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Until recently, study and correction of motor or gait functions required costly sensors

and measurement setups (e.g., optical motion capture systems) which were only available

in laboratories or clinical environments. However, due to (1) the growing availability and

affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in

wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth

Low Energy (BLE), it is now possible to measure and provide feedback in real-time for

biomechanical parameters outside of those specialized settings. To enable gait training

without an expert who can provide verbal feedback, augmented feedback, which is divided

into three categories of visual, auditory, and haptic is necessary. Vibrotactile haptic

feedback is of particular interest because it is both affordable and does not interfere with

the situational awareness of the user. Among the systems proposed in the literature, there

has been an absence of a system that is user-friendly, modular (i.e., it has individual,

configurable sensing and feedback components), and completely wearable (i.e., all the

components can be worn and carried by the user). In this work, we aim to address that

gap by developing a novel wearable and modular smartphone-based system that provides

vibrotactile feedback for gait training. The system’s modularity and its smartphone-based

controller and user interface can enhance its usability and promote regular gait training of



users, particularly older adults, during their daily living. Given the prevalence of stride

length and speed decline in older adults, we developed a biomechanical data-driven

approach to enable improving those outcomes via modifying their underlying surrogates. A

subject study was performed by recruiting 12 young participants to assess the efficacy of

the haptic system and our approach based on the notion of biomechanical surrogates. We

found that the participants could significantly increase their thigh and shank extensions

(i.e., the biomechanical surrogates) via the feedback provided by our system, and those

increases led to higher values of stride length and walking speed. Our results provide a

clear proof-of-concept for the developed biomechanics-driven haptic system for gait

training of older adults to potentially improve their mobility and living independence.
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CHAPTER 1

INTRODUCTION

The ability to live independently requires maintaining a healthy gait and walking speed

and is an essential aspect of aging successfully. It has been reported that 35% of

community-dwelling adults over 70 years old suffer from neurological and/or

nonneurological gait abnormalities, and those with abnormal gait experience more adverse

health outcomes [2]. Recent findings suggest that the central nervous system and mobility

are closely linked, and gait abnormalities are risk factors for cognitive decline, mild

cognitive impairment, and dementia [3, 4, 5]. Due to association of walking speed with a

variety of clinical outcomes such as hospitalization and mortality, it has been identified as

the sixth vital sign [6]. Therefore, gait training or rehabilitation of older adults in early

stages of aging to reduce future complications due to declining walking speed should be

considered.

Measurement of the patient’s performance and providing feedback accordingly is at the

core of gait training and rehabilitation. For providing feedback, several methods such as

verbal (by a human expert), visual, and haptic (tactile and kinesthetic) exist. Because

tactile stimuli does not interfere with the vision and hearing of the patient and thus their

situational awareness, it is particularly suitable for gait training and has been widely used

in the systems developed in the literature [7]. Despite those significant advances, the

systems proposed in the literature have had several shortcomings limited their usability in

real-world environments.

In the next sections of this chapter, the previous research regarding tactile feedback

systems for gait training is reviewed and their limitations are discussed. Additionally, the

biomechanical motivation for increasing stride length and walking speed as the training

outcome is detailed. Finally, the objectives and contributions of this work are presented.
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1.1 Significance of Walking Speed in Older Adults

Walking speed has important associations with a variety of health outcomes in older

adults. Mielke et al. [4] found a relationship between faster gait speed and better cognitive

performance. In an eight-year longitudinal study of well-functioning (at the initial session)

older adults with more than 2300 participants, about 25% of the subjects saw a rapid

decrease in their walking speed, which was found to be a risk factor for mortality [8]. In

contrast, Hardy et al. [9] found that improvements in normal walking speed during a

one-year period was associated with a significantly reduced risk of mortality, even after

taking multiple factors such as psychological and medical conditions into account. Another

longitudinal study of community-dwelling adults found a link between slow walking speed

and an elevated risk of mortality due to cardiovascular causes [10]. Further, slower walking

speeds have been associated with an increased fall risk, even after adjustment for cognitive

and physical decline [11]. Therefore, monitoring walking speed and rehabilitation for

improving it has been recommended as a potential course of action for enhancing the

health of older adults [8, 10].

The question that arises next is what could be the mechanism for improving the

walking speed of that population. In terms of the high-level spatiotemporal gait

parameters, the decrease in walking speed can, in theory, be a result of declines in stride

length and/or cadence. Samson et al. [12] found that the reduction of walking speed was

not associated with a drop in cadence, but rather with a decline in stride length. Similar

results have been found in multiple other studies [13, 14, 15, 16, 17]. Thus, gait training to

increase stride length could be a viable method for improving walking speed.

1.2 Review of Tactile Feedback for Gait Training

In gait training and motor learning applications, it is essential to provide timely

feedback to the patient during the execution of the task. Traditionally, the feedback has

been provided in the form of instructions by a therapist. However, augmented feedback,

2



which can be divided into three broad categories of visual, auditory, and haptic has shown

promise for motor learning tasks [18]. Haptic feedback, which is categorized into two

groups of kinesthetic (i.e., force feedback) and tactile, does not directly interfere with the

visual or auditory sensing of the user; therefore, compared to the two other modalities, it is

particularly suitable for gait training applications, especially outside of a controlled

laboratory or clinical environment as avoiding impairment of the situational awareness of

the user is key. Kinesthetic haptic feedback for rehabilitation can be particularly beneficial

for individuals who need high levels of assistance such as spinal-cord-injury and post-stroke

patients [19]. However, with the population of older adults who can walk independently yet

demonstrate age-related deficits in their gait (e.g., decreased speed and stride length),

using kinesthetic feedback devices may not be a suitable option. It has been suggested that

age-related gait deficits such as reduced speed and stride length mainly stem from impaired

neural control of movement which is revealed by poor coordination and timing, rather than

low force production by muscles [20]. Therefore, providing tactile feedback, specifically in

the form of vibrotactile stimuli, has become a common strategy in wearable devices used

for gait training research [7].

In terms of gait training strategy, feedback can be given according to either knowledge

of result (KR) or knowledge of performance (KP) [18]. In KR, feedback is provided by

comparing the the user’s performance against a high-level objective. In contrast, in KP, the

feedback signals that surrogate variables, on which the high-level objective depends on,

should be adjusted. We next provide a review of the previous works that used tactile

feedback with either strategy for gait training. The studies that used KR are discussed first

and KP follows.

1.2.1 Knowledge of Result (KR) Strategy

An overview of the systems used in the studies which adopted KR strategy is shown in

Fig. 1.1.

3



Figure 1.1: Overview of the systems used to provide tactile feedback for training with KR
strategy. (a) Wheeler et al. [21], (b) Schneck et al. [22], (c) Sheerin et al. [23], and (d)
Braga et al. [24].

Wheeler et al. [21] (Fig. 1.1a) compared the performance of visual and vibrotactile

feedback, the latter applied on the forearm, in reducing the first peak of knee adduction

moment (KAM). Reducing KAM can result in alleviating the pain and slowing the

progression of medial compartment knee osteoarthritis (knee OA). Data from an

instrumented treadmill and an optical motion capture systems were used to estimate KAM

in a MATLAB program. In the haptic modality, the amplitude of vibration was based on

the achieved decreased of KAM, and could be set to three levels with lower amplitudes

corresponding to better performance, and no feedback when KAM was decreased the

parameters by more than 40%. In the visual feedback trial, a screen installed in front of

the subject displayed the baseline value and the subject’s performance for the current and

the previous 9 cycles. Instructions before the trials included general strategies that the

subjects could try such as "loading inside or outside of the foot" and "changing the

4



distance between the feet". While both modalities achieved a reduction of about 20% on

average, the subjects were able to adapt more quickly with the visual feedback. This can

be attributed the advantage of using a display in showing the history of the subject’s

performance, and thus providing more information in the visual mode.

Schenck et al. [22] (Fig. 1.1b) provided tactile feedback on the shank to adjust the

participants’ peak ankle moment which is low in clinical populations such as post-stroke

patients. Ankle moment was estimated by a LabVIEW program on a PC using data from

an optical motion capture system and an instrumented treadmill. To indicate success, a

"haptic bracelet" on the dominant shank, which connected to the LabVIEW program via

Bluetooth was used to apply vibrotactile feedback when the estimated moment reached or

exceeded the target. The subjects were divided into two groups; one received minimal

verbal instructions and the other which received more detailed instructions that were

repeated during the trials. Each group completed one trial (Feedback High) where the

objective was to increase the moment compared to baseline, and another (Feedback Low)

where the goal was to decrease it. In Feedback High, the change in the peak moment was

not statistically significant, but peak ankle power increased. In Feedback Low, a significant

decline in both the peak moment and power was reported. The difference between the two

verbal instructions methods was not significant.

KR strategy was also used by Sheerin et al. [23] (Fig. 1.1c) for training to reduce the

tibial acceleration, which is a surrogate for the risk of fracture of tibia due to fatigue in

frequent runners. Acceleration data was measured with an IMU (inertial measurement

unit) on the shank and sent to a PC, where it was processed using a LabVIEW program. A

"haptic feedback watch", worn on the wrist, provided vibrotactile feedback when

acceleration exceeded a threshold. To avoid receiving feedback, the participants were

instructed to soften their footfalls. The subjects participated in 8 sessions with feedback

which consisted of treadmill running for up to 30 minutes in the final session. The portion

of the trial during which the subjects received feedback was gradually lowered from 100%

5



during the first session to only 10% in the final one. To investigate whether training on a

treadmill translated to overground running, pre-intervention, post-intervention, and

4-weeks post-intervention results of running on a track were compared. Comparison of

treadmill (overground) running to pre-intervention showed a decrease of 50% (28%) in the

last session and 41% (17%) in the assessment four weeks after that.

Braga et al. [24] (Fig. 1.1d) compared two feedback modalities of visual, provided via

augmented reality (AR) glasses, and tactile, applied through vibration motors, in terms of

performance in adjusting knee misalignment angle and subject preference. The system was

made up of an IMU-based motion capture system, a PC, an AR glass, and haptic modules

consisting of a ESP8266 microcontroller, a vibration motor, and a battery. A PC received

the data from the motion capture system, calculated the knee misalignment angle, and

communicated with the haptic module or the AR glass (through WebSocket protocol) in

case feedback was necessary. No tactile feedback was provided when the subject was able

to reach the desired angle, whereas the visual feedback was always displayed. Overall, the

young adult participants were more successful in adjusting their gait with visual feedback

through the AR glasses than the vibrotactile mode.

1.2.2 Knowledge of Performance (KP) Strategy

Desirable outcomes in walking can be abstract and difficult to convey to the user and it

can be preferable to achieve the outcome through adjusting specific parameters; therefore,

in KP strategy, relationships obtained from statistical analysis of biomechanical data are

used to define the high-level outcomes in terms of adjusting surrogate variables. Some of

the systems that used this strategy are presented in Fig. 1.2.

Dowling et al. [25] (Fig. 1.2a) investigated the efficacy of verbal and haptic feedback for

reducing peak KAM. The surrogate for peak KAM was lateral load on the foot; in the

verbal feedback trial, the instruction given to the participants was to minimize the weight

on the lateral side of their foot. In addition to confirmation from the subject, their gait was
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Figure 1.2: Examples of the systems used to provide tactile feedback for training with KP
strategy. (a) Dowling et al. [25], (b) Shull et al. [26], (c) Chen et al. [27], (d) Xu et al. [28],
(e) Xia et al. [29], and (f) Zhang et al. [30].

visually monitored during the trial to verify their compliance. A haptic feedback system

consisting of force sensor, a shaftless eccentric mass vibration motor, and control

electronics, was attached to the right shoe during the feedback trials. The force sensor was

placed under the lateral side of the shoe and the vibration motor was placed inside the

lateral side of the shoe. When the value read from the force sensor exceeded a threshold,

the motor vibrated and provided feedback to user to adjust their gait. A reduction of

14.3% was achieved for the peak KAM in the haptic feedback trial, compared to only 8.3%

with verbal feedback.

Foot progression angle (FPA), tibia angle, and trunk sway were used as the surrogates

in a study by Shull et al. [26] (Fig. 1.2b). Vibrotactile cues were produced on the foot for

FPA and on the shank for the tibia angle, and skin stretch in a circular pattern on the

lower back informed trunk sway. A MATLAB program used data from an optical motion

capture system and an instrumented treadmill to calculate the surrogates in real-time and

provide feedback when the subject was not successful in reaching the target. For each

subject, a single-parameter trial (i.e., feedback provided for one parameter at a time) was

conducted first to explore the relationship between the surrogates and KAM. Using the

results, the target values for each parameter were set for use in a data-driven training trial
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with the goal of increasing peak KAM by at least 20%. In that trial, feedback was provided

for all three surrogates simultaneously. Of the 9 young adults participants, eight were able

to achieve a 30% decrease (range: 29-48%) of KAM. In a related study of knee OA patients

[31], a decrease in FPA, resulting in a toe-in gait, was targeted as the surrogate for peak

KAM by applying feedback to the shank. On average, the subjects were able to achieve a

5◦ decrease in FPA which translated to a 13% reduction of peak KAM.

KP strategy was also employed in a six-week gait training study of knee OA patients by

Shull et al. [32]. Baseline, weekly training sessions over 6 weeks, post-training and

one-month post-training assessments were compared for both subjective pain ratings of the

subjects, the FPA, and the peak KAM. Additionally, during the 6 weeks, the subjects were

instructed to practice the modified gait for at least 10 minutes per day at home and had to

fill activity logs. In the 1-month followup, subjective pain ratings were significantly lower

than the baseline; additionally, an average 16% decrease in peak KAM was maintained

during the 1 month follow-up assessment, which can be compared to 9% for other

non-invasive means such as using specialized shoe soles and 33% as a result of surgery.

Xu et al. [28] (Fig. 1.2d) designed a wireless and modular tactile feedback system with

configurable units ("Dots") that could be used for either sensing or feedback. Each Dot

consisted of a vibration motor, an IMU, a microcontroller, and a battery embedded in

silicon, and communicated with a central unit ("Hub") via Zigbee protocol. The Hub

received data from the sensing Dots at 50 Hz, processed and stored it on a micro-SD card,

executed the feedback algorithm, and transmitted messages to the feedback Dots in case

feedback was necessary. The performance of the system was assessed in a preliminary

study where feedback was provided for FPA as a surrogate for KAM. A sensing Dot on the

dorsal side of the foot was used for measuring FPA, and two feedback Dots on the lateral

and medial aspects of the shank provided feedback when the FPA was outside of the

no-feedback zone in toe-in or toe-out gait training.
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Xia et al. [29] (Fig. 1.2e) embedded the sensing, processing, and feedback components

required for providing feedback for FPA in a shoe to create a self-contained feedback

system. An electronics module, consisting of a microcontroller, which recorded the data on

a SD card, an IMU, and a battery, was placed in the shoe sole. Two vibration motors in

the shoe and on the lateral and medial sides provided vibrotactile feedback when FPA

moved outside of a no-feedback window. The performance of the system was validated with

a preliminary study on young adult subjects.

Step width (SW) and FPA were used as the surrogates for KAM by Chen et al. [27]

(Fig. 1.2c). A LabVIEW program calculated the two surrogates using data from an optical

motion capture system and an instrumented treadmill. Two distinct feedback schemes,

binary pulses and tactile apparent motion, were used for each parameter and all subjects

tried both scenarios (i.e., tactile apparent motion for SW and binary pulses for FPA, and

vice-versa) with a washout period of at least two days between the trials. Success was

defined as reaching the objectives for 80% of a block of 20 right steps, and inability to

achieve that in 500 steps was deemed a failure. The majority of the young adults subjects

(9 out of 10) were able to attain the targets set for the surrogates, but no interaction was

found between the number of steps required for training and the feedback scheme.

Zhang et al. [30] (Fig. 1.2f) aimed to change walking speed through adjusting walking

cadence (i.e., the surrogate) using a concept similar to rhythmic auditory simulation

(RAS). In RAS, the patient (e.g. stroke or Parkinson’s) is instructed to walk in concert

with an audio stimulus (e.g. a metronome or a music track) with a specific tempo; this can

improve coordination, and by selecting a high-tempo track, walking speed. Similarly, the

system designed by Zhang et al. provided vibrotactile stimulus to the foot, and the subjects

had to adjust their gait such that the initial contact of the foot coincided with the haptic

feedback. The sensing and feedback components of the system used to identify the gait

events, calculate the spatiotemporal parameters, and provide feedback (the piezo-resistive

force sensors, an IMU, and vibration motors) were embedded in the shoe insole and

9



connected to an electronics unit attached to the outside of the shoe and on the lateral side

which communicated with a single-board computer (e.g. a Raspberry Pi) through Wi-Fi.

For feedback strategy, two methods were investigated. In the open loop method, feedback

was applied at pre-determined intervals, whereas in the closed loop, the timing of feedback

varied with the subject’s error with respect to the target speed. The young adult subjects

performed three types of overground walking trials in terms of the target cadence and each

trial was done with both the open loop and closed loop method. Overall, it was found that

(1) the feedback did not significantly affect the variability of neither walking speed nor

cadence, and (2) the subjects performed better in following the speed trajectory with the

closed loop method, and the cadence trajectory with the open loop strategy.

1.3 Objectives of Thesis

Four features are critical for the usability of a haptic feedback system in community-

and home-based settings. It is crucial for a system to be (1) wearable, where the entire

system could be worn and carried by users [28, 29, 30], (2) wireless, where the sensors and

feedback modules are not connected to the main control unit by wires [23, 28, 24] (3)

modular, where there are separate feedback and sensing units that can be placed on

different body parts and replaced as needed [23, 28, 24], and to have (4) a user-friendly

interface/controller for intuitive interactions. In Table 1.3, seven representative systems

from the literature are compared based on those criteria. Currently, there is an absence of

a system that has all the four features simultaneously, and the development of such a

system was the first objective of this work (Chapter 3).

Motivated by the importance of walking speed and its decline due to decreasing stride

length in older adults, the second objective was establishing a correlation between stride

length and lower-extremity surrogates that would be appropriate for applying feedback

(Chapter 2). Finally, the third goal was verifying that relationship by gait training of

human subjects using the haptic feedback system (Chapter 4).
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CHAPTER 2

IDENTIFICATION OF BIOMECHANICAL SURROGATES FOR STRIDE

LENGTH

Our goal was to use statistical analysis to identify lower extremity segment (the thigh,

shank, and foot) angles that (1) had a significant correlation with stride length, (2) could

be readily measured in real-time, and (3) were appropriate for applying feedback in terms

of ability of users to modify them as well as placement of measurement and feedback

components.

We considered the angles of the three lower-limb segments in the sagittal plane, shown

by θT , θS, and θF in Fig. 2.1. Gait data of 14 young adult subjects (8 males, 6 females,

23.8± 3.3 years, 1.74± 0.92 m) were used from a previous study [33], in which the subjects

were asked to walk on a treadmill at self-selected normal and fast speeds while their

full-body kinematics were recorded using a Vicon motion capture system (Vicon Motion

Systems, Oxford, UK). Data processing to obtain the segment angles and stride length was

carried out in Visual3D (C-Motion, Rockville, Maryland, USA). Each segment was

assumed to be a rigid body in 3D space, and we defined the sagittal segment angles as the

angle of rotation around the X-axis in a ZY X Euler rotation sequence describing the

orientation of the segment frames (Fig. 2.1) relative to their initial orientation (i.e., with

the subject in a neutral posture).

Figure 2.1: Definition of the sagittal angles and segment frames.
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Often, segment frames are tracked using both a marker cluster on the segment and

anatomical landmarks where locating the latter depends on the judgment of the person

placing the markers and is therefore prone to uncertainty and error. In order to minimize

that problem, the frames were defined using only the marker clusters for the thighs and

shanks, and the clusters as well as heel and toe markers for the feet. Heel strikes were

defined as the maxima of the location of the heel markers in the direction of walking with

respect to the the pelvis segment. Stride length was obtained by adding the distance

between the locations of the heel marker in consecutive heel strikes to the distance

travelled by the treadmill belt during that interval.

The following five parameters within a gait cycle, as shown in Fig. 2.2, were considered

as the candidates for the surrogates and, thereby, for training: the maximum and minimum

thigh angle (Tmax, Tmin), the maximum and minimum shank angle (Smax, Smin), and the

maximum foot angle (Fmax). Note that Tmax and Smax correspond to the thigh flexion and

shank extension, respectively, and Fmax occurs close to heel strike. Also, Tmin and Smin

correspond to the thigh extension and shank flexion, respectively. These five parameters

were selected because (1) we hypothesized their modifications could be conveyed to the

subjects via haptic feedback, and (2) they were straightforward to calculate in real-time by

a peak finding method.

In each trial and for each subject, the sagittal angles and height-normalized stride

length were obtained for 20 strides for each leg. The normalized value was used to account

for the variability of the subjects’ height and thus make the results more generalizable. To

determine the biomechanical surrogates for training, we used multiple linear regression in

SPSS v26 (IBM Corporation, Armonk, NY, USA) with height-normalized stride length (L)

as the dependent variable and the mentioned five parameters as the independent variables.

We focused on finding two surrogates since, in terms of the perception of the haptic

stimuli, it would be impractical to provide feedback for more than two parameters during a

single gait cycle. Tmin (i.e., the thigh extension) was found to be the best predictor of
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Figure 2.2: The thigh (top), shank (middle), and foot (bottom) sagittal angles, the candidate
surrogates, and heel strike (HS) and toe-off (TO) events shown for one gait cycle.

stride length (R2 = 0.782), and, therefore, it was selected as the first surrogate. The linear

relationship between Tmin and L is illustrated in Fig 2.3.

In choosing the second surrogate, a major consideration was to maximize the

perceptibility of the haptic stimuli. Cholewiak et al. [34] tested discrimination of two

vibrotactile patterns for two durations of stimuli (4 ms and 52 ms) and for multiple values

of interstimulus interval (ISI) on the fingers and palm of the hand, and on the thigh. It was

found that the accuracy of identifying the pattern increases with higher values of ISI.

Other studies have found that the ability to distinguish between vibrotactile feedback

decreases when they are provided at multiple locations at the same time [35, 36]. In

another work, Plaisier et al. [37] observed that the participants were able to better

distinguish vibrotactile stimuli on the back as the distance between them increased. In

summary, the perceptibility of tactile stimuli is higher the more the stimuli are separated
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Figure 2.3: The data points and the fitted line showing the linear relationship between Tmin

and normalized stride length (R2 = 0.782).

temporally and spatially. Therefore, we focused on a parameter spatially distant from

thigh and temporally delayed from occurrence of Tmin.

Those considerations excluded Tmax (the same segment as Tmin) and Smin (occurring at

roughly at the same time as Tmin) from the potential candidates. The remaining

parameters in the statistical model were Fmax (∆R2 = 0.093, p < 0.001) and Smax

(∆R2 = 0.036, p < 0.001). We chose Smax (i.e., the shank extension) as the second

surrogate due to an easier and more reliable placement of haptic feedback components on

the shank and because we hypothesized that an increase in Fmax could be achieved as a

result of increasing Smax. The final model used Tmin and Smax with R2 = 0.818, indicating

these two variables could explain more than 80% of variability in stride length during

walking.

Thus, Tmin and Smax were considered as the biomechanical surrogates for stride length

and their positive correlations in the statistical model suggested that increasing one or

both could be a mechanism for increasing stride length. To determine the target values for

Tmin and Smax for training with the haptic feedback system, we compared the increases in

the average values of Tmin and Smax during fast walking relative to normal walking both in

terms of percentage (Tmin : 54%, Smax : 17%) and absolute difference (∆Tmin : 4.5◦,

∆Smax : 3.7◦).
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CHAPTER 3

HAPTIC FEEDBACK SYSTEM DESIGN

A schematic of the haptic feedback system is shown in Fig. 3.1. The user’s thigh and

shank angles were measured by IMUs which sent the orientation data in real-time through

Bluetooth Low Energy (BLE) to the control system implemented on a smartphone. In the

control algorithm, Tmin and Smax were extracted for each cycle and compared to the target;

if they were smaller than the target, requests for feedback were sent to the microcontroller

in the electronics units to activate the vibrotactors for informing the user to modify their

gait.

3.1 Hardware

We chose an Android smartphone, Pixel 3a (Google, Mountain View, CA, USA), as the

main processing unit. The most important feature and advantage of a smartphone

compared to a single-board computer such as a Raspberry Pi is that, in addition to a fast

processor, it includes a screen (which is essential for providing a graphical user interface), a

durable battery, and a Wi-Fi router in a small and lightweight device. There is no other

combination of hardware components that could provide those in comparably small and

well-integrated package. Therefore, we believe that using a smartphone to provide an

intuitive interface for user interactions and as the main controller and data logger of the

system can promote usability and acceptability of the system, and reduce stigma related to

using a training device among older adults. Additionally, by comparing a smartphone to

other options in the initial phases of this research, we found that it provides the most

reliable hardware and software stack for BLE, the protocol commonly used by wearable

IMUs.

Six Xsens DOT IMUs (Xsens Technologies B.V., Enschede, The Netherlands), each

with 25 g of mass and with a dynamic orientation error of 1◦ RMS (1σ), were placed one on
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Figure 3.1: Schematic of the tactile haptic feedback system.

each thigh, shank, and foot, sending orientation in quaternion form and free acceleration

components in the earth-fixed frame at 60 Hz to the phone via BLE 5.0. Four electronics

units (85 g, 68× 38× 14 mm) were used in total, and they were attached to the lateral side

of the thighs and shanks (one on each segment) using double-sided tapes. Each unit

consisted of an ESP8266 Thing microcontroller (SparkFun, Boulder, CO, USA), a custom

circuit board for driving the vibrotactor(s) (Appendices A and B), and an 850 mAH

battery all enclosed in a 3D-printed case. By using the custom PCB, up to 500 mA at the

battery voltage could be provided to the motors whereas the Input/Output pins supplied

only up to 12 mA, which would not be sufficient for operation of the motors at their rated

current. Overall, the system’s architecture provided the flexibility necessary for using

different numbers of sensing and feedback components and placing them at different

locations on the body.

To provide vibrotactile feedback, inexpensive and generic shaftless vibration motors,

referred to as vibrotactors from hereon, were utilized. For the thigh, we designed a “haptic

cell” (25 g, 37× 34× 6 mm) consisting of three vibrotactors (12 mm diameter, 3.6 mm

height, 75 mA at 3.7 V, purchased from Amazon) in a parallel circuit and attached them to
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a 3D-printed base in an equilateral triangle configuration (Fig. 3.1). The pairwise distance

between the vibrotactors was 16 mm, well below the two-point distance threshold for the

thigh (7 cm)[38], and they were connected to the base by a hook and loop fastener allowing

them to vibrate about their resting positions. Using 3 vibrotactors as described created a

larger stimulation area for increasing the likelihood of perceiving the feedback and

minimized the bending of wires, while ensuring that adequate current for the cells’

operation was supplied. The haptic cells were placed on the posterior side of each thigh to

cue increasing the thigh extension (and thus Tmin). For applying feedback to each shank to

cue increasing the shank extension (and therefore Smax), we attached a single vibrotactor

(10 mm diameter, 3.6 mm height, 75 mA at 3.7 V, purchased from Pololu) to its anterior

side. The haptic cells and the vibrotactors were connected to the custom circuit board of

the electronics unit, which supplied up to 500 mA at 3.7 V to the vibrotactor(s). Fig. 3.2a

illustrates the size of the components of the system, and Fig. 3.2b shows the system worn

by a subject.

The haptic cells and the vibrotactors were connected to the custom circuit board of the

electronics unit, which supplied up to 500 mA at 3.7 V to the vibrotactor(s). Acceleration

measurements were analyzed to identify the characteristics of the vibrotactors such as the

dominant frequency and peak-to-peak acceleration. Acceleration was measured at 800 Hz

with a BNO055 IMU attached to the vibrotactor. 15 individual 0.5 second vibrations were

analyzed and the results were averaged. By performing spectral analysis, the dominant

frequency was found to be close to 240 Hz, which is about the frequency corresponding to

the maximum sensitivity of the Pacinian mechanorepectors of human skin (245 Hz) [39].

For both types of vibrotactors, our estimate of the maximum peak-to-peak acceleration for

a system with a total mass of 100 g is 55 m
s2
. The total added mass was 135 g for each thigh

and 120 g for each shank. We estimate the battery life of the system in continuous use (i.e.,

with the IMUs streaming data at 60 Hz) to be about 3 hours, limited by the battery life of

Xsens DOT sensors.
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(a)
(b)

Figure 3.2: (a) Size comparison of the components of the haptic feedback system. (b) The
system worn by a subject.

We should note that perceptibility of feedback through the haptic cells was validated in

a preliminary perception experiment with 4 healthy older adults which is discussed in

Appendix C.

3.2 Software

3.2.1 Feedback Algorithm

When turned on, each ESP8266 microcontroller searched for a Wi-Fi network created

by the phone and established a connection to the network. Then, it started an HTTP

server, meaning that after receiving data in the form of HTTP requests via Wi-Fi, it would

interpret the message and take an appropriate action such as turning the vibrotactor(s) on.

We developed an Android application with the following four essential functionalities: (1)

receiving data from the four IMUs on the thighs and shanks through BLE, (2) processing

and (3) logging the data, and (4) sending HTTP requests to the microcontrollers for

providing haptic feedback, in which case the vibrotactors were turned on for 0.5 seconds.

The user interface of the application is shown in Fig. 3.3 and the typical procedure for

operating it is discussed in Appendix E.
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Figure 3.3: User interface of the developed Android application.

A simplified pseudocode for the core functions of haptic feedback system is presented in

Algorithm 1 which will be discussed next.

Each IMU was placed on the subject such that the sensor frame S was oriented

similarly to the segment frames shown in Fig. 2.1. The IMUs sent the absolute orientation

of the sensor frames with respect to a local earth-fixed frame E in the form of a unit

quaternion SqE,

SqE = (q0, q1, q2, q3) (3.1)

Frame E was defined using the ENU convention, meaning that x̂E axis pointed to the

east, ŷE to the north, and, importantly, the ẑE to the "up" direction (i.e., opposite the

gravity vector). The sagittal angle was defined as the change in the angle between ẑE and

ẑS which we denote by θ. From the definition of the rotation matrix SRE, its elements can
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Algorithm 1 Pseudocode of the haptic feedback algorithm
Parameters:

dpeaks . Minimum number of samples between peaks
threshold . Minimum value of a peak

Input: Data packet containing SqE = (q0, q1, q2, q3)
1: Cpacket ← Cpacket + 1 . Packet counter
2: θ ← arccos (1− 2q21 − 2q22)
3: θk ← θ − θ0
4: if Cpacket >= Cpeak + dpeaks and θk−1 > threshold and θk−1 > θk and θk−1 > θk−2 then
5: Cpeak ← Cpacket . θk−1 is a peak
6: if θk−1 − target < 0 then . Give feedback
7: Csuccess ← 0 . Reset the success counter
8: Send HTTP request for giving feedback.
9: else . No feedback

10: Csuccess ← Csuccess + 1
11: if Csuccess == 5 then . Increase the target
12: Csuccess ← 0
13: target← target+ δtarget

14: θk−2 ← θk−1

15: θk−1 ← θk
16: Update the CSV log with the packet’s data.

be written in terms of the dot products of the unit vectors of the two frames’ axes [40].

SRE =


x̂E · x̂S x̂E · ŷS x̂E · ẑS

ŷE · x̂S ŷE · ŷS ŷE · ẑS

ẑE · x̂S ẑE · ŷS ẑE · ẑS

 (3.2)

The direction vectors in eq. 3.2.1 have a magnitude of 1. In turn, the matrix elements

simplify to the cosine of the angles between the vectors, commonly known as the direction

cosine matrix (DCM). Therefore, the angle can be obtained from the third diagonal

element of the rotation matrix.

θ = arccos (ẑE · ẑS) = arccos (R33) (3.3)

Because the orientation is provided in quaternion form, the third diagonal element of the

rotation matrix can be expressed using that parameterization as follows [40],

R33 = 1− q21 − q22 (3.4)
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Therefore, the angle between ẑE and ẑS can be calculated using the equation below,

θ = arccos (1− q21 − q22) (3.5)

To calculate the sagittal angle, it is necessary to obtain the initial angle of the two axes

(θ0) first. To that end, in each trial, the subjects were asked to stand still before starting to

walk and the quaternion measurements were collected for three seconds (180 samples). The

quaternion representation of the initial orientation (IqE) was calculated by averaging the

180 samples and converting the result (q0) to a unit quaternion as shown in eq. (3.6) and

eq. (3.7).

q0 =

∑180
i=1

SqE

180
(3.6)

IqE =
q0

||q0||
(3.7)

Then, the initial sagittal angle θ0 was obtained using (3.3) and was subtracted from the

angle measured during walking at time k to obtain the sagittal angle denoted by θk in

Algorithm 1. A peak finding algorithm was employed to detect Tmin and Smax. As shown

in Algorithm 1, it used two tunable parameters of dpeaks (minimum number of samples

between peaks) and threshold (minimum value of a peak). In the version of the algorithm

used for this study, dpeaks was set to 30 for both the thighs (Tmin) and shanks (Smax) and

threshold was set to 4 and 10 degrees for the thighs (Tmin) and shanks (Smax), respectively.

After finding the peak, it was compared to its corresponding target value. If the peak was

smaller than the target value, an asynchronous HTTP request was sent from the Android

program to the electronics unit, activating the haptic cell or vibrotactor for 0.5 second.

The vibration duration of 0.5 second was chosen based on its high perceptibility in a pilot

study with older adults (as discussed in Section 3.1) as well as its successful use in other

gait training research [41, 31, 29]. If the subject was able to maintain the target value for 5

consecutive cycles, the target value was increased by half of either ∆Tmin or ∆Smax, and

this increase is denoted by δtarget in Algorithm 1. Given the placement of the haptic cells
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on the posterior side of the thighs (to increase Tmin) and the vibrotactors on the anterior

side of the shanks (to increase Smax), the haptic feedback scheme utilized a “pull towards

target” metaphor found to be superior to the “push away from target” metaphor in terms of

subject preference [41].

3.2.2 Measurement of the End-to-End Delay of the System

It was important to characterize the delay of the system in providing feedback as the

subject should have adequate time for responding to it before the next gait cycle. The

following are the 5 primary sources of delay from the occurrence of a peak angle (whether

Tmin or Smax) in the physical world to the vibration of the corresponding vibrotactor(s) on

the skin: (1) data processing in the IMU, (2) sending data from the IMU to the

smartphone through BLE, (3) processing in the Android application (including the peak

detection algorithm), (4) sending data from the phone to the ESP8266 microcontroller

through WiFi, and (5) processing the HTTP message in the microcontroller. Although the

rise time of the vibrotactor could also be calculated by fitting an envelope on the measured

acceleration signal [37], that is not directly dependent on the architecture of the system

and therefore will not be discussed.

Ultimately, we are interested in the total delay (i.e., the total time from when when the

IMU measures a peak smaller than the target to the start of vibration of the motor on the

corresponding segment) because this is an important factor for providing feedback in a

timely manner. We used the following experiment, with the setup shown in Fig. 3.4, to

measure the delay. Similar to an actual gait training experiment, all the IMUs and the

electronics units were connected to the smartphone. The right shank IMU and another

IMU (which we call Segment IMU) were placed inside the displayed enclosure to ensure

that they have the same orientation. In the Android application, the feedback for the right

shank was enabled, and the target angle was set to 75 degrees. Another IMU (Motor IMU)

was attached with double-sided tape to the right shank’s vibrotactor to measure the

23



Figure 3.4: Experiment setup for measuring the delay. The components with blue labels are
connected to the Android application. The IMUs with green labels are connected to another
phone and measure data at 120 Hz with synchronized timestamps.

acceleration signal in case of feedback and thus vibration. The start of vibration was

defined as the first large change in the acceleration magnitude (with the offset removed)

and was found by inspection. An example of total delay calculation is illustrated in Fig.

3.5.

In order to trigger feedback, the enclosure was manually rotated to an angle smaller

than 75 degrees and back. By repeating the procedure for 100 times, the delay was

estimated to be 137± 53 milliseconds. This value is comparable to the delay of 120 ms

reported by Xu et al. [28] (the standard deviation and the number of measurements were

not provided) for adjusting gait parameters using their wireless system, which was deemed

sufficiently short. Also, the delay is small when considering the 1-second period of a typical

human gait cycle as reported in the literature [12]. Additionally, the histogram for the 100

measurements is presented in Fig. 3.6, which shows that 91% of the measurements had a

delay below or equal to 200 ms.
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Figure 3.5: An example of measuring the delay using the IMUs’ readings. For clarity, the
offset of the acceleration magnitude (about 9.81) is removed.

Figure 3.6: Histogram of 100 delay measurements.
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CHAPTER 4

SUBJECT STUDY

To verify the choice of the surrogates and to validate the functionality of the developed

haptic feedback system, a subject study was conducted. The primary goal was to

demonstrate if and how increasing Tmin and Smax would translate into higher values of

stride length. Further, the effect of changing the surrogates on other gait parameters were

investigated and subjective ratings about the system and feedback were collected.

4.1 Experiment Design

The experiments were conducted on a 54 m× 3 m U-shaped walkway shown in Fig. 4.1.

First, the feedback system was placed on the subject. Then, 7 trials were performed in the

following order (notations in parentheses are used throughout this paper to refer to the

experimental conditions),

• Trial 1 (F ): the subject was asked to walk at their self-selected fast speed.

• Trial 2 (N): the subject was asked to walk at their self-selected normal speed. During

this trial, starting from the sixth detected peak and using the next 20 peaks, the

averages of the surrogates, Tmin and Smax, were calculated to establish their baseline

values. Using the percentage increases reported in Chapter 2, initial targets were set

at 1.54Tmin and 1.17Smax.

• Trial 3 (familiarization trial): we explained the experimental procedure to the

subject. For familiarization, feedback was provided for either the thigh or shank of

the dominant side, and the subject was asked to modify their gait upon receiving

feedback.

• Trial 4 (both thighs: TT , both shanks: SS): feedback was given on both the left and

right sides of the target segment of Trial 3.
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Figure 4.1: The walkway used for the subject study.

• Trials 5-6: Similar to 3-4, but for the other segment.

• Trial 7 (TS): feedback was given for the shank and thigh of the dominant side, and

the subject was asked to replicate their adjustments on the other side as well to

maintain a symmetric movement.

The instruction sheet which was used to inform the subjects about how to react to the

feedback is presented in Appendix D. During each trial, the subjects walked for one lap on

the walkway. A two minute break was provided between the trials. Regarding the order of

the trials, Trials 1, 2, and 7 were fixed, and the single-segment trials (Trials 3 and 5)

always preceded the double-segment trials of the corresponding segment (Trials 4 and 6).

The number of subjects who tried the feedback on their thighs first and then their shanks

was equal to the number of those who tried the reverse order. After completing the

experiment, the subjects filled out a questionnaire evaluating the haptic feedback on the
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thigh and shank by rating the following on a scale of 0-10 for each segment: (a) level of

comfort (a higher score meant more comfort), (b) noticeability (a higher score meant more

noticeable), and (c) intuitiveness for reaching the target (a higher score meant more

intuitive). Finally, the length of thigh and shank segments were defined as the distance

between skeletal landmarks and measured using a tape,

• Thigh length: From the greater trochanter to the lateral side of the knee joint.

• Shank length: From the lateral side of the knee joint to the lateral side of the ankle

joint.

4.2 Results

Twelve healthy adults (8 males, 4 females, 19-39 years range with an average of

25.5± 5.8 years, 1.72± 0.11 m, 74.3 ± 15.6 kg), were recruited to participate in the

experiment, which was approved by University of Maine’s IRB. The subjects were healthy,

with no history of musculoskeletal or gait problems and did not have any prior experience

with the haptic system. Data processing was carried out in MATLAB (MathWorks, Natick,

MA, USA) to obtain the spatiotemporal parameters of interest (cadence, height-normalized

stride length L, and height-normalized stride velocity V ) and changes in the surrogates

(Tmin and Smax). Also, given the importance of the trailing limb angle (TLA) in generating

propulsive forces during walking [42], it was calculated using θT and θS. TLA was defined

as the maximum of the angle between the vertical axis and the vector sum of the thigh and

shank vectors, with the positive direction indicated in Fig. 4.2. To compute stride length

from the foot orientation and acceleration data, we utilized the method presented by

Sabatini et al. [43]. Acceleration of the foot segment in the local earth-fixed frame,

measured by the IMU attached to the shoe, was integrated to obtain the linear velocity. In

order to remove the drift due to bias and noise in the signal, a zero-velocity update method

was utilized, where the velocity was assumed to be zero at the midstance. An example

output is shown Fig. 4.3.
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Figure 4.2: Vectors and the angle used for calculating the trailing limb angle (TLA).
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Figure 4.3: An example top-down view of a subject’s right strides. Each stride vector starts
at a heel strike and ends at the next. The colors alternate for clarity.

In each trial, the mentioned parameters during 30 cycles of steady-state walking for

each leg were obtained and averaged. Statistical analysis was performed in SPSS and

significance level was set at α = 0.05. One-way repeated measures ANOVA was used to

test for statistically significant differences among the five conditions. Mauchly’s test was

used to check the sphericity assumption, and if it was rejected, Greenhouse-Geisser

correction was applied. Post-hoc analysis with Bonferroni correction was performed to find

the pairs with a significant difference.
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(a) (b) (c)

Figure 4.4: (a) Cadence, (b) normalized stride length, and (c) normalized stride velocity for
different conditions. Error bars represent ±1 standard deviation. Asterisks and plus signs
denote statistically significant differences (p < 0.05) in pairwise comparisons with respect to
N and F conditions, respectively.

4.2.1 Spatiotemporal Parameters

Fig. 4.4 shows the bar charts of cadence, normalized stride length, and normalized

stride velocity for normal walking, fast walking, and the three feedback conditions. There

were statistically significant differences for all the three parameters as follows: cadence

(F (2.33, 25.6) = 28.7, p < 0.001), L (F (1.6, 17.6) = 52.2, p < 0.001), V

(F (2.42, 26.6) = 8.79, p = 0.001). Post-hoc analysis revealed that there was a significant

difference in cadence between N and F conditions and between all the feedback conditions

with both N and F ; however, no significant difference was found among TT , SS, TS.

Similar results were found for L. While there were significant differences in V between N

and all the other conditions, no difference was found between F and the feedback

conditions. Compared to N condition, L increased by 10% in F , 37.6% in TT , 33.7% in

SS, and 37.6% in TS. Also compared to N condition, V increased by 19.5% in F , 15.9% in

TT , 15.3% in SS, and 19.4% in TS.

4.2.2 The Biomechanical Surrogates and TLA

The bar plots for the surrogates and TLA in different conditions are shown in Fig. 4.5.

Significant differences were found across the conditions: Tmin

(F (1.84, 20.2) = 55.3, p < 0.001), Smax (F (4, 44) = 62.6, p < 0.001), and TLA
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Figure 4.5: The biomechanical surrogates and TLA for different conditions. Asterisks
and plus signs denote statistically significant differences in pairwise comparisons to N , F
conditions, respectively. Diamonds (only shown for the feedback conditions) show significant
difference in comparison to TS.

(F (4, 44) = 56.2, p < 0.001). Post-hoc analysis for Tmin found a significant difference for all

the pairs except for N − F (p = 0.111), TT − TS (p = 0.069), and SS − TS (p = 0.884).

Post-hoc analysis for Smax revealed a significant difference for all the pairs except between

feedback trials (p > 0.178). The pairwise comparison results for TLA were similar to Smax,

with the exception of no significant difference between N − F (p = 0.194). Compared to

normal walking, Tmin increased by 74.6% in TT , 58.3% in SS, and 66.2% in TS; Smax

increased by 27.8% in TT , 34.6% in SS, and 31.3% in TS. In addition, significant

differences were identified among the conditions for Fmax (F (1.47, 16.2) = 39.8, p < 0.001).

While post-hoc analysis no significant differences among the feedback conditions, they were

significantly different from N and S. Compared to normal walking, Fmax increased by

21.5% in TT , 20.9% in SS, and 22.3% in TS.

4.2.3 Symmetry Between the Two Sides in the TS Trial

We compared the spatiotemporal parameters and biomechanical surrogates between the

feedback and no-feedback sides in TS condition (i.e., feedback only on the dominant thigh

and shank) using paired t-tests. All the variables passed the Shapiro-Wilk test of
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normality. The differences between spatiotemporal parameters were not statically

significant (p = 0.96 for cadence, p = 0.71 for L, and p = 0.88 for V ). As for the surrogates

(Fig. 4.6), there were significant differences for both Tmin (t(11) = 2.73, p = 0.020, 3.3◦

higher mean for the feedback side) and Smax (t(11) = 2.42, p = 0.034, 2.1◦ higher mean for

the feedback side), but not for TLA (t(11) = 0.039, p = 0.0969). In other feedback

conditions of TT and SS, where the feedback was applied to both sides, no significant

differences were found between the two sides for neither the surrogates, Tmin (p > 0.127),

Smax (p > 0.069), nor TLA (p > 0.120).

4.2.4 Adjustment to Haptic Feedback

We investigated the subjects’ ability to increase the biomechanical surrogates upon

receiving feedback on the corresponding segment. Starting from initial target values for the

surrogates, the target angles were gradually increased when the subjects successfully

reached or exceeded them for 5 consecutive cycles. Fig. 4.7 shows an example of such

adjustments, in which the target value was increased 4 times for Tmin and 3 times for Smax.

During the feedback conditions, all subjects except one (11 out of 12) were able to increase

their Tmin target at least twice, and all subjects except one (11 out of 12) increased their

Figure 4.6: Comparison of the surrogates and TLA of the feedback and no-feedback sides in
TS condition. Asterisks denote p < 0.05.
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Figure 4.7: Tmin (top) and Smax (bottom) compared to their targets. Gait cycles where
haptic feedback was given to the segment are marked with red dots.

Smax target angle at least twice. The two subjects that failed to achieve two increases were

still able to do so once for the associated segment.

4.2.5 Subjective Ratings by the Participants

The mean and standard deviation of subjects’ rating to the questions were as follows:

(a) level of comfort (thigh: 8.17± 2.95, shank: 8.25± 2.49), (b) noticeability (thigh:

8.33± 1.56, shank: 8.83± 1.59), (c) intuitiveness for reaching the target (thigh: 7.25± 2,

shank: 7.92± 1.78). Using Wilcoxon Signed-Rank test, we found no statistically significant

difference between the ratings of the thigh and shank feedback methods for each question.

4.3 Discussion

4.3.1 Spatiotemporal Parameters

When comparing the feedback conditions to normal and fast walking, the subjects were

able to significantly increase their stride length. Gait speed was also at least 15% greater

than normal walking. Fig. 4.4 shows that the increase in speed during self-selected fast
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walking was due to larger values of both stride length and cadence. However, in the

feedback conditions, the increase in speed was mainly due to the increase in stride length.

As mentioned earlier, previous studies have found that walking speed decline in older

adults is caused by a decrease in stride length; thus, our results show promise for enhancing

stride length and, thereby, gait speed in that population.

4.3.2 The Biomechanical Surrogates and TLA

The results indicated that (1) the surrogates significantly increased by the haptic

feedback, and (2) those increases were translated into higher values of stride length and

speed. In our initial statistical analysis, we found that increasing Tmin and Smax was

positively correlated with stride length (i.e., correlation effect). Given the results of our

experiment (Fig. 4.5), the changes in those variables via haptic feedback resulted in

increased stride length and speed indicating a causation effect and supporting our

hypothesis of choosing them as the biomechanical surrogates for stride length.

The subjects conveniently exceeded the initial target values of both the thigh and

shank, demonstrating the efficacy of the haptic system in modifying the surrogates.

Interestingly, the absence of significant difference in Smax among the feedback conditions

indicates that providing feedback to the thighs alone could modify the gait such that the

increase of Smax is also attained. In Chapter 2, we chose Smax as the second surrogate over

Fmax hypothesizing that increasing Smax would also increase Fmax. The results

demonstrated an increase of about 21% in Fmax in the feedback conditions, supporting our

hypothesis. We also found a consistent increase of TLA due to the application of haptic

feedback. It is plausible that increasing Tmin also increased the thigh angle close to toe-off

which significantly contributes to TLA as previously reported [44]. Additionally, it is

possible that the momentum necessary for increasing Smax at the end of the swing phase

required a higher propulsive force in push-off and, thus, increased TLA. Overall, the
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results imply that a higher propulsive force due to increased TLA by the haptic feedback

was an underlying kinetic factor for increasing stride length and velocity.

4.3.3 Symmetry Between the Two Sides in the TS Trial

Further evidence for the efficacy of the haptic feedback is provided by the fact that the

subjects increased Tmin and Smax of the feedback side more than the other side in TS

condition, and this condition was the only one with significant differences between the two

sides. The lack of significant differences in the spatiotemporal parameters indicates that,

although Tmin and Smax increased more on the feedback side, this did not result in any

significant gait asymmetry. It is possible that these between-side differences were not large

enough to affect the high-level gait parameters or that the symmetry of spatiotemporal

parameters was achieved by maintaining a similar value for other parameters such as TLA

on both sides.

4.3.4 Adjustment to Haptic Feedback

Overall, 10 out of 12 subjects were able to not only reach the initial target values for

both surrogates (i.e., with a larger than 54% of increase for Tmin and more than 17% for

Smax), but also they increased the target values at least twice, which suggests that the

selected initial targets were generally within the biomechanical limits of the subjects. The

two subjects were still able to increase the target values once and reach the new targets;

however, they could not maintain the changes for five consecutive cycles. This finding may

have implications for personalizing training, where the initial target values can be

automatically determined based on each individual’s performance. One interesting

observation from Fig. 4.7 is that the subject promptly responded to the applied feedback

by trying to increase the intended surrogate and reach the new target values. Also, the fact

that the subjects could adapt to new target values and gradually increase their surrogates

further supports the system’s efficacy in guiding the subject.
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4.3.5 Subjective Ratings by the Participants

The subjects rated the tactile feedback for the thigh and shank similarly. In terms of

perception, subject scores indicate that they found the feedback to be comfortable and

noticeable during different walking conditions. The ratings for the intuitiveness suggest the

tactile feedback and vibration duration could successfully inform the subjects about “how”

to modify the intended variables. It is important to note that the subjects only used the

system for 30 minutes in total; a longer training can further improve users’ performance

and, consequently, enhance the system’s intuitiveness and efficacy.
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CHAPTER 5

CONCLUSION

We developed a novel wireless, lightweight, and smartphone-based haptic system

suitable for home- and community-based applications. A biomechanics-driven framework

was established to provide tactile feedback for improving users’ underlying gait variables

(i.e., the surrogates) and, thereby, generate desired gait outcomes. The target values were

chosen to encourage increasing the surrogates and investigate if and how such increases

would translate into improved stride length and gait speed, and to obtain the range of

increase in the surrogates during our training session. We showed the efficacy of our system

in achieving that objective via conducting subject experiments and quantifying various gait

parameters and subjective ratings of the participants. While this study recruited young

participants to validate the proposed system and approach, future studies will focus on

evaluating the presented biomechanics-driven surrogate approach and the haptic feedback

for gait training of the target population of older adults. Other key parameters quantifying

the users’ overall gait will be considered to find the target values using more individualized

methods such as human-in-the-loop optimization. Also, we will explore the effects of

shorter and longer feedback durations on the users’ gait parameters.
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APPENDIX A

SCHEMATIC OF THE MOTOR DRIVER PCB

Part Digi-Key number Part description
MOSFET FDS6898ACT-ND MOSFET 2N-CH 20V 9.4A 8SOIC
Diode BAT54HT1GOSCT-ND DIODE SCHOTTKY 30V 200MA SOD323
Resistor 311-1.0KGRCT-ND RES SMD 1K OHM 5% 1/1-W 0603

Table A.1: The electronic parts used for the motor driver PCB.
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APPENDIX B

LAYOUT OF THE MOTOR DRIVER PCB
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APPENDIX C

THE PILOT PERCEPTION STUDY

We performed experiments with 4 older-adult participants to determine whether they could

accurately perceive tactile signals in the form of vibrations on their thighs, and explored

the feedback’s parameters in terms of the application location and the pulsation frequency

(i.e. the number of on-off cycles of the tactile signal) that would result in the highest

perceptibility.

The main components of the system and the process of the experiment are shown in Fig.

C.1. The haptic cells were initially placed in custom-made pockets on four sides—anterior,

lateral, posterior, and medial—of the shorts worn by the subjects. However, the medial

location was found to be unsuitable mainly due to the short distance between the thighs

causing repeated contacts between the cells and, therefore, damaging the motors’

connections. As the figure shows, the haptic cells were connected to a Raspberry Pi 4 (RPi

4) via a custom PCB which was mounted on RPi 4 and supplied the power and the driving

signal to the haptic cells. The entire system, consisting of the RPi 4, the PCB, and the

battery powering them was placed into a waist bag worn by the subject. Therefore, the

system was completely portable, allowing the subject to walk without constraint. To avoid

biasing the results, the order of the three trials also varied from subject to subject.

Figure C.1: Schematic of the system designed for the pilot perception experiment.
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The subjects received tactile feedback in three trials: (1) while standing (static), and

walking at their self-selected (2) normal and (3) fast speeds. During each experimental

trial, vibration cues were given from all the six cells on the subjects’ thighs in a random

order. To minimize the possibility that the subject used auditory cues to locate the

stimulus, they wore a wireless headphone (Fig. C.2a) which played white noise.

Additionally, after the subject entered a response, a chime was played to indicate whether

it was recorded successfully.

Four cases of 0, 2, 5, and 10 pulses were tested, in which the total duration of each

vibration was chosen to be 0.5 sec. Zero (0) pulses meant a continuous vibration with the

duration of 0.5 sec, whereas 2 pulses meant that the motor would turn on and off twice

during the 0.5 sec interval. To detect false positives and false negatives, a "No vibration"

condition was added where no cell was activated and the subject would have to respond by

pressing the corresponding key on the keypad (Fig. C.2b). During the trials, each cell

vibrated with all the possible combinations of location and number of pulses. Each

combination was repeated six times resulting in twenty-four total vibrations at each

location. The "No vibration" condition was also repeated twenty-four time in each trial.

The subjects’ responses were collected via the wireless keypad and recorded on the RPi 4.

The accuracy of response was defined as the number of correct identification of a location

over the total number of tactile feedback at that location (i.e., 24). The percentage

accuracy of identifying the feedback location was used as the measure of perceptibility, and

it was obtained for each location for all the applied pulsing conditions, and similarly for

each pulsing condition for all locations.

The minimum accuracy score required for a location to be considered sufficiently

perceptible was calculated based on a binomial distribution. Each response was assumed to

be either true or false with the probability of 50% and therefore was considered as an

outcome of a binomial distribution. As a criteria for specifying a threshold for an

acceptable accuracy, we calculated the smallest number of correct answers (i.e., successes)
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(a)

(b)

Figure C.2: (a) A subject using the system during the static (i.e. standing) trial on a
treadmill. (b) The labeled keypad used by the subjects to submit their responses.

with less than 1% probability that they had been selected purely by chance [45]. For the

binomial random variable measuring the number of successes by X and the probability of

success by p, the probability for x successes is given by EquationC.1:

P (X = x) = 1−B(x;n, p)→ P (X = 18) = 0.00331 (C.1)

where B(x, n, p) is the cumulative density function of the binomial distribution. As

mentioned above, for our experiment, we assumed that the probability of a correct answer

is p = 1/2, which is a conservative assumption given there were three choices for the

location making the success probability p = 1/3. For the total trial n = 24 for each

location, the smallest x for which P (X = x) is smaller than 0.01 was found to 18, which

corresponds to an accuracy of 75%.

Five subjects (4 males, 1 female, 67.4 ± 5.4 years, 1.77 ± 0.07 m, 77.7 ± 10.5 kg)

participated in the experiment. Figure C.3 provides a summary of the perception

experiment results by combining the accuracy numbers for both right and left legs at

different location and for different number of pulses. It can be seen that the accuracy levels
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Figure C.3: Response accuracy at different locations (top) and for different number of pulses
(bottom). 0 pulses means continuous vibration for 0.5 sec. Error bars represent ±1 standard
error.

for all the conditions and locations were above the required 75% threshold. The false

negative rate (subjects perceiving no vibration when in fact a cell had been activated) was

0.256% and the false positive rate (subjects perceiving a vibration from a cell when there

was none) was 1.73%, the majority (67%) of which was associated with falsely perceiving a

vibration in the posterior cells. Further, because 0 pulses (i.e., 0.5 sec of continuous

vibration) was associated with a high accuracy across all trials, it was selected as feedback

scheme. Overall, the results indicate that not only were the subjects able to perceive the

tactile feedback, but also they could accurately identify the location of feedback across all

walking conditions.
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APPENDIX D

INSTRUCTION SHEET SHOWN TO THE SUBJECTS
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APPENDIX E

PROCEDURE FOR OPERATING THE ANDROID APPLICATION

(1) Enter a number for the subject in E1.

(2) Enable S1 to scan for sensors.

(3) Wait until the text for each sensor

in V1 is replaced with R, which means

the sensor is ready to start measurement.

At that point, you may disable S1.

(4) Enable S2 to ensure that data is being

received properly from the sensors. The

textviews in V3 will be updated at 60 Hz.

(5) Click on the buttons in B1 to ensure

that the vibrotactors turn on for 0.5 second.

(6) Enable S3 to start measurement for

the fast walking (F ) trial. Disable to stop

the measurement when the trial is done.

(7) Enable S4 to initialize

the sagittal angles (i.e., calculate θ0).

(8) Enable S5 to start the normal walking

trial (N). The cycles counted using the

peak detection algorithm will be displayed

in V2. After the initial cycles are obtained, the calculated values of the initial target will

be displayed in V2 for each segment. Disable S5 to stop measurement.

(9) Enter the code for a feedback trial in E2. For example, the codes for thigh

familiarization is 1 and TT are 1 and 2, respectively.
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(10) Enable S4 to initialize the angles. This should be done before starting each feedback

trial.

(11) Enable S6 to start the feedback trial.

(12) By clicking B2, the sensors will be disconnected. To reconnect, you have to enable S1.
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