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Flows of Newtonian and non-Newtonian fluids in porous media are of considerable interest 

in several diverse areas, including petroleum engineering, chemical engineering, and composite 

materials manufacturing. 

In the first part of this thesis, one-dimensional linear and radial isothermal infiltration 

models for a non-Newtonian fluid flow in a porous solid preform are presented. The objective is 

to investigate the effects of the flow behavior index, preform porosity and the inlet boundary 

condition (which is either a known applied pressure or a fluid flux factor) on the infiltration front, 

pore pressure distribution, and fluid content variation. In the second part of the thesis, a one-

dimensional linear non-isothermal infiltration model for a Newtonian fluid is presented. The goal 

is to investigate the effects of convection heat transfer and the applied boundary conditions, which 

are the applied pressure and the inlet temperature, on the infiltration front, pore pressure 

distribution, temperature variation, and fluid content variation. 

For all types of infiltrations studied in this thesis, the governing equations for the three-

dimensional (3D) infiltration are first presented. The 3D equations are then reduced to those for 

one-dimensional (1D) flow. After that, self-similarity solutions are derived for the various types 



 
 

of 1D flows. Finally, numerical results are presented and discussed for a ceramic solid preform 

infiltrated by a melted polymer liquid. The theoretical models and numerical results show that  

1. For 1-D linear isothermal infiltration of a non-Newtonian fluid, the dimensional infiltration 

front varies with time according to 𝑡
𝑛

𝑛+1, where 𝑛 is the flow behavior index. The 

dimensionless infiltration front increases with an increase in the flow behavior index 𝑛, 

and decreases with an increase in the porosity of the porous solid. The pore pressure varies 

almost linearly from the inlet to the infiltration front. The fluid content variation becomes 

negative when the non-dimensional distance reaches about 55% of the infiltration front.  

2. For 1-D radial isothermal infiltration of a non-Newtonian fluid, the dimensional infiltration 

front varies with time according to 𝑡
𝑛

𝑛+1. The dimensionless infiltration front increases with 

an increase in the flow behavior index 𝑛, and decreases with an increase in the porosity of 

the porous solid. The pore pressure varies non-linearly from the inlet and reaches zero at 

the infiltration front. 

3. The fluid travels farther in the linear infiltration than in the radial infiltration. 

4. For 1-D linear non-isothermal infiltration of a Newtonian fluid, the dimensional infiltration 

front varies with time according to 𝑡
1

2. It appears that the convection has a negligible effect 

on the infiltration front and the pore pressure distribution. The infiltration front increases 

with a decrease in the porosity of the porous solid. The pore pressure varies almost linearly 

from the inlet to the infiltration front, where it reaches zero. With an applied temperature 

drop at the inlet, the temperature variation increases with increasing distance from the inlet 

and reaches zero at a distance farther than the infiltration front, not at the infiltration front. 



ii 
 

ACKNOWLEDGEMENTS 

I would like to acknowledge my advisor, Prof. Zhihe Jin, for providing guidance, advising 

and feedback throughout this thesis. I would also like to thank Prof. Richard Kimball and Prof. 

Yingchao Yang for serving on my committee and for their comments. 

I am, as always, extremely grateful to my parents, who supported me with love and 

encouragement throughout my entire life. Without them, I could never achieve any success in my 

life. 

In addition, I would like to thank Maine Space Grant Consortium and the Department of 

Mechanical Engineering at the University of Maine for their financial support. 

Finally, I would like to thank everyone who played a rule in this accomplishment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ ii 

LIST OF TABLES .......................................................................................................................... v 

LIST OF FIGURES ....................................................................................................................... vi 

LIST OF SYMBOLS ................................................................................................................... viii 

1 INTRODUCTION ................................................................................................................... 1 

2 ISOTHERMAL LINEAR FLOW OF A NON-NEWTONIAN FLUID IN A POROUS          

MEDIUM............................................................................................................................... 13 

2.1 Basic Equations of Poroelasticity ........................................................................ 13 

2.2 Basic Equations for One-Dimensional Flow ....................................................... 15 

2.3 The 𝒑𝟎 − 𝒑𝒇 Problem ......................................................................................... 19 

2.3.1 A Self-Similarity Solution .............................................................................. 19 

2.3.2 Numerical Results and Discussion ................................................................. 21 

2.4 The 𝑸𝟎 − 𝒑𝒇 Problem ........................................................................................ 26 

2.4.1 A Self-Similarity Solution .............................................................................. 28 

2.4.2 Numerical Results and Discussion ................................................................. 30 

3 ISOTHERMAL RADIAL FLOW OF A NON-NEWTONIAN FLUID IN A POROUS 

MEDIUM............................................................................................................................... 33 

3.1 Basic Equations of Radial Flow .......................................................................... 33 

3.2 The 𝒑𝟎 − 𝒑𝒇 Problem ......................................................................................... 35 

3.2.1 A Self-Similarity Solution .............................................................................. 35 

3.2.2 Numerical Results and Discussion ................................................................. 37 

3.3 The 𝑸𝟎 − 𝒑𝒇 Problem ........................................................................................ 42 



iv 
 

3.3.1 A Self-Similarity Solution .............................................................................. 43 

3.3.2 Numerical Results and Discussion ................................................................. 45 

4 NON-ISOTHERMAL LINEAR FLOW OF A NEWTONIAN FLUID IN A POROUS 

MEDIUM............................................................................................................................... 48 

4.1 Basic Equations of Thermo-Poroelasticity .......................................................... 48 

4.2 Basic Equations for One-Dimensional Flow ....................................................... 50 

4.2.1 Region 1 𝟎 < 𝒙 < 𝒙𝒇 ..................................................................................... 51 

4.2.2 Region 2 𝒙 > 𝒙𝒇 ............................................................................................. 53 

4.3 A Self-Similarity Solution ................................................................................... 54 

4.4 Numerical Results and Discussion ...................................................................... 56 

5 CONCLUSION ..................................................................................................................... 63 

6 REFERENCES ...................................................................................................................... 65 

7 BIOGRAPHY OF THE AUTHOR ....................................................................................... 71 

 

 

 

 

 

 

 

 

 



v 
 

LIST OF TABLES 

Table 1    Poroelastic parameters for the fluid-filled porous medium .......................................... 22 

Table 2    Poroelastic parameters for the fluid-filled porous medium .......................................... 38 

Table 3    Thermal parameters for the fluid and solid phases ....................................................... 58 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF FIGURES 

Figure 1     Schematic of linear infiltration of a porous preform by a fluid .................................. 18 

Figure 2     Dimensionless Infiltration front versus the applied pressure for 𝑛 = 0.5 .................. 23 

Figure 3     Dimensionless Infiltration front versus the applied pressure for 𝑛 = 0.8 .................. 23 

Figure 4     Dimensional infiltration front versus time for 𝑛 = 0.5 .............................................. 24 

Figure 5     Dimensional infiltration front versus time for 𝑛 = 0.8 .............................................. 24 

Figure 6     Normalized pore pressure along the infiltration direction for 𝑛 = 0.5 ...................... 26 

Figure 7     Normalized pore pressure along the infiltration direction for 𝑛 = 0.8 ...................... 26 

Figure 8     Normalized fluid content variation along the infiltration direction for 𝑛 = 0.5 ........ 27 

Figure 9     Normalized fluid content variation along the infiltration direction for 𝑛 = 0.8 ........ 27 

Figure 10    Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.5 .................. 31 

Figure 11    Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.8 .................. 31 

Figure 12    Dimensional infiltration front versus time for 𝑛 = 0.5 ............................................. 32 

Figure 13    Dimensional infiltration front versus time for 𝑛 = 0.8 ............................................. 32 

Figure 14    Schematic of radial infiltration of a porous preform by a fluid ................................. 34 

Figure 15    Dimensionless infiltration front versus applied pressure for 𝑛 = 0.5 ....................... 38 

Figure 16    Dimensionless infiltration front versus applied pressure for 𝑛 = 0.8 ....................... 39 

Figure 17    Dimensional infiltration front versus time for 𝑛 = 0.5 ............................................. 40 

Figure 18    Dimensional infiltration front versus time for 𝑛 = 0.8 ............................................. 40 

Figure 19    Normalized pore pressure along the infiltration direction for 𝑛 = 0.5 ..................... 41 

Figure 20    Normalized pore pressure along the infiltration direction for 𝑛 = 0.8 ..................... 41 

Figure 21    Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.5 .................. 46 

Figure 22    Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.8 .................. 46 



vii 
 

Figure 23    Dimensional infiltration front versus time for 𝑛 = 0.5 ............................................. 47 

Figure 24    Dimensional infiltration front versus time for 𝑛 = 0.8 ............................................. 47 

Figure 25    Schematic of non-isothermal linear infiltration of a porous preform by a fluid ....... 50 

Figure 26    Dimensionless Infiltration front versus the applied pressure .................................... 59 

Figure 27    Dimensional infiltration front along the time ............................................................ 59 

Figure 28    Temperature variation along the infiltration direction .............................................. 60 

Figure 29    Normalized pore pressure along the infiltration direction ......................................... 61 

Figure 30    Normalized fluid content variation along the infiltration direction ........................... 62 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF SYMBOLS 

Symbol Description 

𝛼 Biot–Willis coefficient 

𝛼𝑓 Volumetric thermal expansion coefficient of the fluid 

𝛼𝑠 Volumetric thermal expansion coefficient of the preform 

𝐴 Cross section area 

𝐵 Skempton’s coefficient 

𝑐𝑝 Porous medium compressibility coefficient 

𝑐𝑓 Fluid compressibility coefficient 

𝑐 Specific heat 

𝑐0 Total compressibility coefficient in the flow region 

𝛿𝑖𝑗 Kronecker delta 

∇2 Laplacian operator 

𝜀 Strain 

𝜂 Dimensionless distance 

𝜂𝑓 Dimensionless infiltration front 

𝜂𝑤 Hole dimensionless distance 

𝜐 Drained Poisson’s ratio 

𝑓 Body force per unit volume of fluid 

𝐹 Body force per unit volume of the bulk material 

𝐺 Shear modulus of the drained elastic solid 

𝑔 Gravity component 



ix 
 

  

𝐻 Consistency index 

ℎ Heat flux 

ℎ Hole thickness 

𝑟𝑤 Hole radius 

𝐾 Drained Bulk modulus 

𝜅 Permeability coefficient or mobility coefficient 

𝑘𝛼 Thermal conductivity of the fluid phase 

𝑘 Intrinsic permeability 

𝜆 Thermal conductivity 

𝑄𝑤 Inlet flow rate 

𝑀𝛼 Connectivity matrix of the fluid phase  

𝑀𝛽 Connectivity matrix of the solid phase 

𝑛 Flow behavior index 

𝜇𝑒𝑓𝑓 Effective viscosity of the fluid 

𝜎 Stress 

𝑝0 Applied inlet pressure 

𝑝 Dimensionless pore pressure 

𝑝 Pore pressure 

𝜙0 Porosity 

𝑞𝑓𝑠 Convection induced heat transfer 

𝑞 Fluid flux  



x 
 

𝑄0 Injection intensity 

𝑄𝑜 Injection intensity 

𝑟𝑓 Infiltration front radius 

𝜃 Temperature variation 

𝜃̃ Dimensionless temperature variation 

𝜃0 Inlet temperature  

𝑡 Time 

𝑢 Displacement 

𝑥𝑓 Infiltration front distance 

𝜁 Variation of fluid content 

 

 

 

 

 



1 
 

1 INTRODUCTION 

Newtonian and non-Newtonian fluid flows through porous media are of considerable 

interest in several diverse areas; these areas include petroleum, chemical and environmental 

engineering, and composite materials manufacturing. 

In petroleum engineering, the oil displacement efficiency is improved by using non-

Newtonian displacing fluids [1,2]. Therefore, non-Newtonian fluids, such as shear-thinning 

polymer solutions [3,4,5], microemulsions, macroemulsions, and foam solutions [6], are injected 

into underground reservoir to improve the efficiency of oil displacement. Another example for 

applications in petroleum engineering is the production of heavy crude oils, where the rheological 

studies indicated that some of them are also non-Newtonian fluids of power law with yield stress 

[7,8,9].  

For chemical, environmental, and biomedical engineering applications, non-Newtonian 

fluid flow in porous media is applied to the filtration of polymer solutions, soil remediation [10], 

food processing [11], and fermentation, through the removal of liquid pollutants. These fluids 

occur in many natural and synthetic forms and can be regarded as the rule not the exception [12]. 

Also, during water flooding operations, chemical additives, polymeric solutions, or foams are 

routinely added to the injected water for improving the overall sweeping efficiency and minimizing 

the instability effects. Surfactants are also added to the water phase to decrease the surface tension 

between the aqueous and oil phases [13]. Another application is the fluid flow in fixed and 

fluidised beds of particles, which is encountered in many chemical and processing applications 

[16]. In addition, the aqueous solutions of Separan AP‐30, polymethylcellulose, and 

polyvinylpyrrolidone were found to exhibit non‐Newtonian flow behavior in simple shear [15]. In 

environmental engineering, liquid pollutants and wastes may migrate in the subsurface and 
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penetrate underground reservoirs, leading to groundwater contamination; several of those, such as 

suspensions, solutions and emulsions of various substances, certain asphalts and bitumen, greases, 

sludges, and slurries, are distinctly non-Newtonian [13]. In Orthopaedic applications, Injectable 

bone cements (IBCs) are used in many applications, like poly methyl methacrylate (PMMA), 

where bone cements are used for anchoring total joint replacements (TJRs) [14]. 

In composite materials production, the infiltration process, which is the method of 

replacing a fluid (usually vacuum of gas) by another fluid within the pore space of a porous solid 

material [20], is being used to manufacture metal matrix composites (MMCs) [5,17], polymer 

matrix composites (PMCs) [18,19] and ceramic matrix composites (CMCs) [20,21]. In general, 

composites fabrication by infiltration method is one of the most cost-effective and efficient ways 

available for many reinforced composite (MMCs, PMCs, or CMCs) [20,22]. An example for the 

properties of the CMCs manufactured by infiltration was shown in [23], where SEM observations 

of the indentation induced cracks indicated that the polymer network causes much greater crack 

deflection than the dense ceramic material. 

Flows of Newtonian and non-Newtonian fluids through porous media can be studied by 

analytical, numerical, and experimental methods. Many authors have carried out the analytical 

studies in flow applications.  

In Petroleum Engineering related studies, Pascal [24,25] showed the basic equations 

describing the flow through a porous medium of non-Newtonian fluids with a power-law in the 

presence of a yield stress. Pascal, also, presented a theoretical analysis for evaluating the effects 

of non-Newtonian behavior of the displacing fluid on the interface stability in a radial displacement 

in a porous medium and presented some results that demonstrates the theoretical support for the 

finding of a strategy regarding the optimal selection of rheological parameters of the displacing 
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fluid. While in [26], Pascal developed approximate analytical solutions for the description of 

conditions required for the stability of non-Newtonian fluid interfaces in a porous medium. Pascal 

also studied the rheological effects of non-Newtonian fluids in a flow system of a two-phase flow 

zone, which are coupled to a single-phase flow zone by a moving fluid interface. The mentioned 

flow system is involved in a technique for oil displacement in a porous medium. In addition, Pascal 

showed the effects of non-Newtonian displacing fluids, of power law with yield stress, rheological 

on the dynamics of a moving interface, which occurs in separating oil from water. Several relevant 

conclusions, obtained there, illustrated the conditions in which the viscous fingering effect in oil 

displacement could be eliminated and a piston-like displacement may be possible [27,28]. In 

addition, Pascal analyzed the non-linear effects associated with unsteady flows through a porous 

medium of shear thinning fluids. He showed the existence of a moving pressure front from a self-

similar solution governing the flow behavior. Pascal concluded that the pressure disturbances in a 

non-Newtonian fluid flowing through a porous medium propagate with a finite velocity. This 

relevant result is in contrast to the infinite velocity of disturbance propagation in a Newtonian fluid 

[29]. Finally, in another study, H. Pascal and F. Pascal [30] presented a study related to the 

solutions of the nonlinear equations of fluid flow in porous media. These solutions were obtained 

by means of a generalized Boltzmann transformation approach for several cases of practical 

interest in interpretation of well-flow tests of short duration. They also showed and discussed the 

limitations associated with the generalized Boltzmann transformation approach in solving the 

nonlinear equations of power law fluid flow in oil reservoirs taking into account the interpretation 

of the well-flow test analysis. A formulation of moving boundary problems occurring in the flow-

test analysis of short duration enabled them to obtain the exact analytical solutions in certain cases 

of practical interest, like the case of a known constant inlet pressure. However, some limitations 
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associated with the generalized Boltzmann transformation approach arised when the boundary 

condition imposed (at the well) was expressed in terms of flow rate instead of a constant pressure. 

In that case, the solution in the closed form was obtained only for a certain profile of variable flow 

rate in the well. 

Chen et al. [33] presented a class of self-similar solutions describing piston-like 

displacement of a slightly compressible non-Newtonian, power-law, dilatant fluid by another 

through a homogeneous, isotropic porous medium. Their solutions could be used to evaluate the 

validity and accuracy of approximate solutions that were existed. 

Federico et al. [34] presented a simplified approach to the derivation of an effective 

permeability for flow of a purely viscous power–law fluid with flow behavior index n in a 

randomly heterogeneous porous domain subjected to a uniform pressure gradient. They concluded 

that in 1-D flow, the ratio between effective and mean permeability decreases with increasing 

heterogeneity, with a moderate impact of the flow behavior index value, while in 2-D and 3-D 

flows, the ratio between effective and mean permeability decreases with increasing log-

permeability variance, except for very pseudoplastic fluids with a flow behavior index smaller than 

a limit value depending on flow dimensionality.  

Federico and Ciriello [13] also analyzed the dynamics of the pressure variation generated 

by an instantaneous mass injection in the origin of a domain, initially saturated by a weakly 

compressible non-Newtonian fluid. Coupling the flow law, which is the modified Darcy’s law, 

with the mass balance equation yielded the nonlinear partial differential equation governing the 

pressure field. After that, an analytical solution was derived as a function of a self-similar variable. 

Federico and Ciriello revealed in their analysis that the compressibility coefficient and flow 

behavior index are the most influential variables affecting the front position; when the excess 
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pressure is considered, compressibility and permeability coefficients contribute most to the total 

response variance. For both output variables the influence of the uncertainty in the porosity is 

decidedly lower. Federico and Ciriello analytically examined the dynamics of pressure diffusion 

in unsteady non-Newtonian flows, generated within the domain by an instantaneous mass injection 

in its origin, through porous media. They also introduced a self-similar variable and obtained a 

generalized closed-form solution in a dimensionless form, valid for plane, cylindrical, and semi-

spherical geometry, and found that the variables of interest are functions of flow geometry, injected 

mass, fluid behavior index and dimensionless compressibility, and medium porosity. Federico and 

Ciriello confirmed the existence of a pressure front traveling with finite velocity for pseudoplastic 

fluids, and showed that the front advances farther in plane than in cylindrical or semi-spherical 

geometry; for a lower porosity, a larger flow behavior index, a lower compressibility, and a higher 

injected mass. A global sensitivity analysis (GSA) was conducted considering the fluid flow 

behavior index, and selected domain properties as independent random variables having uniform 

distributions. They stated that the compressibility coefficient is the most influential variable 

affecting the evolution of the front position with time, then the flow behavior index. The variation 

in space of the excess pressure at a given time is most affected by the permeability near the 

injection point, while the influence of the compressibility prevails closer to the front position.  

In addition, Federico and Ciriello [38] performed an analytical analysis to interpret the key 

phenomena involved in non-Newtonian displacement in porous media, by considering the 

uncertainty associated with relevant problem parameters. The radial dynamics of a moving stable 

interface in a porous domain was considered in their paper. The porous medium was firstly 

saturated by the displaced fluid and was being infiltrated by the displacing fluid. Non-Newtonian 

shear-thinning power-law behavior was assumed to maintain continuous pressure and velocity at 
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the interface with constant initial pressure. Coupling the nonlinear flow law for both fluids, with 

the continuity equation, and taking into account compressibility effects, yielded a set of nonlinear 

second-order partial differential equations. Their transformation via a self-similar variable was 

done by considering the same flow behavior index for both the displacing and displaced fluids. A 

following transformation of the equations including the conditions at the interface has showed for 

pseudoplastic fluids the existence of a compression front ahead of the moving interface. Solving 

the resulting set of nonlinear equations yielded the moving interface position, the compression 

front position, and the pressure distributions which were derived in closed forms for all kinds of 

flow behavior. Federico and Ciriello stated that their solution could be used for complex numerical 

models, allowed to investigate the key processes and dimensionless parameters involved in non-

Newtonian displacement in porous media, and extended the analytical approach and results of 

another different paper of them [8] on flow of a single power-law fluid to motion of two fluids, 

taking compressibility effects into account. 

WU et al. [6] presented an analytical Buckley-Leverett-type [31] solution for one-

dimensional immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous 

media. They assumed the viscosity of the non-Newtonian fluid as a function of the flow potential 

gradient and the non-Newtonian phase saturation. Where, they developed a practical procedure for 

applying their method to field problems which is based on the analytical solution, similar to the 

graphic technique of Welge [32]. Their solution could be regarded as an extension of the Buckley-

Leverett method to Non-Newtonian fluids. The results obtained by their analytical analysis 

revealed how the saturation profile and the displacement efficiency could be controlled by the 

relative permeabilities and by the inherent complexities of the non-Newtonian fluid. A couple 

examples of the application for their analytical solution were submitted in that research study. The 
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first one is the effect analysis of non-Newtonian behavior on immiscible displacement of a 

Newtonian fluid by a power-law non-Newtonian fluid. The second one is a verification of the 

numerical model for simulation of flow of immiscible non-Newtonian and the Newtonian fluids 

in porous media. Good agreement between the analytical and the numerical results was shown. 

For complicated displacements of fluid in porous media, according to Walsh et al [43], the 

easiest way to understand it is through fractional flow theory, which is an application of a subset 

of the method of characteristics (MOC). Walsh et al extended the fractional flow theory 

understanding to the displacement of oil by a miscible solvent in the presence of an immiscible 

aqueous phase. The fractional flow theory was generalized by Pope [44], starting with the Buckley-

Leverett theory for waterflooding, his mathematics have been based on the MOC. Pope also treated 

three-phase flow problems, which occurs in a variety of the EOR processes. While Rossen et al. 

[44] extended fractional flow methods for two-phase flow to non-Newtonian fluids in a cylindrical 

one-dimensional flow. They also analyzed the characteristic equations for the polymer applications 

and foam floods applications. 

For composites infiltration related studies, the infiltration process is governed by the 

phenomena of fluid flow, capillarity, and the mechanics of potential preform deformation. These 

phenomena are governed by four basic parameters: viscosity of the liquid melt phase, the pressure 

dependent melt saturation in the preform, the preform permeability and porosity, and the preform 

stress strain behavior. Comparing these parameters, in particular of surface tension and viscosity 

values, across all matrix material classes indicated clear differences, explaining the main 

differences in the engineering practice from a composite matrix to another. However, the 

governing laws are the same [20].  
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Michaud et al. [20] reviewed the phenomena and the governing laws for the case of 

isothermal infiltration of a porous preform by a Newtonian fluid without a phase transformation, 

and four basic functional quantities were addressed. They presented some examples of model 

methodologies and compared them with the available experimental data. They also illustrated the 

applications of these governing laws using the analytical and numerical methods.  

In another paper Michaud et al. [56] analyzed the infiltration by a pure matrix considering 

preform deformation and partial matrix solidification and studied the superheat influence within 

the infiltration metal, neglecting the pressure drop in the remelted region. They concluded that the 

superheat had only a minor effect on the infiltration kinetics, which is the same result of a rigid 

preform case, but the superheat significantly affected the remelted region length. Another 

conclusion of their work was that using a bounding approach, the upper bound, which ignored the 

solid metal influence on the preform relaxation, and lower bound, which assumed that the solid 

metal conferred complete rigidity to the preform, were close compared to other factors of 

uncertainty in the infiltration prediction. Finally, they concluded that neglecting the solid phase 

velocity for the liquid velocity and considering the melt superheat to be zero could bound the 

infiltration rate to become relatively simple to be calculated with good precision 

In a study related to the manufacturing of metal matrix composites (MMCs), Lacoste et al. 

[39] pointed out the analogous numerical studies of the Resin Transfer Moulding (RTM) process 

and listed some technological difficulties which has encountered this process, in particular due to 

the appearance of many complex phenomena during processing. That analysis has included 

deformation of the fibrous preform, phase change of metal, and microporosities. They also 

presented some examples regarding the limits and possibilities offered by the numerical modelling. 
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In addition, they pointed out to some conditions that must be satisfied. As for the quality of the 

numerical simulation, they said it depends on the relevance of the used physical parameters. 

Jung et al. [40] developed an axisymmetric finite element (FE) model for the process of 

squeeze casting the MMCs. They have numerically studied the flow in the mold, the infiltration 

into the porous preform, and the solidification of the molten metal. They used a simple preform 

deformation model to predict the permeability change caused by preform compression during 

infiltration. In addition, they did a series of infiltration experiments to validate the assumptions 

used in the numerical model. The comparison between the experimental and numerical data 

showed that the developed FE program successfully predicts the actual squeeze casting process. 

Jung et al. concluded that the higher the preheat temperature of the metal and the mold, the lower 

the infiltration pressure required, and the lower metal pressure results in less preform deformation. 

For the properties of CMCs, which are usually manufactured by infiltration, Prielipp et al. 

[41] described the mechanical properties of metal reinforced ceramics, especially AI/A1203 

composites with interpenetrating networks. Fracture strength and fracture toughness data were 

given as functions of two variables; ligament diameter and fiber volume fraction. Then, they 

compared their results with the corresponding values of the porous preforms. They also presented 

a simple model for accounting the influence of metal volume and metal ligament diameter on the 

composites’ toughness. Their results showed that the increase in fracture strength from the porous 

preform to the composite is much larger than the increase of the fracture toughness increase alone, 

and the fracture strength of that material is increased more by metal infiltration than the plateau 

toughness derived from long crack measurements.  

Jin [42] described a thermo-poroelasticity theory to investigate the effects of temperature 

gradients on the infiltration kinetics, pore pressure distribution of the liquid phase, and liquid 
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content variation due to preform deformation for infiltration processing of interpenetrating phase 

composites. He also derived a similarity solution for one-dimensional infiltration assuming no 

solidification of the liquid phase and showed that the infiltration front also depends on the 

poroelastic properties of the preform. A numerical example for a polymer–ceramic 

interpenetrating phase composite was presented and the results showed that the temperature 

gradients may produce significant liquid content increment beyond the amount that can be 

accommodated by the initial pore volume of the preform. This increment in liquid content may 

compensate some solidification shrinkage of the liquid phase and alter thermal residual stresses, 

thereby reducing occurrence of microdefects in the composite. 

As reviewed above, flows of non-Newtonian fluids in porous media have been studied 

extensively. However, only Newtonian fluid has been used in the study of infiltration processing 

of composite materials (Jin [42], Michaud et al. [20], Jung et al. [40], Ouahbi et al. [22], Ambrosi 

[46] and Larsson et al. [47]. In the infiltration processing of composites, the fluid phase is a molten 

polymer or metal. Many polymers, however, are non-Newtonian fluids in the molten state 

[48,49,50]. Therefore, non-Newtonian fluid models should be used to better understand the melt 

flow behavior and solid preform deformation in the study of infiltration processing of composite 

materials. In addition, the infiltration front has been a major concern in the infiltration processing 

of composite materials. The objective of this thesis is to study infiltration processing of 

interpenetrating composites using a non-Newtonian fluid model. Both one-dimensional linear and 

radial flow of a non-Newtonian fluid in a porous preform will be studied. Equations to determine 

the non-dimensional isothermal infiltration front as a function of the known inlet boundary 

condition, i.e., inlet pressure or inlet fluid flux factor, are derived, and numerical examples are 

presented. Besides isothermal infiltration of a porous preform by a non-Newtonian fluid, non-



11 
 

isothermal infiltration by a Newtonian fluid with convection heat transfer (which was ignored in 

[42]) is also studied numerically.  

The organization of this thesis is as follows:  

The first chapter introduces non-Newtonian fluid flow in porous media and reviews the 

previous work in this area with applications in petroleum engineering, chemical engineering and 

composite manufacturing.  

In chapter 2, the isothermal linear infiltration of a porous solid by a non-Newtonian fluid 

is presented and the basic equations of 3-dimensional poroelasticiy are presented in the first section 

of this chapter. Then, the equations are reduced to one-dimensional flow in the second section. A 

self-similarity solution for a specified inlet pressure boundary condition and a numerical example, 

for a ceramic porous preform and a melted polymer, are presented in the third section of this 

chapter. While a self-similarity solution for a specified inlet flow rate boundary condition and a 

numerical example, with material parameters consistent with those of the third section, are 

presented in the fourth section of the chapter. 

In chapter 3, the isothermal radial infiltration of a porous solid by a non-Newtonian fluid 

is presented and the basic equations of 3-dimensional poroelasticiy are presented in the first section 

of this chapter. Then, the equations are reduced to one-dimensional flow in the second section. A 

self-similarity solution for a specified inlet pressure boundary condition and a numerical example, 

for data consistent with the data of linear flow application, are presented in the third section of this 

chapter. While in the fourth section, a self-similarity solution for a specified inlet flow rate 

boundary condition and a numerical example, for data consistent with the data of linear flow 

application, are presented. 
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In chapter 4, the non-isothermal linear infiltration of a porous solid by a Newtonian fluid 

is presented, basic equations of 3-dimensional thermo-poroelasticiy are presented in the first 

section. Then, they are reduced to one-dimensional flow in the second section. A self-similarity 

solution for a specified inlet pressure boundary condition and a numerical example with convection 

heat transfer are presented in the third section of that chapter.  

The fifth chapter incorporates the conclusions which could be obtained from the presented 

work. 
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2 ISOTHERMAL LINEAR FLOW OF A NON-NEWTONIAN FLUID IN A POROUS 

MEDIUM 

2.1 Basic Equations of Poroelasticity 

Fluid transport in the interstitial space in a porous solid can be described by the well-known 

Darcy’s law which is an empirical equation for seepage flow in non-deformable porous media. It 

can also be derived from Navier-Stokes equations by dropping the inertial terms. Consistent with 

the current small deformation assumptions and by ignoring the fluid density variation effect 

(Hubert’s Potential) [51]. Modified Darcy’s law for non-Newtonian flow can be adopted here 

 𝑞𝑖 = −𝜅(𝑝,𝑖− 𝑓𝑖)
1
𝑛, (1) 

In the above equation, 𝑞𝑖 is the specific discharge vector, or fluid flux vector, which describes the 

motion of the fluid relative to the solid and is formally defined as the rate of fluid volume crossing 

a unit area of porous solid whose normal is in the 𝑥𝑖 direction, 𝑓𝑖 = 𝜌𝑓𝑔𝑖 the body force per unit 

volume of fluid (with 𝜌𝑓 the fluid density, and 𝑔𝑖 the gravity component in the 𝑖-direction), 𝑝 the 

pore pressure, and 𝜅 = 𝑘 𝜇𝑒𝑓𝑓⁄  the permeability coefficient or mobility coefficient (with 𝑘 the 

intrinsic permeability having dimension of length squared, and 𝜇𝑒𝑓𝑓 the effective viscosity of the 

fluid). 

The following conventions have been adopted in writing the basic equations: a comma 

followed by subscripts denotes differentiation with respect to spatial coordinates and repeated 

indices in the same monomial imply summation over the range of the indices (generally 𝑥, 𝑦 and 

𝑧, unless otherwise indicated). 
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The effective viscosity of the fluid is given by Ref. [30] 

 
𝑘

𝜇𝑒𝑓𝑓
=

1

2𝐻
(

𝑛𝜙0

3𝑛 + 1
)

𝑛

(
8𝑘

𝜙0
)

(1+𝑛) 2⁄

, (2) 

where 𝐻 is the consistency index, 𝑛 the flow behavior index with 𝑛 < 1, = 1, or > 1 describing 

respectively pseudoplastic, Newtonian, or dilatant behavior, and 𝜙0 the porosity. The porosity is 

assumed to be a constant like in the classical small deformation poroelasticity [42]. 

Two “strain” quantities are also introduced to describe the deformation and the change of 

fluid content of the porous solid with respect to an initial state: the usual small strain tensor 𝜀𝑖𝑗 and 

the variation of fluid content 𝜁, defined as the variation of fluid volume per unit volume of porous 

material: 𝜀𝑖𝑗 is positive for extension, while a positive 𝜁 corresponds to a “gain” of fluid by the 

porous solid [51]. The strain tensor is related to the original kinematic variables 𝑢𝑖, the solid 

displacement vector that tracks the movement of the porous solid with respect to a reference 

configuration according to the following strain-displacement relations 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖). (3) 

The fluid flux vector and the variation of fluid content satisfy the following continuity 

equation 

 

𝜕𝜁

𝜕𝑡
= −𝑞𝑖,𝑖 , (4) 

where 𝑡 is the time. 

For flow of an incompressible fluid, the fluid content variation is solely due to the 

deformation of the porous preform [42]. 
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The stress and strain follow the constitutive equations in the framework of Biot theory [42] 

 𝜎𝑖𝑗 + 𝛼𝑝𝛿𝑖𝑗 = 2𝐺𝜀𝑖𝑗 +
2𝐺𝜐

1 − 2𝜐
𝜀𝑘𝑘𝛿𝑖𝑗 , (5) 

 2𝐺𝜁 =
𝛼(1 − 2𝜐)

1 + 𝜐
(𝜎𝑘𝑘 +

3

𝐵
𝑝), (6) 

where 𝜎𝑖𝑗 is the total stress tensor, 𝛼 identified as the Biot–Willis coefficient, 𝐺 the shear modulus 

of the drained elastic solid, 𝜐 the drained Poisson’s ratio, 𝐵 the Skempton’s coefficient, and 𝛿𝑖𝑗 the 

Kronecker delta. 

Finally, the following equilibrium equations supplement the basic governing equations of 

poroelasticity [42] 

 𝜎𝑖𝑗,𝑗 = −𝐹𝑖 , (7) 

where 𝐹𝑖 = 𝜌𝑔𝑖 is the body force per unit volume of the bulk material. 

2.2 Basic Equations for One-Dimensional Flow 

In this section, we consider one-dimensional (1-D) isothermal infiltration of a porous solid 

by a non-Newtonian fluid in the 𝑥-direction as schematically shown in Figure 1. At a given 

moment of infiltration, the porous preform is divided into two regions, i.e., Region 1 in which the 

preform is infiltrated by the fluid, and Region 2 in which the preform has not yet been infiltrated. 

The two regions are separated by the moving infiltration front. In applications, infiltration can 

occur with three kinds of known boundary conditions. In the first case, which is termed the 𝑝0 −

𝑝𝑓 problem, infiltration is driven by a specified fluid pressure at the inlet, 𝑥 = 0, and the pressure 
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at the infiltration front is also given. In the second case, which is termed the 𝑄0 − 𝑝𝑓 problem, the 

fluid flow in the porous preform is caused by a specified flow rate at the inlet, 𝑥 = 0, with the pore 

pressure specified at the other end. Finally, the third case in which the flow rates are specified at 

both ends and is termed the 𝑄0 − 𝑄𝑓 problem [30]. The first 2 cases will be discussed in this thesis. 

In the 1-D problems, we assume that no lateral deformation and fluid flow occur, which 

corresponds to infiltration of the preform confined by a rigid and impermeable mold. Moreover, 

the body force is not considered. Hence, the following strain and fluid flux components are zero 

 

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀𝑥𝑦 = 𝜀𝑦𝑧 = 𝜀𝑥𝑦 = 𝑢𝑦 = 𝑢𝑧 = 0, 

𝑞𝑦 = 𝑞𝑧 = 0.  

(8a) 

(8b) 

Moreover, all field variables are functions of 𝑥 and time 𝑡, for example, the pore pressure 

field is 𝑝 = 𝑝(𝑥, 𝑡). Under the above 1-D isothermal infiltration assumptions, the constitutive 

equations in (01), (4), (5), (6) and (7) reduce to 

 𝑞𝑥 = (−
𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
)

1
𝑛

, (9) 

 
𝜕𝜁

𝜕𝑡
+

𝜕𝑞𝑥

𝜕𝑥
= 0, (10) 

 𝜎𝑥𝑥 = 2𝐺
1 − 𝜈

1 − 2𝜈
𝜀𝑥𝑥 − 𝛼 𝑝, (11) 

 𝜁 = 𝛼𝜀𝑥𝑥 + (−
𝛼2

𝐾
 +

𝛼

𝐾𝐵
) 𝑝, (12) 

 

𝜕𝜎𝑥𝑥

𝜕𝑥
= 0, (13) 

where 𝐾 is the drained Bulk modulus. 
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Designated boundary conditions at the inlet, 𝑥 = 0, are either constant pressure 𝑝0 or flow 

rate 𝑄𝑤(𝑡) 

 

or 

𝑝 = 𝑝0, 𝑥 = 0, 

𝑞𝑥 =
𝑄𝑤(𝑡)

𝐴
, 𝑥 = 0, 

(14a) 

(14b) 

where 𝐴 is the cross section area of the porous preform, and  

 𝑄𝑤(𝑡) = 𝑄0𝑡𝑐 , (15) 

where 𝑄0 is the injection intensity and 𝑐 a real number. 

The boundary condition at the infiltration front is 

 𝑝 = 𝑝𝑓 = 0, 𝑥 = 𝑥𝑓 , (16) 

where 𝑥𝑓 is the infiltration front, and will be determined later. 

Lastly, the stress 𝜎𝑥𝑥 at the inlet is known to be 

 𝜎𝑥𝑥 = −𝑝0, 𝑥 = 0. (17) 

The above boundary conditions need to be supplemented by the continuity of stress 𝜎𝑥𝑥 

and displacement 𝑢𝑥 at the infiltration front. It follows from the equilibrium equation (13) that the 

stress 𝜎𝑥𝑥 is a constant which is determined by the boundary condition (17) as −𝑝0. We thus have 

the following normal stress along the infiltration direction 

 𝜎𝑥𝑥 = −𝑝0, 0 ≤ 𝑥 ≤ 𝑥𝑓 . (18) 
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Substituting Eq. (18) into (11) yields the strain as follows: 

 𝜀𝑥𝑥 =
1 − 2𝜈

2𝐺(1 − 𝜈)
(𝛼 𝑝 − 𝑝0) =

(1 + 𝜈)

3𝐾(1 − 𝜈)
(𝛼 𝑝 − 𝑝0). (19) 

Substituting the above into Eq. (12), we get the variation of fluid content 

 𝜁 = (
−2 + 4𝜈

3(1 − 𝜈)
𝛼2 +

𝛼

𝐵
)

𝑝

𝐾
−

(1 + 𝜈)

3𝐾(1 − 𝜈)
𝛼𝑝0 = 𝑆̃

𝑝

𝐾
−

𝛼

3𝐾

1 + 𝜈

1 − 𝜈
𝑝0 , (20) 

where 𝑆̃ is a dimensionless constant given by 

 𝑆̃ =
𝛼

𝐵
−

2(1 − 2𝜈)

3(1 − 𝜈)
𝛼2. (21) 

Substituting equations (9) and (20) into Eq. (10), we obtain the following nonlinear, partial 

differential equation for the pore pressure 

 𝑆̃

𝐾

𝜕𝑝

𝜕𝑡
−

1

𝑛
(

𝑘

𝜇𝑒𝑓𝑓
)

1
𝑛

(−
𝜕𝑝

𝜕𝑥
)

1−𝑛
𝑛 𝜕2𝑝

𝜕𝑥2
= 0. (22) 

 

Figure 1 Schematic of linear infiltration of a porous preform by a fluid 
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2.3 The 𝒑𝟎 − 𝒑𝒇 Problem 

2.3.1 A Self-Similarity Solution 

Following [42], we seek a similarity solution for the problem. Introduce a dimensionless 

distance 𝜂 as follows: 

 𝜂 = 𝑥 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

−1
𝑛+1

𝑡
−𝑛

𝑛+1, (23) 

In the similarity solution, the pore pressure has the following form 

 𝑝(𝑥, 𝑡) = 𝑝0𝑝(𝜂), (24) 

where 𝑝 is a dimensionless pore pressure and is a function of 𝜂 only. 

The basic equation (22) and the boundary conditions for the pore pressure now become 

 𝑑2𝑝

𝑑𝜂2
−

𝑛2

𝑛 + 1
(

𝑝0

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂 (−
𝑑𝑝

𝑑𝜂
)

2𝑛−1
𝑛

= 0, (25) 

 𝑝 = 1, 𝜂 = 0, (26) 

 𝑝 = 0, 𝜂 = 𝜂𝑓 , (27) 

where 𝜂𝑓 is a constant and related to the infiltration front 𝑥𝑓 by 

 𝜂𝑓 = 𝑥𝑓 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

−1
𝑛+1

𝑡
−𝑛

𝑛+1. (28) 
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Integrating Eq. (25) yields 

 𝑑𝑝

𝑑𝜂
= − [𝐶1 −

𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝑝0

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂2]

𝑛
1−𝑛

, (29) 

where 𝐶1 is an integration constant. 

The solution of Eq. (29) under the boundary conditions (26) is 

 𝑝(𝜂) = 1 − ∫ [𝐶1 −
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝑝0

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂2]

𝑛
1−𝑛𝜂

0

𝑑𝜂. (30) 

Using the boundary condition (27) in (30), we obtain the following equation satisfied by 

the integration constant 𝐶1 

 1 − ∫ [𝐶1 −
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝑝0

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂2]

𝑛
1−𝑛𝜂𝑓

0

𝑑𝜂 = 0. (31) 

The constant 𝐶1 can be expressed in terms of 𝜂𝑓 and 𝑝0 by the condition 

 
𝑑𝑥𝑓

𝑑𝑡
=

1

𝜙0
𝑞𝑥|𝑥=𝑥𝑓

 , (32) 

i.e., the velocity of the infiltration front is the fluid flux at the front divided by the porosity𝜙0[42].  

 𝐶1 = 𝜂𝑓
1−𝑛 (

𝑛 + 1

𝑛𝜙0
)

𝑛−1

(
𝑝0

𝐾
)

𝑛−1
𝑛

+
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝑝0

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂𝑓
2 . (33) 
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Substituting 𝐶1 in Eq. (33) into Eq. (31), we obtain 

 ∫ [𝜂𝑓
1−𝑛 (

𝑛 + 1

𝑛𝜙0
)

𝑛−1

+
𝑛(1 − 𝑛)

2(𝑛 + 1)
𝑆̃(𝜂𝑓

2 − 𝜂2)]

𝑛
1−𝑛𝜂𝑓

0

𝑑𝜂 −
𝑝0

𝐾
= 0. (34) 

The above is the equation to determine the non-dimensional infiltration front 𝜂𝑓 as a 

function of the applied initial pressure 𝑝0. 

 

2.3.2 Numerical Results and Discussion 

This section presents numerical examples of the non-dimensional infiltration front 𝜂𝑓 

versus the applied inlet pressure 𝑝0, the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡, 

the normalized pore pressure 𝑝 along the infiltration direction 𝜂, and the normalized liquid 

content variation 𝜁 (𝑝0 𝐾⁄ )⁄  along the infiltration direction 𝜂. Table 1 lists the poroelastic 

parameters for the fluid-filled porous medium in the numerical calculations [42]. The liquid 

phase is a molten polymer and the preform is a ceramic material for possible dental applications. 

The viscosity value is chosen to be 0.1 𝑃𝑎. 𝑠, which is the viscosity for Epoxy during infiltration 

[20]. Molten polymers have a viscosity range from 0.1 𝑃𝑎. 𝑠 (for typical uncured thermoset 

matrices) to 104 𝑃𝑎. 𝑠 (for thermoplastic polymers) [20]. The results are shown for 2 values of 

flow behavior index, 𝑛 = 0.5 and 𝑛 = 0.8. The flow behavior index of commercial polymers 

varies between 0.2 and 0.8 [57]. 

The infiltration front is the most important quantity in the infiltration processing of 

composite materials [42]. Figure 2 shows, for 𝑛 = 0.5, the non-dimensional infiltration front 𝜂𝑓 

versus the applied fluid pressure 𝑝0, with various values of the preform porosity. While Figure 3 

shows the results for 𝑛 = 0.8. It is shown, as expected, that the non-dimensional infiltration front 
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𝜂𝑓 increases with an increase in the applied pressure 𝑝0. Comparing the results in Figure 2 and 

Figure 3, it is clear that dimensionless infiltration front also increases with the increase of the flow 

behavior index 𝑛. 

Table 1 Poroelastic parameters for the fluid-filled porous medium 

Bulk modulus (drained) [𝐺𝑃𝑎] 𝐾=10 

Poisson’s ratio (drained) 𝜐 = 0.25 

Permeability [𝑚𝐷] 𝜅 = 100 

Biot–Willis coefficient 𝛼 = 0.8 

Skempton’s coefficient 𝐵 = 0.6 

Preform porosity 𝜙0 = 0.1, 0.3, 0.5 

Flow behavior index 𝑛 = 0.5, 0.8 

Fluid consistency index [𝑃𝑎 𝑠𝑛] 𝐻 = 0.1 

 

Figure 4 shows, for 𝑛 = 0.5, the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡, 

the dimensional infiltration front 𝑥𝑓 is given in equation (23), i.e., 𝑥𝑓 = 𝜂𝑓 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

1

𝑛+1
𝑡

𝑛

𝑛+1, under 

an applied pressure of 𝑝0 = 10 𝑀𝑃𝑎. The dimensionless infiltration front values, for 𝑛 = 0.5, are 

𝜂𝑓 = 3.11 × 10−2, 2.15 × 10−2, and 1.82 × 10−2 for 𝜙0 = 0.1, 0.3, and 0.5, respectively, other 

parameters are listed in Table 1. While Figure 5 shows the results for 𝑛 = 0.8, under the same 
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applied pressure. The dimensionless infiltration frontvalues, for 𝑛 = 0.8, are 𝜂𝑓 = 8.59 ×

10−2, 5.27 × 10−2, and 4.2 × 10−2 for 𝜙0 = 0.1, 0.3, and 0.5, respectively, other parameters are 

the same as those in Figure 4. As expected, it is shown that the infiltration front increases with 

time. 

 

Figure 2 Dimensionless Infiltration front versus the applied pressure for 𝑛 = 0.5 

 

Figure 3 Dimensionless Infiltration front versus the applied pressure for 𝑛 = 0.8 

Figure 6 shows, for 𝑛 = 0.5, the normalized pore pressure (𝑝 𝑝0⁄ ) of the percolating fluid 

along the infiltration direction. under an applied inlet pressure of 𝑝0 = 10 𝑀𝑃𝑎. All parameters 
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and the non-dimensional infiltration front are the same as those in Figure 4. While Figure 7 shows 

the results for 𝑛 = 0.8, under the same applied inlet pressure and for the same parameters, the non-

dimensional infiltration front values are the same as those in Figure 5. It is shown that the 

normalized pore pressure decreases with the distance increasing from the inlet and drops to zero 

at the infiltration front, where the fluid stops moving. The pressure distribution is almost linear. 

 

 

Figure 4 Dimensional infiltration front versus time for 𝑛 = 0.5 

 

Figure 5 Dimensional infiltration front versus time for 𝑛 = 0.8 
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Figure 8 shows, for 𝑛 = 0.5, the normalized fluid content variation along the infiltration 

direction, under an applied inlet pressure of 𝑝0 = 10 𝑀𝑃𝑎. All other parameters and the non-

dimensional infiltration front are the same as those in Figure 4. While Figure 9 shows the results 

for 𝑛 = 0.8, under the same applied pressure and for the same parameters with the non-

dimensional infiltration front are the same as those in Figure 5. For a given porosity 𝜙0 of the 

preform, the fluid content variation is the highest at the inlet and remains positive until 𝜂 reaches 

about 55% of the infiltration front and becomes negative from there to the infiltration front. This 

can be explained, mathematically, by looking at Eq. (20) and noting that there is a negative 

constant term, −
𝛼

3𝐾

1+𝜈

1−𝜈
𝑝𝑤, which remains constant, and negative, along the infiltration direction, 

and there is a positive term, 𝑆̃
𝑝

𝐾
, which is, by looking at Figure 8 and Figure 9, the highest at the 

inlet and vanishes at the interface. Another explanation for the negative fluid content variation is 

that the increment in fluid content may offset some solidification shrinkage of the liquid phase, 

thereby reducing occurrence of microdefects caused by solidification shrinkage [42]. 

A problem of special interest is the prediction of the flow-rate decline in time at the inlet, 

i.e. at 𝑥 = 0 [30]. Since the pressure distribution is known from substituting the value of 𝑐1 in Eq. 

(33) into Eq. (29) then the modified Darcy’s law (9) allows the knowledge of the flow rate variation 

expressed in terms of the dimensionless distance 𝜂 and time 𝑡. This variation may be written as 

 𝑞𝑥|𝑥=0 = (−
𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
)

1
𝑛

= (−
𝑘

𝜇𝑒𝑓𝑓
𝑝0

𝑑𝑝

𝑑𝜂
(

𝑘

𝜇𝑒𝑓𝑓
𝐾)

−
1

𝑛+1

)

1
𝑛

𝑡
−1

𝑛+1. (35) 

The above equation indicates that the flow rate at the inlet is a power function of time. 
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Figure 6 Normalized pore pressure along the infiltration direction for 𝑛 = 0.5 

 

Figure 7 Normalized pore pressure along the infiltration direction for 𝑛 = 0.8 

 

2.4 The 𝑸𝟎 − 𝒑𝒇 Problem 

In practice, instead of a constant pressure of production at the inlet, a variable flow rate 

𝑄0𝑡𝑐, may also be given at the inlet to drive the fluid flow in the porous media. In this case, 

knowledge of pressure variation in time at the outface flow is of great practical interest. As field 

observations have shown, the flow rate at the outface flow declines as a continuous monotonic 
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function of time [30]. On the other hand, Eq. (35) indicates that, for a constant pressure at 𝑥 = 0, 

the flow rate decline is expressed by the relation 

 𝑄(0, 𝑡) = 𝑄0𝑡
−1

𝑛+1, (36) 

where 𝑄0 is the injection intensity. In general, in self-similar infiltration of a porous solid, the flow 

rate at the inlet is a function of time, instead of a constant. 

 

Figure 8 Normalized fluid content variation along the infiltration direction for 𝑛 = 0.5 

 

Figure 9 Normalized fluid content variation along the infiltration direction for 𝑛 = 0.8 
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Now, we have the following differential equation, Eq. (22), for the pore pressure 

 𝑆̃

𝐾

𝜕𝑝

𝜕𝑡
−

1

𝑛
(

𝑘

𝜇𝑒𝑓𝑓
)

1
𝑛

(−
𝜕𝑝

𝜕𝑥
)

1−𝑛
𝑛 𝜕2𝑝

𝜕𝑥2
= 0, (37) 

and the boundary conditions  

 𝑞𝑥 =
𝑄𝑤(𝑡)

𝐴
, 𝑥 = 0, (38) 

 𝑝 = 0, 𝑥 = 𝑥𝑓 , (39) 

where 

 𝑄𝑤 = 𝑄0𝑡
−1

𝑛+1. (40) 

   

2.4.1 A Self-Similarity Solution 

We, again, seek a similarity solution for the problem. Introduce a dimensionless distance 

𝜂 as follows: 

 𝜂 = 𝑥 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

−1
𝑛+1

𝑡
−𝑛

𝑛+1. (41) 

In the similarity solution, the pore pressure has the following form: 

 𝑝(𝑥, 𝑡) = 𝐸𝑄𝑤𝑝̃(𝜂), (42) 

where 𝐸 [𝑀𝐿−4𝑇−1] is a constant, and 𝑝 a non-dimensional pore pressure and is a function of 𝜂 

only. 
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Using the dimensionless variables, the basic equation (37) and the boundary conditions for 

the pore pressure now become 

 𝑑2𝑝

𝑑𝜂2
− (

𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛 𝑛2

𝑛 + 1
𝑆̃𝜂 (−

𝑑𝑝

𝑑𝜂
)

2𝑛−1
𝑛

= 0, (43) 

 𝑞𝑥 =
𝑄𝑤(𝑡)

𝐴
, 𝜂 = 0, (44) 

 𝑝 = 0, 𝜂 = 𝜂𝑓 . (45) 

Integrating Eq. (43), we get 

 
𝑑𝑝

𝑑𝜂
= − [𝐶2 −

𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂2]

𝑛
1−𝑛

, (46) 

where 𝐶2 is an integration constant. Using the following infiltration front condition 

 
𝑑𝑥𝑓

𝑑𝑡
=

1

𝜙0
𝑞𝑥|𝑥=𝑥𝑓

 . (47) 

the constant 𝐶2 can be determined as follows: 

 𝐶2 = 𝜂𝑓
1−𝑛 (

𝑛 + 1

𝑛𝜙0
)

𝑛−1

(
𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

+
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂𝑓
2 . (48) 

Substituting 𝐶2 in Eq. (48) into Eq. (4648), we obtain 
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𝑑𝑝

𝑑𝜂
= − [𝜂𝑓

1−𝑛 (
𝑛 + 1

𝑛𝜙0
)

𝑛−1

(
𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

+
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂𝑓
2

−
𝑛(1 − 𝑛)

2(𝑛 + 1)
(

𝐸𝑄𝑤

𝐾
)

𝑛−1
𝑛

𝑆̃𝜂2]

𝑛
1−𝑛

. 

(49) 

Using the boundary condition (44) and Eqs. (36), (49) and (9), we obtain the following 

equation  

 𝑄0

𝐴
= [(

𝑘

𝜇𝑒𝑓𝑓
)

𝑛
𝑛+1

𝐾
−1

𝑛+1 (𝜂𝑓
1−𝑛 (

𝑛 + 1

𝑛𝜙0
)

𝑛−1

𝐾
1−𝑛

𝑛 +
𝑛(1 − 𝑛)

2(𝑛 + 1)
𝐾

1−𝑛
𝑛 𝑆̃𝜂𝑓

2)

𝑛
1−𝑛

]

1
𝑛

. (50) 

The above equation is used to determine the non-dimensional infiltration front 𝜂𝑓 in terms 

of the flow-rate factor 𝑄0. 

 

2.4.2 Numerical Results and Discussion 

This section presents numerical examples of the non-dimensional infiltration front 𝜂𝑓 

versus the inlet flux factor 𝑄0, and the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡. The 

infiltration front is the most important quantity in the infiltration processing. The front in the 

similarity solution is represented by the dimensionless parameter 𝜂𝑓.  

Figure 10 shows, for 𝑛 = 0.5, the non-dimensional infiltration front 𝜂𝑓 versus the inlet flux 

factor 𝑄0, with various values of the preform porosity, for the parameters listed in Table 1, and a 

well cross section area of 𝐴 = 5 𝑐𝑚2. While Figure 11 shows the results for 𝑛 = 0.8 for the same 

parameters. As expected, the figures show that the infiltration front increases with the inlet flux 
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factor, 𝑄0, increasing. By comparing the two figures, the nondimensional infiltration front 𝜂𝑓 

increases with an increase in the flow behavior index 𝑛. 

 

Figure 10 Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.5 

 

Figure 11 Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.8 

Figure 12 shows, for 𝑛 = 0.5, the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡, 

the dimensional infiltration front 𝑥𝑓 is given in equation (23), i.e., 𝑥𝑓 = 𝜂𝑓 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

1

𝑛+1
𝑡

𝑛

𝑛+1, under 

an inlet flux factor of 8 𝑐𝑚3 𝑠 .5 1.5⁄⁄ . the dimensionless infiltration front values are 𝜂𝑓 =
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0.046, 0.019 and 0.012 for 𝜙0 = 0.1, 0.3, and 0.5, respectively, other parameters are listed in 

Table 1. While Figure 13 shows the results for 𝑛 = 0.8 under an inlet flux factor of 𝑄0 =

8 𝑐𝑚3 𝑠 .8 1.8⁄⁄ , for the same applied pressure and same parameters, the dimensionless infiltration 

front are 𝜂𝑓 = 0.638, 0.265 and 0.167 for 𝜙0 = 0.1, 0.3, and 0.5, respectively. As expected, it is 

shown that the dimensional infiltration front increases with time. 

 

Figure 12 Dimensional infiltration front versus time for 𝑛 = 0.5 

 

Figure 13 Dimensional infiltration front versus time for 𝑛 = 0.8 
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3 ISOTHERMAL RADIAL FLOW OF A NON-NEWTONIAN FLUID IN A POROUS 

MEDIUM 

3.1 Basic Equations of Radial Flow 

In infiltration processing of hollow composite cylinders, the fluid flows in the radial 

direction. This chapter thus considers infiltration of a porous preform by a non-Newtonian fluid in 

the radial direction. We consider an infinite porous medium with a hole of a constant thickness ℎ 

and a radius 𝑟𝑤 located in the center of a porous domain, as schematically shown in Figure 14, and 

analyze the moving infiltration front and the pore pressure of the fluid along the infiltration 

direction, due to injection at the hole of a non-Newtonian fluid into the porous solid. The fluid is 

injected at a constant pressure 𝑝𝑤, or at a given injection rate 𝑄𝑤(𝑡). 

The flow in the interconnected pores of the porous preform follows the modified Darcy’s 

law 

 𝑞𝑟 = (−
𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑟
)

1
𝑛

, (51) 

where 𝑟 denotes the radial spatial coordinate. 

The continuity equation is given by [38] 

 
𝜕𝑞𝑟

𝜕𝑟
+

𝑞𝑟

𝑟
= −𝑐0𝜙0

𝜕𝑝

𝜕𝑡
, (52) 

where 𝑐0 = 𝑐𝑓 + 𝑐𝑝 is the total compressibility coefficient in the flow region, with 𝑐𝑓 being the 

fluid compressibility coefficient and 𝑐𝑝 the porous medium compressibility coefficient. The above 

continuity equation does not exactly follow that in poroelasticity. It is an approximation more 



34 
 

commonly used in applications that implicitly assumes that the pore pressure is proportional to the 

fluid content variation. 

Substituting Eq. (51) in Eq. (52) one obtains 

 1

𝑛
(−

𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑟
)

1−𝑛
𝑛

(
𝑘

𝜇𝑒𝑓𝑓

𝜕2𝑝

𝜕𝑟2
) −

1

𝑟
(−

𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑟
)

1
𝑛

= 𝑐0𝜙0

𝜕𝑝

𝜕𝑡
. (53) 

For the boundary condition at the hole, we have two cases. The first case corresponds to a 

constant applied inlet pressure, while the second relates to a variable flow rate of production 

 

or 

𝑝 = 𝑝𝑤, 𝑟 = 𝑟𝑤 , 

𝑞𝑟 =
𝑄𝑤(𝑡)

2𝜋ℎ𝑟𝑤
, 𝑟 = 𝑟𝑤 , 

(54a) 

(54b) 

where 𝑟𝑤 is the hole radius, ℎ hole thickness, and  

 𝑄𝑤(𝑡) = 𝑄𝑜𝑡𝑐, (55) 

in which 𝑐 is a constant to be determined. 

 

Figure 14 Schematic of radial infiltration of a porous preform by a fluid 
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The boundary condition at the infiltration front in both cases is 

 𝑝 = 𝑝𝑓 = 0,  𝑟 = 𝑟𝑓 , (56) 

where 𝑟𝑓 is the radius of the infiltration front. 

 

3.2 The 𝒑𝟎 − 𝒑𝒇 Problem 

3.2.1 A Self-Similarity Solution 

We, again, seek a similarity solution for the problem. Introduce a dimensionless distance 

𝜂 as follows: 

 𝜂 = 𝑟 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

−1
𝑛+1

𝑡
−𝑛

𝑛+1, (57) 

In the similarity solution, the pore pressure has the following form: 

 𝑝 = 𝑝𝑤𝑝
~

(𝜂). (58) 

The basic equation (53) and the boundary conditions for the pore pressure now become 

 𝜂

𝑛
(−

𝑑𝑝
~

𝑑𝜂
)

1−𝑛
𝑛

(
𝑑2𝑝

~

𝑑𝜂2
) − (−

𝑑𝑝
~

𝑑𝜂
)

1
𝑛

= −
𝑛

𝑛 + 1
𝑐0

𝑛−1
𝑛 𝜙0𝑝𝑤

𝑛−1
𝑛 𝜂2

𝑑𝑝
~

𝑑𝜂
, (59) 

 𝑝 = 1, 𝜂 = 𝜂𝑤 , (60) 

 𝑝 = 0, 𝜂 = 𝜂𝑓 , (61) 
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where 𝜂𝑤 is a time variable and 𝜂𝑓 a constants, and related respectively to the well radius 𝑟𝑤 and 

infiltration front 𝑟𝑓 by 

 𝜂𝑤 = 𝑟𝑤 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

−1
𝑛+1

𝑡
−𝑛

𝑛+1, (62) 

 𝜂𝑓 = 𝑟𝑓 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

−1
𝑛+1

𝑡
−𝑛

𝑛+1. (63) 

Integrating Eq. (59) yields 

 
𝑑𝑝

~

𝑑𝜂
= −𝜂−𝑛 (

𝑛2 − 𝑛

(3 − 𝑛)(1 + 𝑛)
𝑐0

𝑛−1
𝑛 𝜙0𝑝𝑤

𝑛−1
𝑛 𝜂3−𝑛 + 𝐶)

𝑛
1−𝑛

, (64) 

where 𝐶 is an integration constant, which can be expressed in terms of 𝜂𝑓 and 𝑝𝑤 by the infiltration 

front condition 

 
𝑑𝑟𝑓

𝑑𝑡
=

1

𝜙0
𝑞𝑟|𝑟=𝑟𝑓

 , (65) 

 𝐶 = 𝑁1−𝑛𝜂𝑓
2(1−𝑛) − 𝑀𝜂𝑓

3−𝑛, (66) 

where 𝑀 and 𝑁 are dimensionless constants and related to the injected pressure 𝑝𝑤 by 

 𝑀 =
𝑛2 − 𝑛

(3 − 𝑛)(1 + 𝑛)
𝑐0

𝑛−1
𝑛 𝜙0𝑝𝑤

𝑛−1
𝑛 , (67) 

 𝑁 =
𝑛

𝑛 + 1
𝑐0

−1
𝑛 𝜙0𝑝𝑤

−1
𝑛 , (68) 
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Now Eq. (64) becomes 

 
𝑑𝑝

~

𝑑𝜂
= −𝜂−𝑛(𝑀𝜂3−𝑛 − 𝑀𝜂𝑓

3−𝑛 + 𝑁1−𝑛𝜂𝑓
2(1−𝑛))

𝑛
1−𝑛. (69) 

The solution of Eq. (69) under the boundary conditions (60) is 

 𝑝
~

= 1 − ∫ 𝜂−𝑛
𝜂

𝜂𝑤

(𝑀𝜂3−𝑛 − 𝑀𝜂𝑓
3−𝑛 + 𝑁1−𝑛𝜂𝑓

2(1−𝑛))
𝑛

1−𝑛𝑑𝜂. (70) 

We may approximate 𝜂𝑤 ≅ 0, since 𝜂𝑤 < < 𝜂 [38]. In this case, eq (70) becomes 

 𝑝
~

= 1 − ∫ 𝜂−𝑛
𝜂

0

(𝑀𝜂3−𝑛 − 𝑀𝜂𝑓
3−𝑛 + 𝑁1−𝑛𝜂𝑓

2(1−𝑛))
𝑛

1−𝑛𝑑𝜂. (71) 

Using the boundary condition (61), we obtain 

 ∫ 𝜂−𝑛
𝜂𝑓

0

(𝑀𝜂3−𝑛 − 𝑀𝜂𝑓
3−𝑛 + 𝑁1−𝑛𝜂𝑓

2(1−𝑛))
𝑛

1−𝑛𝑑𝜂 − 1 = 0. (72) 

The above is the equation to determine the non-dimensional infiltration front 𝜂𝑓 as a 

function of the applied initial pressure 𝑝𝑤. 

 

3.2.2 Numerical Results and Discussion 

This section presents numerical examples of the non-dimensional infiltration front 𝜂𝑓 

versus the applied inlet pressure 𝑝𝑤, the dimensional infiltration front 𝑟𝑓 as a function of time 𝑡, 

and the pore pressure 𝑝 along the infiltration direction 𝜂. Table 2 lists the poroelastic parameters 

for the fluid-filled porous medium in our numerical study, which are consistent with the parameters 

of the linear flow problem mentioned in the previous chapter. 
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Table 2 Poroelastic parameters for the fluid-filled porous medium 

Total compressibility coefficient [𝑃𝑎−1] 𝑐0 = 1 × 10−10 

Preform porosity 𝜙0 = 0.1, 0.3, 0.5 

Permeability [𝑚𝐷] 𝜅 = 100 

Flow behavior index 𝑛 = 0.5, 0.8 

Fluid consistency index [𝑃𝑎 𝑠𝑛] 𝐻 = 0.1 

The infiltration front is the most important quantity in the infiltration processing [42]. 

Figure 15 shows, for 𝑛 = 0.5, the non-dimensional infiltration front 𝜂𝑓 versus the applied inlet 

fluid pressure 𝑝𝑤 with various values of the preform porosity. While Figure 16 shows the results 

for 𝑛 = 0.8. It is shown that the non-dimensional infiltration front 𝜂𝑓 increases with an increase 

in the applied inlet fluid pressure 𝑝𝑤. Comparing the results in the two figures, it is clear that 

dimensionless infiltration front increases with the increase in the flow behavior index 𝑛. 

 

Figure 15 Dimensionless infiltration front versus applied pressure for 𝑛 = 0.5 
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Figure 16 Dimensionless infiltration front versus applied pressure for 𝑛 = 0.8 

Figure 17 shows, for 𝑛 = 0.5, the dimensional infiltration front 𝑟𝑓 as a function of time 𝑡, 

the dimensional infiltration front 𝑟𝑓 is given in equation (57), i.e., 𝑟𝑓 = 𝜂𝑓 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

1

𝑛+1
𝑡

𝑛

𝑛+1, under 

an applied pressure of 𝑝𝑤 = 10 𝑀𝑃𝑎. The dimensionless infiltration front values are 𝜂𝑓 =

1.96 × 10−2, 1.36 × 10−2, and 1.14 × 10−2 for 𝜙0 = 0.1, 0.3, and 0.5, respectively, other 

parameters are listed in Table 2. While Figure 18 shows the results for 𝑛 = 0.8, under the same 

applied pressure and for the same parameters. The dimensionless infiltration front values are 𝜂𝑓 =

3,52 × 10−2, 2.16 × 10−2, and 1.72 × 10−2 for 𝜙0 = 0.1, 0.3, and 0.5, respectively. As expected, 

it is shown that the infiltration front increases with time. 
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Figure 17 Dimensional infiltration front versus time for 𝑛 = 0.5 

 

Figure 18 Dimensional infiltration front versus time for 𝑛 = 0.8 

Figure 19 shows, for 𝑛 = 0.5, the normalized pore pressure (𝑝 𝑝0⁄ ) of the percolating fluid 

along the infiltration direction. under an applied inlet pressure of 𝑝𝑤 = 10 𝑀𝑃𝑎. All parameters 

and the non-dimensional infiltration front are the same as those in Figure 17. While Figure 20 

shows the results for 𝑛 = 0.8, for the same parameters, and the nondimensional infiltration front 

values in Figure 18. It is shown that the normalized pore pressure decreases with the distance 
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increasing from the inlet and drops to zero at the infiltration front, where the fluid stops moving. 

The pressure distribution is not linear. 

 

Figure 19 Normalized pore pressure along the infiltration direction for 𝑛 = 0.5 

 

Figure 20Normalized pore pressure along the infiltration direction for 𝑛 = 0.8 
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3.3 The 𝑸𝟎 − 𝒑𝒇 Problem 

As mentioned in the previous chapter, instead of a constant pressure of production at the 

hole, a variable flow rate, 𝑄0𝑡𝑐, may also be given at the inlet to drive the porous fluid flow. The 

constant 𝑐 is given by Ref. [38] and Ref. [30]  

 𝑐 =
𝑛 − 1

𝑛 + 1
. (73) 

So, the flow rate at the hole is expressed by the relation 

 𝑄(𝑟𝑤, 𝑡) = 𝑄𝑜𝑡
𝑛−1
𝑛+1, (74) 

where 𝑄𝑜 is the injection intensity. 

Now, we have the following differential equation, Eq (53), for the pore pressure 

 
1

𝑛
(−

𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑟
)

1−𝑛
𝑛

(
𝑘

𝜇𝑒𝑓𝑓

𝜕2𝑝

𝜕𝑟2
) −

1

𝑟
(−

𝑘

𝜇𝑒𝑓𝑓

𝜕𝑝

𝜕𝑟
)

1
𝑛

= 𝑐0𝜙0

𝜕𝑝

𝜕𝑡
, (75) 

and the following boundary conditions 

 𝑞𝑟 =
𝑄𝑤(𝑡)

2𝜋ℎ𝑟𝑤
, 𝑟 = 𝑟𝑤 , (76) 

 𝑝 = 𝑝𝑓 = 0, 𝑟 = 𝑟𝑓 , (77) 

where  

 𝑄𝑤 = 𝑄𝑜𝑡
𝑛−1
𝑛+1. (78) 
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3.3.1 A Self-Similarity Solution 

We, again, seek a similarity solution for the problem. Introduce a dimensionless distance 

𝜂 as follows: 

 𝜂 = 𝑟 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

−1
𝑛+1

𝑡
−𝑛

𝑛+1. (79) 

In the similarity solution, the pore pressure has the following form: 

 𝑝(𝑥, 𝑡) = 𝐷𝑄𝑤𝑝̃(𝜂), (80) 

where 𝐷 [𝑀𝐿−4𝑇−1] is a constant, and 𝑝 is the nondimensional pore pressure and is a function of 

𝜂 only. 

Using the dimensionless variables, the basic equation (75) and the boundary conditions for 

the pore pressure now become 

 𝜂

𝑛
(−

𝑑𝑝
~

𝑑𝜂
)

1−𝑛
𝑛

(
𝑑2𝑝

~

𝑑𝜂2
) − (−

𝑑𝑝
~

𝑑𝜂
)

1
𝑛

= −
𝑛

𝑛 + 1
𝑐0

𝑛−1
𝑛 𝜙0(𝐷𝑄𝑤)

𝑛−1
𝑛 𝜂2

𝑑𝑝
~

𝑑𝜂
, (81) 

 𝑞𝑟 =
𝑄𝑤(𝑡)

2𝜋ℎ𝑟𝑤
, 𝜂 = 𝜂𝑤 , (82) 

 𝑝 = 0, 𝜂 = 𝜂𝑓 . (83) 

Integrating Eq. (81), we get 

 
𝑑𝑝

~

𝑑𝜂
= −𝜂−𝑛 (

𝑛2 − 𝑛

(3 − 𝑛)(1 + 𝑛)
𝑐0

𝑛−1
𝑛 𝜙0(𝐷𝑄𝑤)

𝑛−1
𝑛 𝜂3−𝑛 + 𝐶0)

𝑛
1−𝑛

, (84) 
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where 𝐶0 is an integration constant. Using the infiltration front condition 

 
𝑑𝑟𝑓

𝑑𝑡
=

1

𝜙0
𝑞𝑟|𝑟=𝑟𝑓

 , (85) 

the constant 𝐶0 can be determined as follows: 

 𝐶0 = (𝑉1−𝑛𝜂𝑓
2(1−𝑛) − 𝑊𝜂𝑓

3−𝑛)(𝐷𝑄𝑤)
𝑛−1

𝑛 , (86) 

where 𝑊 and 𝑉 are constants given by 

 𝑊 =
𝑛2 − 𝑛

(3 − 𝑛)(1 + 𝑛)
𝑐0

𝑛−1
𝑛 𝜙0 , (87) 

 𝑉 =
𝑛

𝑛 + 1
𝑐0

−1
𝑛 𝜙0 . (88) 

Now Eq. (84) becomes 

 
𝑑𝑝

~

𝑑𝜂
= −𝜂−𝑛(𝑊𝜂3−𝑛 − 𝑊𝜂𝑓

3−𝑛 + 𝑉1−𝑛𝜂𝑓
2(1−𝑛))

𝑛
1−𝑛(𝐷𝑄𝑤)−1. (89) 

Using the boundary condition (82), and Eqs. (74), (89) and (51), we obtain the following 

equation  

 

𝑄𝑜

2𝜋ℎ
= (

𝑘

𝜇𝑒𝑓𝑓
)

2
𝑛+1𝑐0

1−𝑛
𝑛2+𝑛(𝑊𝜂𝑤

3−𝑛 − 𝑊𝜂𝑓
3−𝑛 + 𝑉1−𝑛𝜂𝑓

2(1−𝑛))
1

1−𝑛. 
(90) 

Since the well radius 𝑟𝑤 is very small, 𝜂𝑤 < < 𝜂, we may approximate 𝜂𝑤 ≅ 0. In this 

case, Eq. (90) becomes 

 
𝑄𝑜

2𝜋ℎ
= (

𝑘

𝜇𝑒𝑓𝑓
)

2
𝑛+1𝑐0

1−𝑛
𝑛2+𝑛(−𝑊𝜂𝑓

3−𝑛 + 𝑉1−𝑛𝜂𝑓
2(1−𝑛))

1
1−𝑛. (91) 
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The above equation is used to determine the non-dimensional infiltration front 𝜂𝑓 in terms 

of the flow-rate factor 𝑄𝑜 

 

3.3.2 Numerical Results and Discussion 

This section presents numerical examples of the non-dimensional infiltration front 𝜂𝑓 

versus the inlet flux factor 𝑄𝑜, and the dimensional infiltration front 𝑟𝑓 as a function of time 𝑡. 

Table 2 lists the poroelastic parameters for the fluid-filled porous medium in our numerical 

calculations. 

As mentioned earlier, the infiltration front is the most important quantity in the infiltration 

processing. The front in the similarity solution is represented by the dimensionless parameter 𝜂𝑓 . 

Figure 21 shows, for 𝑛 = 0.5, the non-dimensional infiltration front 𝜂𝑓 versus the inlet flux factor 

𝑄𝑜, with various values of the preform porosity, for the parameters listed in Table 2, and a hole 

thickness of ℎ = 5 𝑚𝑚. While Figure 22 shows the results for 𝑛 = 0.8 for the same parameters. 

As expected, the figures show that the infiltration front increases with the inlet flux factor 𝑄𝑜 

increase. By comparing Figure 21 and Figure 22, the nondimensional infiltration front 𝜂𝑓 increases 

with an increase in the flow behavior index 𝑛. 

Figure 23 shows, for 𝑛 = 0.5, the dimensional infiltration front 𝑟𝑓 as a function of time 𝑡, 

the dimensional infiltration front 𝑟𝑓 is given in equation (57), i.e., 𝑟𝑓 = 𝜂𝑓 (
𝑘

𝜇𝑒𝑓𝑓

1

𝑐0
)

1

𝑛+1
𝑡

𝑛

𝑛+1,   under 

an inlet flux factor of 𝑄𝑜 = 8 𝑐𝑚3 𝑠 .5 1.5⁄⁄ . the dimensionless infiltration front values are 𝜂𝑓 =

8.4 × 10−3, 5.9 × 10−3, and 4.9 × 10−3 for 𝜙0 = 0.1, 0.3, and 0.5, respectively, other parameters 

are the same as those in Figure 21. While Figure 24 shows the results for 𝑛 = 0.8 under the same 

inlet flux factor, and the same parameters. The dimensionless infiltration front values are 𝜂𝑓 =
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0.162, 0.1, and 0.079 for 𝜙0 = 0.1, 0.3, and 0.5, respectively. As expected, it is shown that the 

infiltration front increases with time. 

 

Figure 21 Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.5 

 

Figure 22 Dimensionless Infiltration front versus the inlet flux factor for 𝑛 = 0.8 
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Figure 23 Dimensional infiltration front versus time for 𝑛 = 0.5 

 

Figure 24 Dimensional infiltration front versus time for 𝑛 = 0.8 
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4 NON-ISOTHERMAL LINEAR FLOW OF A NEWTONIAN FLUID IN A POROUS 

MEDIUM 

4.1 Basic Equations of Thermo-Poroelasticity 

Following the theoretical framework described in [42], the flow system to be analyzed in 

this chapter is a non-isothermal porous solid infiltrated by a Newtonian fluid with applications in 

the infiltration processing of composite materials. It is assumed that the porous preform and the 

liquid phase have different temperatures and no solidification of the liquid phase occurs during 

infiltration. As schematically shown in Figure 25, at a given moment of infiltration, the porous 

preform is divided into two regions. The infiltrated region is called Region 1, and the region that 

has not yet been infiltrated is Region 2. While the interface separates the two regions. 

Clearly, Region 1 is a fluid-filled porous medium. The fluid moves in the interconnected 

pores of the preform, which is subjected to the applied mechanical loads, temperature variation, 

and pore fluid pressure. Fluid flow in the porous preform is described by Darcy’s law 

 𝑞𝑖 = −
𝑘

𝜇𝑒𝑓𝑓
𝑝,𝑖 , (92) 

For Newtonian fluid (𝑛 = 1), which is considered in this Chapter, the effective viscosity 𝜇𝑒𝑓𝑓 in 

equation (20) reduces to conventional viscosity 𝜇 [38]. 

The continuity equation for fluid flow is given by 

 
𝜕𝜁

𝜕𝑡
= −𝑞𝑖,𝑖 , (93) 

Next, by looking at the heat transfer model in Region 1, the Fourier’s law for heat 

conduction is 
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ℎ𝑖 = −𝜆1𝜃,𝑖 , (94) 

where ℎ𝑖 is the heat flux vector, 𝜃 is the temperature variation, and 𝜆1 is the thermal conductivity 

of the fluid-filled porous medium in Region 1. The temperature is governed by the heat conduction 

equation  

 𝜌1𝑐1

𝜕𝜃

𝜕𝑡
= 𝜆1∇2𝜃 + 𝑞𝑓𝑠 , (95) 

where 𝜌1 and 𝑐1 are the mass density and specific heat of the fluid-filled porous medium in Region-

1, respectively, ∇2 the Laplacian operator. and 𝑞𝑓𝑠 accounts for the convection induced heat 

transfer and is given by 

 𝑞𝑓𝑠 = −𝜌𝑓𝑐𝑓𝑞𝑖𝜃,𝑖 , (96) 

where 𝜌𝑓 and 𝑐𝑓 are the mass density and specific heat of the fluid, respectively. 

Substituting equation (96) into equation (95), we get 

 𝜌1𝑐1

𝜕𝜃

𝜕𝑡
+ 𝜌𝑓𝑐𝑓𝑞𝑖𝜃,𝑖 = 𝜆1∇2𝜃. (97) 

In thermo-poroelasticity, the constitutive equations are [52] 

 𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 +
2𝐺𝜐

1 − 2𝜐
𝜀𝑘𝑘𝛿𝑖𝑗 − 𝛼𝑝𝛿𝑖𝑗 − 𝐾𝛼𝑠𝜃𝛿𝑖𝑗 , (98) 

 𝜁 =
𝛼

3𝐾
(𝜎𝑘𝑘 +

3𝑝

𝐵
) − 𝜙0(𝛼𝑓 − 𝛼𝑠)𝜃, (99) 

where 𝛼𝑠 is the volumetric thermal expansion coefficient of the preform, and 𝛼𝑓 the volumetric 

thermal expansion coefficient of the fluid. 
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Finally, the strains, displacements, and stresses satisfy the following strain–displacement 

relations and equations of equilibrium: 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖). (100) 

 𝜎𝑖𝑗,𝑗 = 0. (101) 

Region 2 is the porous preform. The basic equations are the standard heat conduction and 

thermoelasticity equations [53]. 

 

Figure 25 Schematic of non-isothermal linear infiltration of a porous preform by a fluid 

 

 

 

4.2 Basic Equations for One-Dimensional Flow 

This thesis is concerned with one-dimensional (1-D) infiltration in the x-direction as 

schematically shown in Figure 25. It is also assumed no deformation or fluid flow occur in the 

other two directions. Hence, 
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𝑢𝑦 = 𝑢𝑧 = 0, 

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀𝑥𝑦 = 𝜀𝑦𝑧 = 𝜀𝑥𝑦 = 0, 

(102a) 

(102b) 

 𝑞𝑦 = 𝑞𝑧 = 0. (103) 

Now all field variables are functions of 𝑥 and time 𝑡, for example, the temperature variation is 𝜃 =

𝜃(𝑥, 𝑡).  

The boundary conditions for the problem are  

 
𝑝 = 𝑝0, 𝑥 = 0, 

(104) 

 
𝑝 = 0,  𝑥 = 𝑥𝑓 , 

(105) 

 
𝜎𝑥𝑥 = −𝑝0, 𝑥 = 0, 

(106) 

 
𝜃 = 𝜃0, 𝑥 = 0, 

(107) 

where 𝜃0 is the inlet temperature. 

Now the equilibrium equation (101) reduces to Eq. (13) in Chapter 2, i.e., 

 
𝜎𝑥𝑥,𝑥 = 0, 

(108) 

which means the normal stress 𝜎𝑥𝑥 is a constant. Using the boundary condition (106), we get 

 
𝜎𝑥𝑥 = −𝑝0, 0 ≤ 𝑥 ≤ 𝑥𝑓 . 

(109) 

4.2.1 Region 1 (𝟎 < 𝒙 < 𝒙𝒇) 

Under the above 1-D isothermal infiltration conditions, Darcy’s law reduces to 

 𝑞𝑥 = −𝜅
𝜕𝑝

𝜕𝑥
. (110) 
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The normal stresses and strain for the 1D infiltration can be deduced from Eqs. (98), (102a) 

(102b) and the boundary condition (106) as follows: 

 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = −
𝜐

1 − 𝜐
𝑝0 −

1 − 2𝜐

1 − 𝜐
(𝛼𝑝 + 𝐾𝛼𝑠𝜃1), (111) 

 𝜀𝑥𝑥 =
1 + 𝜐

3(1 − 𝜐)𝐾
(−𝑝0 + 𝛼𝑝𝐾𝛼𝑠𝜃1) (112) 

where 𝜃1 the temperature variation in Region 1. Now the governing equations for the temperature 

variation, pore pressure, and liquid content variation reduce to 

 
𝜕𝜃1

𝜕𝑡
−

𝜌𝑓𝑐𝑓

𝜌1𝑐1
𝜅

𝜕𝑝

𝜕𝑥

𝜕𝜃1

𝜕𝑥
− 𝜅1

𝜕2𝜃1

𝜕𝑥2
= 0, 

 

(113) 

 
𝜕𝑝

𝜕𝑡
= 𝜅

𝐾

𝑆̃

𝜕2𝑝

𝜕𝑥2
+

𝐾𝜔𝛼𝑠

𝑆̃

𝜕𝜃1

𝜕𝑡
, (114) 

 𝜁 =
𝑆̃

𝐾
𝑝 − 𝜔𝛼2𝜃1 −

𝛼

3𝐾

1 + 𝜐

1 − 𝜐
𝑝0 , (115) 

where 𝜔 is a dimensionless parameter given by 

 𝜔 =
2(1 − 2𝜐)

3(1 − 𝜐)
𝛼 + 𝜙0

𝛼𝑓 − 𝛼𝑠

𝛼𝑠
, (116) 

and 𝜅1 is the thermal diffusivity of the porous preform, and given by the equation 

 𝜅1 = 𝜆1 (𝜌1𝑐1)⁄ , (117) 

in which 𝜆1 is the thermal conductivity, 𝜌1 the density, and 𝑐1 the specific heat of the porous 

preform, respectively. 
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4.2.2 Region 2 (𝒙 > 𝒙𝒇) 

Region 2 is the porous preform. The temperature variation field is governed by the standard 

heat equation, i.e., 

 
𝜕𝜃2

𝜕𝑡
= 𝜅2

𝜕2𝜃2

𝜕𝑥2
, (118) 

where 𝜅2 is the thermal diffusivity of the porous preform 

 𝜅2 = 𝜆2 (𝜌2𝑐2),⁄  (119) 

where 𝜆2 is the thermal conductivity, 𝜌2 the density, and 𝑐2 the specific heat of the porous preform, 

respectively. 

Boundary conditions for the temperature variation at the interface between Regions 1 and 

2, i.e., the infiltration front, are deduced from the temperature and heat flux continuity conditions 

as follows: 

 𝜃1(𝑥𝑓 , 𝑡) = 𝜃2(𝑥𝑓 , 𝑡), 𝑡 > 0, (120) 

 𝜆1

𝜕𝜃1

𝜕𝑥
(𝑥𝑓 , 𝑡) = 𝜆2

𝜕𝜃2

𝜕𝑥
(𝑥𝑓 , 𝑡), 𝑡 > 0. (121) 

The temperature 𝜃2 goes to the initial temperature of the preform at distances far from the 

infiltration front. We thus have the third boundary condition as follows: 

 𝜃2 → 0, 𝑥 → ∞. (122) 
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4.3 A Self-Similarity Solution 

Again, we seek a similarity solution for the non-isothermal infiltration problem. Introduce 

a dimensionless distance 𝜂 as follows: 

 𝜂 = 𝑥 √
𝑘

𝜇
𝐾𝑡⁄ . (123) 

In the similarity solution, the pore pressure, temperature variation in Region1, and 

temperature variation in Region 2 have the following forms: 

 𝑝(𝑥, 𝑡) = 𝑝0𝑝(𝜂). (124) 

 𝜃1(𝑥, 𝑡) = 𝑇0𝜃̃1(𝜂). (125) 

 𝜃2(𝑥, 𝑡) = 𝑇0𝜃̃2(𝜂). (126) 

Under the self-similar infiltration conditions, Eqs. (113) and (114) for Region 1 become 

[42] 

 
𝑑2𝜃̃1

𝑑𝜂2
+

1

2𝜅1

𝑘𝐾

𝜇
𝜂

𝑑𝜃̃1

𝑑𝜂
+

𝜌𝑓𝑐𝑓𝑝0

𝜆1

𝑘

𝜇

𝑑𝑝

𝑑𝜂

𝑑𝜃̃1

𝑑𝜂
= 0. (127) 

 
𝑑2𝑝

𝑑𝜂2
+

1

2
𝑆̃𝜂

𝑑𝑝

𝑑𝜂
−

𝐾𝜔𝛼𝑠𝑇0

2𝑝0
𝜂

𝑑𝜃̃1

𝑑𝜂
= 0. (128) 

Clearly the temperature and pore pressure in Region 1 are coupled together due to the 

convective heat transfer. Moreover, the equations are nonlinear. The convection term was 

neglected in the solution in [42]. The boundary conditions for the normalized temperature and pore 

pressure are 
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 𝜃̃1(0) = 𝜃0 𝑇0⁄  . (129) 

 𝜃̃1(𝜂𝑓) = 𝜃̃2(𝜂𝑓). (130) 

 𝜆1

𝑑𝜃̃1

𝑑𝜂
(𝜂𝑓) = 𝜆2

𝑑𝜃̃2

𝑑𝜂
(𝜂𝑓). (131) 

 𝑝(0) = 1. (132) 

 𝑝(𝜂𝑓) = 0. (133) 

In Region 2, the governing equation for the temperature, Eq. (118), becomes 

 
𝑑2𝜃̃2

𝑑𝜂2
+

1

2𝜅2

𝑘𝐾

𝜇
𝜂

𝑑𝜃̃2

𝑑𝜂
= 0. (134) 

Integrating the above equation yields 

 
𝑑𝜃̃2

𝑑𝜂
= 𝐷1𝑒

−
1

2𝜅2

𝑘𝐾
𝜇

𝜂2

2 , (135) 

where 𝐷1 ≠ 𝐷1(𝜂, 𝜃̃2) is a constant to be determined. The solution of the above equation is 

 𝜃̃2 = 𝐷1√
𝜋𝜇𝜅2

𝑘𝐾
[erf (√

𝑘𝐾

𝜇

𝜂

2√𝜅2

) − 1]. (136) 

Using the above temperature expressions in Region 2, the continuity conditions in 

Equations (130) and (131) become 
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 𝜃̃1(𝜂𝑓) = 𝐷1√
𝜋𝜇𝜅2

𝑘𝐾
[erf (√

𝑘𝐾

𝜇

𝜂𝑓

2√𝜅2

) − 1], (137) 

 
𝑑𝜃̃1

𝑑𝜂
(𝜂𝑓) =

𝜆2

𝜆1
𝐷1𝑒

−
1

2𝜅2

𝑘𝐾
𝜇

𝜂𝑓
2

2 . (138) 

   

4.4 Numerical Results and Discussion 

This section presents the numerical examples of the non-dimensional infiltration front 𝜂𝑓 

versus the applied inlet pressure 𝑝0, the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡, 

the pore pressure 𝑝 along the infiltration direction 𝜂, the temperature distribution 𝜃 along the 

infiltration direction 𝜂, and the normalized liquid content variation 𝜁 (𝑝0 𝐾⁄ )⁄  along the infiltration 

direction 𝜂 during the infiltration of a ceramic preform by a liquid polymer with the same 

properties used in [42], which are possible for dental applications [42]. Table 1 lists the poroelastic 

parameters for the fluid-filled porous medium in the numerical calculations and Table 3 lists the 

thermal properties of the fluid and solid phases.  

The specific heat capacity and density for the fluid-filled porous solid in Region 1 is 

determined using the following rule of mixtures [42]: 

 𝜌1 = 𝜙0𝜌𝑓 + (1 − 𝜙0)𝜌𝑠, (139) 

 𝑐1 = 𝜙0𝑐𝑓 + (1 − 𝜙0)𝑐𝑠, (140) 
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subscripts 𝑓 and 𝑠 denote the properties of the fluid and solid phases, respectively, and the porosity 

is the volume fraction of the fluid phase. The thermal conductivity in Region 1 is determined using 

a matricity-based model for interpenetrating phase composites as follows [54]: 

 𝑘1 = 𝑘𝐼𝐼 +
(𝑘𝐼 − 𝑘𝐼𝐼)𝑀𝛼

(1 − 𝑟) + 𝑟(𝑀𝛼 + 𝑀𝛽 𝑘𝐼 𝑘𝐼𝐼⁄ )
, (141) 

where 𝑘𝐼 and 𝑘𝐼𝐼 are the thermal conductivities of αM (solid as matrix) and βM (fluid as matrix) 

phases and are determined using the models of the Hashin-Shtrikman [55] 

 𝑘𝐼 = 𝑘𝛼 {1 +
(1 − 𝜙0)(𝑘𝛽 − 𝑘𝛼)

𝑘𝛼 + (𝑘𝛽 − 𝑘𝛼) 𝜙0 3⁄
}, (142) 

 𝑘𝐼𝐼 = 𝑘𝛽 {1 +
(1 − 𝜙0)(𝑘𝛼 − 𝑘𝛽)

𝑘𝛽 + (𝑘𝛼 − 𝑘𝛽) 𝜙0 3⁄
}, (143) 

where 𝑘𝛼 and 𝑘𝛽 are the thermal conductivities of the α-phase (fluid) and β-phase (solid), 

respectively. The matricities Mα and Mβ describe the connectivity of the α-phase (fluid) and β-

phase (solid) in the fluid-filled preform, respectively. Because both the solid and fluid are fully 

interconnected, the matricities are taken as 0.5. Moreover, parameter r is also taken as 0.5 in the 

calculation as it does not significantly influence the thermal conductivity. While the same 

properties in Region 2 are determined by the same methods by taking the properties of the air, 

instead of the liquid, as the 𝛼- phase.  

The nonlinear equations (127) and (128) are solved numerically using the Runge-Kutta 4th 

order method. To solve for 𝜂𝑓(𝑝0), and 𝐷1(𝑝0), the unknowns in the boundary conditions, the 2 

coupled differential equations with the 5 boundary conditions and the infiltration front velocity 

boundary condition, Eq. (32), are solved firstly at some specific points of 𝑝0 using trial and error 
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method. 𝐷1(𝑝0) and 𝜂𝑓(𝑝0) can then be estimated using the curve fitting method. After that, 

𝐷1(𝑝0) and 𝜂𝑓(𝑝0) can be solved using trial and error method with an accepted error, but with the 

search range of 𝐷1 and the search range of 𝜂𝑓 at every point being reduced to the range around the 

value gotten from the previous step. 

Table 3 Thermal parameters for the fluid and solid phases 

 Fluid Solid 

Density [𝐾𝑔/𝑚3] 𝜌𝑓 = 1000 𝜌𝑠 = 3000 

Specific heat [𝐽/(𝐾𝑔 𝐾)] 𝑐𝑓 = 1200 𝑐𝑠 = 800 

Coefficient of thermal expansion (volumetric) [1/𝐾] 𝛼𝑓 = 300 × 10−6 𝛼𝑓 = 24 × 10−6 

Thermal conductivity [𝑤/(𝑚 𝐾)] 𝑘𝑇𝑓 = 0.15 𝑘𝑇𝑠 = 20 

As mentioned above, The infiltration front is the most important quantity in infiltration 

processing of interpenetrating phase composites. The front in the similarity solution is represented 

by the dimensionless parameter 𝜂𝑓. Figure 26 shows the non-dimensional infiltration front 𝜂𝑓 

versus the applied inlet fluid pressure 𝑝0 with an initial preform temperature of 𝑇0 = 500 𝐾 and 

an inlet liquid temperature of 490 𝐾 (𝜃0 = −10 𝐾). It is seen that the infiltration front 𝜂𝑓 increases 

with the applied inlet pressure 𝑝0 for a given porosity. At a given inlet pressure, a smaller porosity 

of the preform yields a higher value of 𝜂𝑓 indicating faster processing. By comparing the results 

to [42], where the convection term was ignored, it looks like the convection does not have an effect 

on the infiltration front. 
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Figure 26 Dimensionless Infiltration front versus the applied pressure 

Figure 27 shows the dimensional infiltration front 𝑥𝑓 as a function of time 𝑡, the 

dimensional infiltration front is given by Eq. (123), i.e., 𝑥𝑓 = 𝜂𝑓 (
𝑘

𝜇𝑒𝑓𝑓
𝐾)

1

2
𝑡

1

2, under an applied 

pressure of 𝑝0 = 10 𝑀𝑃𝑎. The dimensionless infiltration front for values are 𝜂𝑓 = 6.32 ×

10−2, 8.17 × 10−2, and 0.142 for 𝜙0 = 0.1, 0.3, and 0.5, respectively. Other parameters are the 

same as those in Table 1 and Table 3. As shown the infiltration front increases with the time 

increasing. 

 

Figure 27 Dimensional infiltration front along the time 
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Figure 28 shows the temperature variation distribution 𝜃, 𝜃1 along the infiltration direction 

in region 1 (0 ≤ 𝜂 ≤ 𝜂𝑓), (black, red, and blue lines), and 𝜃2 along the infiltration direction in 

region 2 (𝜂 ≥ 𝜂𝑓), (green, cyan, and magenta lines), the two lines are connected at the interface 

through the continuity condition equation (130), under an applied pressure of 𝑝0 = 10 𝑀𝑃𝑎 for 

various values of the preform porosity. The dimensionless infiltration front values are the same as 

those in Figure 27 and other parameters are the same as those in Figure 26. Note that the 

temperature variation at the inlet is 10 𝐾 below the initial preform temperature. It is seen that the 

temperature variation in region 1 increases slightly in the beginning and then increases rapidly till 

𝜂 reaches 𝜂𝑓, and continues increasing in region 2 till it becomes zero at a value of 𝜂 > 𝜂𝑓. By 

comparing the results to [42], it seems that the convection term strongly affect the temperature 

variation, as it causes some heat flux at the interface. 

 

 

Figure 28 Temperature variation along the infiltration direction 

Figure 29 shows the normalized pore fluid pressure 𝑝 = 𝑝 𝑝0⁄  along the infiltration 

direction. Under an applied pressure of 𝑝0 = 10 𝑀𝑃𝑎, all parameters and the non-dimensional 

infiltration distance are the same as those in Figure 28. The normalized pore pressure almost 
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decreases linearly along the infiltration direction and it reaches zero at the infiltration front, where 

the fluid stops moving. By comparing to [42], it looks that the convection does not affect pressure 

distribution. 

 

Figure 29 Normalized pore pressure along the infiltration direction 

Figure 30 shows the normalized fluid content variation 𝜁 (𝑝0 𝐾⁄ )⁄  along the infiltration 

direction under an applied pressure of 𝑝0 = 10 𝑀𝑃𝑎. All parameters and the non-dimensional 

infiltration distance are the same as those in Figure 28. The fluid content variation is positive and 

maximum, at the inlet, and it decreases along the infiltration direction. It may reach zero and go 

below zero as shown in the figure for 𝜙0 = 0.1 and 𝜙0 = 0.3, or it may stay positive along the 

infiltration direction as shown for 𝜙0 = 0.5. By looking at equation (115), the fluid content 

variation has a negative constant term, −
𝛼

3𝐾

1+𝜐

1−𝜐
𝑝0, which is the same for all values of 𝜙0, a 

positive term, 
𝑆̃

𝐾
𝑝, which has the same value at the inlet and vanishes at the interface for all values 

of 𝜙0, and a positive term, −𝜔𝛼2𝜃1, which increases with the increase in porosity, and it is the 

reason of the difference in the behavior of the fluid content variation. The fluid content variation 
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is completely different than when we ignore the convection term [42], and it seems because the 

fluid content variation is explicitly function of the temperature variation, equation (115). 

 

Figure 30 Normalized fluid content variation along the infiltration direction 
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5 CONCLUSION 

This thesis presents self-similar analytical solutions for one-dimensional, linear and radial, 

isothermal, non-Newtonian fluid flows in a porous solid with two types of boundary conditions; a 

specified applied pressure and a specified inlet fluid flux factor. It also presents a self-similar 

numerical solution of one-dimensional, linear, non-isothermal, Newtonian fluid flow in a porous 

solid with specified applied pressure and temperature boundary conditions considering convection 

heat transfer. The self-similar solutions are valid for infiltration of a long porous solid by the fluids. 

The main conclusions for the isothermal infiltration of porous solid by a non-Newtonian 

fluid, which can be withdrawn from the results of this thesis, are as follows: 

1. The infiltration front is a function of time according to 𝑡
𝑛

𝑛+1, where n is the flow behavior 

index.  

2. The infiltration front advances faster in the linear infiltration than in the radial infiltration. 

3. Increasing the flow behavior index n for the non-Newtonian fluid increases the non-

dimensional infiltration front, while decreasing the solid porosity increases the dimensional 

and non-dimensional infiltration front. 

4. Regarding the pore pressure distribution, the results show that it is almost linear in the 

linear infiltration, while it is non-linear in the radial infiltration and it drops to zero at the 

infiltration front. 

The main conclusions for the non-isothermal infiltration of porous solid by a Newtonian 

fluid, which can be withdrawn from the results of this thesis, are as follows: 

1. For non-isothermal 1D linear flow of a Newtonian fluid, the dimensional infiltration front 

varies with time according to 𝑡
1

2. The infiltration front increases with a decrease in the 

porosity of the porous solid. The pore pressure varies almost linearly from the inlet to the 
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infiltration front, where it reaches zero. While, the temperature variation increases, when 

the initial temperature variation is negative, along the infiltration direction and reaches zero 

at a distance farther than the infiltration front, not at the infiltration front. 

2. The infiltration front is a function of time according to 𝑡
1

2. 

3. The pore pressure is almost linear along the flow direction and reaches zero at the 

infiltration front. 

4. The fluid content variation is a function of the preform porosity in the non-isothermal linear 

Newtonian infiltration. 

5. The temperature variation increases, when the initial temperature variation at the inlet is 

negative, non-linearly along the infiltration direction and reaches zero at a distance farther 

than the infiltration front. Most of the heat transfer happens close to the infiltration front. 

6. By comparing the results with that without considering convection [42], it appears that the 

convection does not affect the infiltration front or the pore pressure. However, the 

convection does affect the temperature variation and the fluid content variation, which is a 

function of the temperature variation. 
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