and were uncomfortable with it (segments 6-14). Like the first-year students, Jack and Jill cautiously
looked through their calculations (segment 6, and 8-11). For instance, in segment 6, Jack wondered
whethertwo times 100 is 200, and in segment9, he asked Jill if he missed somethingin his calculations.
Uponinspection of theirwork, Jill found that Jack dropped a negative sign (segment 10-11). However, in
segment 7, prior to this check of procedures, Jillhad attempted to reconcile their result with hervector
diagram.

Furthermore, (in segment 12) afterarriving at theresult v,¢ =~ 2v,¢ — vy; , the pair first simplified
their results by making vy; = 0, leaving them with the result v, = 2v,¢. Jill thought this result was
“odd” and explained how it was inconsistent with conservation of momentum the vectorre presentation

of the final velocities of the skaters. To counterthis, (in segment 14), Jack described a real-life scenario
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that matchesthe result: one where he is runninginto Jill while carrying a heavy sphere causing Jill to
move at his speed.

In the rest of the interview, Jack and Jill went back and forth to make sense of the result v,f =
2vy¢:Jill talked about the vector diagram, and Jack used real life examples including bowling while
throwinga heavy ball at a much lighter ball, and a scene fromthe movie Raiders of the Lost Ark where
someone is being chased by a rolling boulder. These comparisons bring up a discussion about the
differences between elasticand inelastic collisions, and both students discuss which type of collisions
apply to Jack’s scenarios. In the end, Jill realized that hervector diagram had represented ve locity and
did not take into account the mass of the skaters. Afterthis erroris resolved, the two agreed that the

resultv,r ~ 2v,¢ wasreasonable.

5.4 Discussionand conclusion

To furtherdelve into the observations from our quantitative data and case studies, we examine our
results from existing perspectivesin PER. We analyze our results from the lens of the epistemic
complexity of equations [20]. We also compare our results to the results of expert-novice studiesin
problem solving. Observations from our case studies are used to interpret our quantitative data and
consequent claims. We also provide some implications for instruction and outline directions for future
work.

First, fromthe perspective of Bing and Redish’s epistemic complexity of equations [20], both first-
years and juniors use equations as a calculation scheme. Both groups of students use the given equation
to calculate results. The first years use the given equation and conservation of momentum to calculate
the numerical values for the masses, initial and final velocities of the skaters. The Juniors use the given
equationsto calculate the final velocities of the skaters when their masses are equaland when one mass

is much bigger than the other.
139



Secondly, the juniors seemto considerthe given equations as a physical relation among
measurements—one that describes the final velocities of two bodiesinvolved in a collision as a function
of theirinitial velocities and the ratio of, and differencesin, their masses. Unlike the first-year students,
juniors extracted physicalinformation from the results of their calculations. The juniorsalso
corroborated the equation with real-life experiences and with otherrepresentations of conservation of
momentum.

The results of our study are consistent with prior work in PER that describes the similarities between
expertand novice behaviorsin problem solving using epistemicgames and frames. For instance, the
high prevalence of the use of evaluation strategies that focus on calculation observedin our first-year
populationis consistent with a physics preference for playing the recursive plug and chug game, solving
problemsin a rote equation-chasing or calculation frame [20], [21], [29]. This resultis also consistent
with novices solving physics problems using a plug and chug approach [28]. Our observations are
consistent with the finding that inexperienced physics students tend to focus on meticulous ly calculating
and finding the “right result”. However, here, we getto see these behaviors play outin a different
context (evaluation) as opposed to those of prior studies in which students solved problem:s.

Similarly, our results are consistent with the findings that during problem solving, experienced
physics students connect their calculations to physical meaning. The use of evaluation strategiesin the
comparing to the physical world strategy in our sophomore and junior-senior student population is
consistent with experts’ preference for solving physics problems using a scientific approach [28], or in
the quantitative sensemaking and physical mappingframes [20], [29]. Our observations are consistent
with the finding that experienced physics students and physicists corroborate and find coherence

between their calculations, knowledge of the laws of physics, and intuition/real life experience.
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Our results also suggest that expert and novice uses of evaluation do not constitute a dichotomy but
rather form a spectrum. Our quantitative datashowed that, generally, all our surveyed population used
the same evaluation strategies, but some strategies were more prevalentin one group (level) than the
other. There are no new strategies that the upper-level students used that the first-year students did
not. The percentage of students who used sophisticated strategies was greater in the sophomore and
junior/seniorstudent population than in the first-year student population. Similarly, in our case studies,
our qualitative results also suggest that while the juniors used a more sophisticated evaluation strategy
than the first-year students did, the more advanced physics students and first-year students performed
some similar actions while evaluating the solution to the physics problem, e.g., substituting numbers
into the equation, and meticulously checking calculation steps while troubleshooting.

Our interview/qualitative datasuggest that there is more to the shift in the prevalence of evaluation
strategies observed in our quantitative data than meetsthe eye. Forinstance, for the first-year students,
evaluatingan equation involved dealing with numbers, and a final decision was made by checking
whetherone numberequals another (p; = pr), whereasironically (from the perspective of the first-year
students), the juniors are less committed to such strict equalities. The juniors seemto be more fluid in
their thinking, but to a novice it may seem sloppy and imprecise, e.g., in using approximations.

Furthermore, the first-year students’ use of numbers at the beginning of the evaluation sequence is
consequentialbecause it constrains the rest of the evaluation process. Specifically, the substitution of
numbersforvariables makesit hard to recoverthe symbolic relationship between the physical
quantities in the given equation. On the hand, the approach of the juniorsis a much more flexible way of
thinking about mathematical relationships between the quantities in the equation, and how the

equation describes the physical world. The juniors’ use of symbolic relationships and ratios is consistent
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with a dynamic view of mathematics, such that one equation describes arange of physical
phenomenon. Thisis very different from what the first-year students do.

Anothersubtle difference between first-years and more advanced students, as illustrated by our
case studies, isthe interpretation and triangulation of results. While evaluating the given expression, the
only physical meaningthe first-year students extracted from their result was its consistency with
conservation of momentum. Furthermore, they did not seek to triangulate the result of their
calculations with anything outside their computation, e.g., other physics concepts, otherrepresentation
of theirresults, and real-life scenarios. The only thing that made Sam and Frodo pause was getting a
value for the initial momentumthat was not equalto the calculated final momentum.

On the other hand, while evaluating the given expression, the juniors thought about the physical
meaning of theirresults and used sensemaking tools that were outside their computation. Specifically,
they compared the physical meaning of theirresults with vector representation of conservation of
momentum, and a few real-life scenarios that reflected their chosen special cases. Like the first-year
students, the juniors looked through their arithmetic while deliberating a result with which they were
disgruntled. However, in addition to looking over their work, they also thought about the physical
meaning of theirresult. Unlike the first-year students, Jack and Jill have developed approximation skills
and intuition about what they expectin real life situations. This observation is consistent with the
finding that triangulation of, and fluid movement between, different sensemaking approaches
characterize expert-like behaviorin physics [21], [70].

Finally, our study provides some insight for potential approaches forteaching evaluation strategies.
Jack and Jill's suggestion of using 10m; or 100m,, and later 1000m,, may suggest a possible bridge
between anovice approach to evaluation and an expert approach toward evaluation. As students at the

introductory levelseem more comfortable with numbers, perhaps guidingthem through a special case
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analysis with m; = 100kg and m; = 1kg would be a productive activity. If we look closely at what the
first-yearstudents are trying to do, they are going about theirgoal in the right way. However, as
instructors, we want to nudge theirapproach into a direction that is more productive.

While the shift in the student’s use of physics and mathematics is interesting to see, it is not
surprising as we hope that this is the development students go through during their training as physics
majors. Some first-year students do use strategies fromthe compareto the physical world group of
strategies. This brings up the question of whetherwe train students to use comparing to the physical
world strategies, orinstead select for students thatare already inclined to do so? This question s
beyond the scope of this paperbut, may be an avenue forfuture work. Itis not clear what the causesin
skill levelare, but future work might probe the impact of specific classes between firstyearand
junior/seniorlevel by collecting research data at beginning of the semesterand end of the semester.

In conclusion, the goal of our study was to documentand describe the differences between expert
and novice use of evaluation strategies. We did this using analysis of written responses and interview
data at differentlevels of the physics curriculum. From written responses, we demonstrated differences
in the use of different evaluation strategies at the introductory, sophomore, and junior levels. We then
examined two case studies, one each from the first year and junior level, to gain insight into the results
from our quantitative data.

From our quantitative data, we found that while all the surveyed student populations drew from the
same set of evaluation strategies, the percentage of students who used sophisticated evaluation
strategies was higher in the sophomore and junior/senior student populations than in the first-year
population. Our simple statistical analysis suggests that more post-introductory students use atleast
one sophisticated evaluation strategy than first-year students in all tasks. From our case study, we found

that that while evaluating an expression, both juniors and first years performed similar actions.
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However, while the first-year students focused on computation and checked for arithmetic consistency
with the laws of physics, juniors checked for computational correctness and probed whetherthe
equation accurately described the physical world and obeyed the laws of physics.

Our case study suggests that a key difference between expert and novice evaluation is that experts
extract physical meaning from theirresult and make sense of them by comparing them to other
representations of laws of physics, and real-life experience. Theseresults are consistent with previous
descriptions of expert and novice behaviors in physics problem solving. Future work on this projectcan
show whetherand when students are taught to evaluate as they getinto advanced physics courses.

Future work could also specify what courses equip student with the ability to evaluate solutions.
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CHAPTER 6

6. CONCLUSIONS

The aim of this project was to study students’ use and understanding of evaluation strategies. This
project explored evaluation strategies as an avenue forstudents tofind connections between
mathematical operations, physics concepts, intuition, and real-life experience. This projectis also one of
a group of studies at the confluence of mathematics and physics. Evaluation strategies entail integrating
mathematics and physicsin a way that makes sense physically and checking that physics is consistent
with itself. Consequently, one goal of our project was to examine how students ground their use of
mathematics and mathematical reasoningin physicsin the context of using evaluation strategies. The
projectalso studied how students’ use of evaluation strategies evolves as students gain expertise on
physics.

We soughtto meetthese goals by answering the following research questions.

1. Towhat extent, andinwhat ways, do students evaluate the validity of derived expressions or

solutions when prompted?
2. How dostudents’ use of evaluation strategies fit current models from PER and adjoining fields?
3. How dostudents’ use of evaluation strategies compare at different levels the physics

curriculum?

In Chapter 3 we addressed the firstand second research questions. We found that students used a
myriad of evaluation strategies when prompted, including special case analysis, grouping, performingan
experiment, solving fora known result, and consulting external sources. We classified students’
responsesinto 3 categories: consulting externalsources, checking with computation, and comparing to

the physical world. However, atthe introductory level, only a few students used canonical evalu ation
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strategies (special case analysis, unit analysis, and use of reasonable numbers). We also found that
instead of evaluating, most introductory students attempted orsuggested solving for the given solution
using first principles. We also compared our classifications of evaluation strategies to proof/justifications
in mathematics education research, epistemicframesin PER, and control beliefs about knowledge in
metacognition. The analysis of strategiesin the comparing to the physical world category fromthe
perspective of the use of mathematics in physics showed that evaluation strategies are indeed a great
avenue forstudents to ground their use of mathematicsin physics and find coherence b etween
calculation, physics concepts and intuition/real life experience.

In Chapter4, we addressed the firstand second research questions. We focused on grouping, one of
the novelevaluation strategies identified in studentresponses. We established that groupingis a
sophisticated strategy using perspectives of mathematical modeling and mathematical reasoningin
physics. We then showed that groupingis consistent with the phenomenon of chunkingin cognitive
psychology. We also demonstrated how grouping also had some attributes of symbolicforms and the
use of symbolicforms. We also showed that on the inclined plane and point charge task, the percentage
of studentswho used grouping was greater. However, on the bubble skating task, the trend is reversed.

In Chapter5, we addressed the first and third research questions. We focused on the evolution of
the use of evaluation strategies as students move through the physics curriculum. We showed thaton
the written task, the percentage of students coded as using canonical evaluation strategies and other
comparing to the physical world strategiesincreased in sophomore and junior/seniorstudent
populations surveyed. Onthe other hand, the percentage of students coded as using strategiesin the
checking through calculation and consulting external sources category decreased in sophomore and
junior/seniorstudent populations surveyed. We also used two case studies to show the key similarities

and differences between the way first years and juniors/seniors evaluate solutions to physics problems.
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We foundthat to ascertain the validity of an equation, some of our first-year students checked for
computational consistency, while juniors/seniors checked for computational correctness and also
probed the ability of the equation to accurately describe the physical world / obey the laws of physics.

In conclusion, we found that students use both canonical and non-canonical evaluation strategies.
At the introductory level, many students solve forthe given expression fromfirst principles instead of
evaluating. The evaluation strategies that we observed ourstudents using are consistent with modelsin
PER, mathematics education research, and cognitive science. Specifically, we found our classifications of
evaluation strategies consistent with Bing and Redish’s epistemicframes, Sherin’s symbolicforms, and
models of mathematical reasoningin physics [10]—[12], [20], [39]. Ourfindings were also consistent with
prior research on proofs and justifications in mathematics education research. Lastly, from the
perspective of metacognition, our results were also consistent with control and beliefs about
knowledge. Furthermore, the strategy of groupingis consistent with the phenomenon of chunkingin
cognitive science [69]. These perspectives show that evaluation strategiesin the comparing to the
physicalworld category are consistent with the definition of evaluation, and help students to find
connections between mathematical operations, physics concepts, intuition, and real-life experience. As
students move up the physics curriculum, they become better evaluators. Forinstance, betweenthe
first and second year of the physics curriculum, there is considerable increase in the percentage of
students that use sophisticated evaluation strategies. Our simple statistical analysis suggests that more
post-introductory students use at least one sophisticated evaluation strate gy than first-year studentsin
all tasks.

There are a few limitations of our results. First, from the perspective of design, providing the
students with symbolic solutions might have pushed them toward more qualitative and symbolic

reasoning. However, despite this possible cuing, our results at the first-yearlevel show that very few
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students used strategies canonically taught for evaluation. Furthermore, it could also be argued that
despite the attemptto let students choose their own strategy, that the tasks might well have pushed
studentstothe modes of evaluation favored by researchers. Asa result, although there were seve ral
strategies that had not been previously documented, perhaps otherstrategies would have beenseenin
tasks that were more open ended. An expansion of our workin the future might include tasks with a mix
of both symbolic and arithmetic solutions. Another limitation of our designis thatit is hard to directly
compare the results of our task because they were not strictly isomorphic. While the multiple contexts
of ourtask allow us to see how the use of evaluation strategies vary with context, it does notallow for
direct across- task comparison of the prevalence of the use of observed evaluation strategies.

Aside from self-regulation, none of the frameworks we adopted were developed oradopted to
describe evaluating or evaluation strategies. Nonetheless, these frameworks were useful for describing,
giving language for, and explaining the patterns we observedin students’ responses. Evaluationis a step
in the larger processes of problem solving and mathematical modeling. Consequently, the frameworks
of mathematical modeling, epistemicgames, and epistemicframes are useful perspectives to describe
and analyze our results. Furthermore, as physics education researchers, we are not only concerned
about what students do when they solve problems, but also how they are thinking about the problem-
solving activity. As a result, the framework of metacognition and chunking are helpful perspectivesto
explain patternsin students’ responses.

Specifically, the framework of mathematical modeling describes how to model systems using
mathematical representations. However, this framework was useful for describing our task, including
the stepstakento getto the provided solution, and the steps we expected our students to performon
the equation we provided. Similarly, Sowderand Harel's proofs and justifications describe how students

justify that their mathematical proofs are right. However, the proof schemes Sowderand Harel
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observedtheirstudents use were usefulfor describing our categories of the evaluation strategies our
students used. Finally, Bing and Redish’s epistemicframes describe how students justify their problem -
solving approach. However, the epistemicframes they observed in their study are consistent with our
categories of evaluation strategies.

While different, these frameworks sometimes complement each other. Forinstance, as we
discussed, both metacognition and epistemic frames can describe the students’ attitude/perception of
problems /problem solving. However, Schoenfeld’s work on metacognition is discussed in the contexts
of problem solving in mathematics. Consequently, Bingand Redish’s discussion epistemicframes
complement Schoenfeld’s discussion of students’ attitude towards problem solving because itis done in
the context of physics. Similarly, while models of mathematical modelingare usefulin describinghow to
modelany system using mathematical representations, models of using mathematics in physics
complement models of mathematical modeling as they give insight into how to use mathematics to
model physical systems. Lastly, chunking describes how stimuli (in this case, symbolsin an equation) are
perceivedin groups, while Sherin’s symbolicforms provides specific descriptions of how chunking can be
expressedin aphysics problem solving/evaluation context.

Nonetheless, the similarity between the frameworks brings up the issue of the lack of
communication between different fields doing similar work. For instance, Bing and Redish’s epistemic
frames and Schoenfeld’s modes are quite similar. However, Bing and Redish do not cite or referto
Schoenfeld’s work. Similarly, Sowderand Harel's types of student’s justifications, and Bingand Redish’s
epistemicframes are similar. However, the authors do not reference each other. The lack of cross
reference between Bingand Redish’s epistemicgames and Sowderand Harel’s students’ justificationis a
good example of the lack of communication between the fields of physics and mathematics education

research.
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Physics as a subject areais mathematics-intensive, and as a result, it is not unusualfor studiesin PER
and mathematics education research to be parallel or share similar results. Furthermore, the field of
mathematics education researchis older than that of physics education research. Consequently, physics
education research can be informed by already existing frameworks in mathematics education research.
However, itis important to note that this type of adaption of frameworks from mathematics education
research can prove difficult for many reasonsincluding one as trivial as differencesin nomenclature. For
instance, during this project, ourfirst attempt to find relevantframeworks in mathematics education
literature proved unsuccessfulas a search using the keyword “evaluation” did not yield any results. The
suggestion to use proofs and justifications was from feedback after giving a talk at the RUME
conference. Nonetheless, the consistency of our results with frameworks in mathematics education
research suggestthe needforcollaboration and streamlining of researchin the fields of mathematics
and physics education research.

The consistency between our results and all the frameworks we chose help solidify our results. Even
though the frameworks we are adopted are not specificto evaluating and evaluation strategies, the
consistency between the frameworks used, and the consistency between the frameworks and our
results help strengthen our conclusions. The consistency of our results with prior research allows us to
be confidentin our results.

The wide range of frameworks that describe and explain students’ use of evaluation strategies echo
the importance of evaluation strategies including but not limited to their relationship with self-
regulation, beliefs about knowledge, critical thinking and problem-solving performance. However,
despite the far-reachingimportance of evaluation, and its’ importance to problem solvingin physics and

mathematics, there is not a lot of research on evaluation in both fields. The closest thing to evaluationin
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mathematics educationis students use of proofs and justifications in mathematics. This gap tells us that
evaluationis a field that needs to be furtherstudied.

The use of different frameworks in our study is aided by the extensiveness of the importance of
problem solving. Evaluation is an important step in mathematics and physics problems solving.
However, problem solvingis common to fields outside physics and mathematics. For instance, many
fields of Discipline Based Education Research (DBER) study problem solving in the context of their
respective discipline. However, because problem solvingis an activity that cuts across many fields, there
are similarities between problem solving frameworks in DBER. Anotherreason why we can use
frameworks from other DBER fields is that every DBER field studies the same thing: what students think
learning is, how students think, the beliefs, mindsets and perspectives students bringinto the classroom,
and how students’ attitudes interact with their learning.

In conclusion, to analyze and discuss the results of our project, we gotinsights from many
perspectives including mathematical modeling, metacognition, using mathematics in physics, chunking,
epistemicframes and symbolic forms. Some of these insights would be impossible, were it not fora
careful review of literature outside of what many PER scholars generally attend to.

One take away from this projectis that physics education researchers can find and productively
utilize frameworks in otherfields. Particularly, as a field, we can glean some wisdom from older fields
like mathematics education research and cognitive science. In our experience, we found that these fields
had good input for patterns that we observed in students’ work. Forinstance, we found that Carlson’s
discussion of mentalactions to be very usefulin capturing students’ descriptions of the presence of, and
covariational relationships between symbolsin the provided equations. Mental actions framework
should be widely used by researchers who study the use of mathematicsin physics, butit is not. Our

projectis enhanced by its interdisciplinary focus: from cognitive science, and the RUME literature. This is
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somethingthere should be more of, and the cross-pollination of our communitiesis important to the
growth of PER and other DBER fields.

There are few other take home points from this project. First, while most students atthe
introductory leveldo not use canonical evaluation strategies, many use other potentially useful
strategies like covariational reasoning, grouping, and quantity roll call. Physics instructors should look
out forthe use of these non-canonical strategies and encourage students when they employ them.
Furthermore, our results suggest that students can evaluate solutions when they are explicitly taught to
do so. Our results also suggest that evaluation strategies are not generalizable to everytask, i.e., the use
of some evolution strategies is task dependent. Finally, the results of study of the evolution of strategy
use suggests that teaching introductory students how to evaluate using arithmetic versions of canonical
evaluation strategies might provide some scaffolding forteaching/learning how to evaluate.

While we have provided at least partial answers to each of our research questions, ourresults
prompt additional questions and suggest further studies and projects for future scholars. Inthe future,
we hope to expand and build on our results. First, we hope to delve furtherinto the evolution of
students use of evaluation strategies. Specifically, we want to examine the responses of introductory
physics majors explicitly to determine whether our students learned how to evaluate as part of the
physics curriculum, or whetherthe physics majorselects for students who already possess more
sophisticated evaluation skills. We also plan to use the results of this project to develop instructional
materials to guide students to evaluate. Inthe near future, we plan to expand upon our study by asking
students to evaluate solutions to physics problems in unexplored contexts such as qguantum physics,
relativity, and thermodynamics. Furthermore, we hope to examine the interaction between physics and
mathematics during evaluation by giving our evaluation tasks to students who have taken mathematics

courses but have nottaken any physics classes.
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8.1 Codetables

8. APPENDIX

Table 8.1: Summary of codes in the inclined plane task

Category

Inclined plane examples

Consulting external

sources

N/A

Checking correctness of

computational steps

“I would check to see if thevalues of each variable were put into the

equation correctly”

Quoting equation

“I would check if my solution is reasonable by first determining the

velocity of the block using a different verified equation”

Derivative/integral

“You could check your answer the derivative by taking the integral of

v= \/ng (sin @ — ucos 8) andseeing if you get the original

1
equation [ (2gd (sin® — ucos 6))? dv.

Solving forgiven

expression

“I would sum all of the forcesin the x and y directions and derive an

equationthat way. x: f —sinw = ma, y: N —cosw = ma.”

Solve from a different

perspective

“solve using another method like finding i andj. If both methods yield
the same answer & the numbers are reasonable, the answer is most

likely correct.”

Legitimate

derivative/integral

“Use forces in the x-direction, find acceleration. f —mgsinf = ma.

Use acceleration and take the antiderivative to find velocity.”
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Table 8.1 Continued

Solving fora “plugging in the answer| gotfor v, and then using that to solve ford or another
known variable.”
“I would plug the equation into anotherequation that needs the velocity or | could
rearrange anotherequationto equalvelocity and see if | can get the twoto
Algebraic

substitution

equal..Dy = ; + dt./2gd (sin 6 —pcos 6) = 0 + at.

V2gd (sin@ — pcos 0) =£t.Ftomly =WcosO —f,.Frprqix = I — W sin6.

(WcosO-f)i+(u—Wsin6)j £
— .

V2gd (sin@ —pucos ) =

Arithmetic

substitution

“Assuming | came up with a numerical answer, | could check it by looking at the
energy at the top (potential energy) and energy at the bottom (Kineticenergy). If my
calculations show that PE=Kei (Or E,itia=Efina) then’d assume (I could be wrong) |

had the correct answer”

Performingan

“Without knowing the correct answer, just do an actual experiment, measure the

experiment velocity, using known values check to see if the results match with what you got”
Using

“you should be able to tell if v is too slow or too fast for example, if d =10m, a v of
reasonable

100,000m/s wouldn’t make sense”
numbers
Special case If| were to put the block at the bottom of the ramp (makes d=0) then | would have
analysis v= \/2(9.8)0 (sin @ — ucos 0 ) meaningv = +/0 ,which seems okay”

"I would check to see if the units were reasonable, as velocity is m/s and in this case,
Unit analysis

... |m2 "
it is /S—Z =m/s.
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Table 8.1 continued

Covariational
“the velocity increases with the 8 increasing which makes sense”

reasoning
“we needa d(m) sothe d makessense. Need aninitial forceso(g).sin 8
Grouping reasonable because hypotenuseis known, hisn’t.u cos 8 got to factor in
friction...no idea why thereis a 2 or why thereis a sqrt function.”
Quantity roll call “This is not likely the correct choice. Mass is not included in the equation”
Checkingfor

“Make sure the solution is negative since the block is sliding in the —y direction.”
expected behavior

Plugin Plugging in the numbers for each variable and see what the resultis

"Solve for a variable whenv=0, plug that into the equation and solve for
O'sand1l's
remanding [remaining] variable"
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Table 8.2: Summary of codes in the point charge task

Category

Point charge examples

Consulting external

“email the professor or a recitation TA to see of the answeris correct, go check

source at the physics learning centerif the resultis correct.”
Checking
correctness of "By making sure the correct formulais used, the values are plugged into the

computational

steps

correct places, and that the calculations are correct."

Quoting equation

"Use the equation foran electric field for each of the three +q chargesto find

their vectorcomponents, then sumthemto determine the net electricfield at

p.

Derivative/integral

“I would take the antiderivative and see if it matchesthe expression.”

“ . . qi if\ .
Solving for given you know thatE at any pointis = 2 pr 7 soreference that equation/...]
; . 1 q 1 q 1 q u
expression Yes, since the sum would be — . .
Amtey x2 4Amey (x2+d?2)  4mey (x2+d2)
“You could treat the three +q points as one big bar with charge +q spread
Legitimate

derivative/integral

across it, thenintegrate from —d to +d with respecttoy.dE, =

kdq _ gy
= cosf,dQ —ddy

Arithmetic

substitution

N/A

Algebraic

substitution

= k . .
Enet =qFtl F = %Ifwe were given the force due to the pointson p and

the charge of P. Then| would use F = q. E to see if my friend’s answeris valid.

Solving fora known

N/A
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Table 8.2 Continued

Performingan

experiment

“Testit...”

Usingreasonable

“I might pick values and “test run” the equation to make sure it has a

numbers reasonable answer”
. _ 3q
Special case Checkthat the result is somewhatlessthan E,or = p— but more than
. 2q
analysis E. ., ——29 »
net 4718 X2

Unit analysis

“Check units to see if answerin N/C”

Covariational

“I would plug in random equal values ford and a possible value of p... as the x

reasoning valuesincrease, the E,.; should decrease.”
“1 will look @ the equation E = q;gl and compare whatis written to the
. . L1 . . .
equation. q is the charge, k is e XIS the radius @ zero ,v/xZ+ dZis the
Grouping 0

radius when +qis @d or -d. | think the resultis correct because thereisa k &q.

The it is separated by the 2 different radi”

Quantity roll call

“First, | would ask how and why 7 is involved... “why is there a  in this?” -no

response”

Checkingfor

expected behavior

“Observe whethertheyadded ay component because we know thatthe

vectors would cancel each otherout. No j ory component.”

Plugin

“I would use the equation and plug the numbersin to check the answer”

O's and1's

“Derive the y axis from the x axis”
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Table 8.3: Summary of codes in the Bubble Skating Task

Category Bubble Skating example
Consulting external N/A

source

Checkingcorrectnessof | N/A

computational steps

Quoting equation

"Using physics, I'd see if there’s an equation that betterresembles what

I'm thinking ..."

Derivative/integral

N/A

Solving for given

expression

Finally, an example in the bubble skatingtask, is “..Furthermore, elastic

. . 1 5,1 5 1 2
collisions are conserved in terms of energy, s VS oMy ° = - mavpt+

mqviZ + myvi2—mqv;

1 2 . .
§m11712[---] vp = \/ .Noasit doesn’t contain a square

my

root, so by my method it’s incorrect”

Solve froma different N.A
perspective
Legitimate N.A

derivative/integral
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Table 8.3 Continued

Solving fora

known

"...would plug it back in and solve for a known variable”

Algebraic

substitution

P ; 1 1 T
“check to see if kinetic energy is conserved. -myvf; + 2 mavy; = —my vy +

mp—my

1 2 2 2 _ 2 2 2 2 _
Emzvzf. mlvli + mzvzi - mlvlf + mzvzf.mlvli + mzvzi - m1 vli +

mqit+tm;

2m,

2 2

2m mp—m

in] +m2[ — vy +— 1v2i] ”
mytmy

mq+my mi+m;

Numeric

substitution

To check if youranswer is reasonable, you can check to see if momentumis

conserved with the velocities you calculated. You calculated the velocities and

know the masses. my = 20kg,m, = 25kg, v;; = 5?, Uy = —5%.
20-25 m 50 m
Vi = (20+25 kg) (_5 ?) + (20+25) (_5 ?) [..]Py =100 +125. ¢ =

(%) ) + (%) (=5). vp = (%)% p; = —25kgm py = —25kgm . Yes this

will yield the correct result.”

Performingan

"Actually do the experiment...”

experiment

Using "Compare to how fast humans can run..."

reasonable

numbers

Special case "You can make vi be equaland make m1 be extremely large to see if its
analysis momentum s barely changed."
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Table 8.3 Continued

Unit analysis

"The idea is to verify by checking if both sides have the same units

[m/s]and[m/s]"

Covariational reasoning

pi = pr weknowif m; >m, thatp; = p, andvice versa..."

Grouping

“Since it is elastic the masses will stay togetherso half of the results

seemsodd”

Quantity roll call

“this is likely the correct result because both masses are takeninto

account before and after collision..."

Checking for expected

behavior

“Since its a collision, the answers should be equal but opposite"

Check Momentum/Energy

conservation

"You could check your answer by checking to see if momentumand
kinetic energy is conserved because elastic collisions conserve both

energy and momentum"

Plugin "I would check it by plugging in valuesinto because momentum s
conserved”
O'sand1's "Setting the two equations equalto each otherand solving to seeif it is

inelastic"
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