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Systems of ordinary differential equations (ODEs) may be used to model a wide variety

of real-world phenomena in biology and engineering. Classical sensitivity theory is

well-established and concerns itself with quantifying the responsiveness of such models to

changes in parameter values. By performing a sensitivity analysis, a variety of insights can

be gained into a model (and hence, the real-world system that it represents); in particular,

the information gained can uncover a system’s most important aspects, for use in design,

control or optimization of the system. However, while the results of such analysis are

desirable, the approach that classical theory offers is limited to the case of ODE systems

whose right-hand side functions are at least once continuously differentiable (C1). This

requirement is restrictive in many real-world systems in which sudden changes in behavior

are observed, since a sharp change of this type often translates to a point of

nondifferentiability in the model itself. To contend with this issue, recently-developed

theory employing a specific class of tools called lexicographic derivatives has been shown to

extend classical sensitivity results into a broad subclass of locally Lipschitz continuous

ODE systems whose right-hand side functions are referred to as lexicographically smooth.

In this thesis, we begin by exploring relevant background theory before presenting



lexicographic sensitivity functions as a useful extension of classical sensitivity functions;

after establishing the theory, we apply it to two models in mathematical biology. The first

of these concerns a model of glucose-insulin kinetics within the body, in which

nondifferentiability arises from a biochemical threshold being crossed within the body; the

second models the spread of rioting activity, in which similar nonsmooth behavior is

introduced out of a desire to capture a “tipping point” behavior where susceptible

individuals suddenly begin to join a riot at a quicker rate after a threshold riot size is

crossed. Simulations and lexicographic sensitivity functions are given for each model, and

the implications of our results are discussed.
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CHAPTER 1

INTRODUCTION

Mathematical models built on a framework of parametric ordinary differential equations

(ODEs) enjoy a high degree of adaptability. Said parameters may be calibrated in order to

fit the model itself to specific data, for example; however, the choices of parameter values

have major implications in the behavior of the model at hand. Broadly, sensitivity theory

aims to quantify the change in behavior of a model solution as a result of changes to

parameter values. In this thesis, we are most specifically concerned with parametric

sensitivity functions, which provide a local measure of model sensitivity via first-order

derivative information of solution curves with respect to parameters.

Consider a general parametric initial value problem (IVP) of the form

ẋ(t,p) = f(t,p,x(t,p)),

x(t0,p) = f0(p),

with state variables x and parameters p. If the participating right-hand side functions

f ,f0 are at least once continuously differentiable (C1 or “smooth” for present purposes),

then the existence and uniqueness of a solution is guaranteed locally about an initial data

point [40]. The requirement of continuous differentiability places this problem in the

classical setting and allows the use of well-established theory when, for example,

investigating the qualitative model behavior through a sensitivity analysis — in fact,

solutions to the IVP inherit the property of being continuously differentiable with respect

to parameters [40]. The first-order derivative information which is guaranteed to exist in

this setting characterizes the instantaneous rate of change (e.g., “sensitivity”) of the model;

for this reason, the sensitivity functions in this setting are defined as

Sx(t) =
∂x

∂p
(t,p0),
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where p0 is a vector of reference parameters [28, 40]. These functions may be solved in

closed-form for simple problems, but in practice results are typically given via established

and automated numerical methods. Since this information provides predictions about how

the model will respond to parameter perturbations, it is particularly useful when pursuing

goals such as dynamic control or optimization.

Despite the relative ease of automatic numerical calculation of the classical sensitivity

functions, the requirement for f ,f0 to be C1 is often restrictive in problems where

switching behavior may arise since the presence of instantaneous change often translates to

a point of nondifferentiability in any mathematical models describing the problem. Such an

issue arises in both models we examine in this thesis, which concern themselves with

modeling glucose-insulin kinetics and the spread of riots, respectively.

Glucose is the most common naturally-occurring simple sugar, and as such plays an

active role in the human body due to its prevalence in the average diet. Maintaining a

healthy concentration of glucose in the bloodstream is essential; while breaking down

glucose provides cellular energy, blood-glucose concentrations which deviate too greatly

from the baseline “healthy” level can have drastic consequences on a subject’s health. After

a sudden influx of glucose to the body (due to, e.g., a meal), it is chiefly the role of insulin

(secreted by the pancreas) to aid in returning blood-glucose concentration to the baseline

level. Bergman’s “minimal model” of glucose-insulin interactions [11] aims to describe the

blood-glucose and blood-insulin levels of a healthy individual after glucose is introduced to

the body. However, a desire to accurately model insulin input from a healthy pancreas

introduces nondifferentiability in the model since the pancreas exhibits switching behavior.

Below a threshold blood-glucose concentration, the pancreas remains idle, but it suddenly

begins to secrete insulin once this threshold concentration is crossed. To model pancreatic

insulin input, Bergman et al. [11] used a max function:

u = p5tmax(0, G− p6),
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where G represents current blood-glucose concentration at time t and p6 is a parameter

describing the threshold concentration. As G crosses the threshold value p6, the max

function changes output, hence introducing nondifferentiability and invalidating any

attempts to study qualitative behavior via classical sensitivity theory above.

Furthermore, the body’s insulin response to glucose intake may be inhibited by

conditions such as type 1 and type 2 diabetes mellitus (“diabetes”). Diabetes is common in

general, with over 10% of the American population estimated to be afflicted with some

version of the chronic disease and 1.5 million new cases being diagnosed every year [7]. In

an effort to extend the minimal model to describe the diabetic case as well, we consider two

variations of the model where the concept of “insulin secretion” from the pancreas is

replaced by the concept of “insulin infusion” from an external insulin-secreting device. In

one variation, insulin is assumed to be infused at an exponentially decaying rate, while the

other variation introduces nonsmoothness through abrupt on-and-off features. Again, the

nonsmoothness present invalidates any results gained via classical sensitivity theory.

A similar issue arises in a recent model examining the spread of riots published by

Bonnasse-Gahot et al. [12]. Rioting activity behaves in a wave-like fashion similar in

structure to a wave of disease (i.e., an epidemic). For this reason, the authors of [12]

considered riots through the lens of being a “social contagion,” and adjusted the general

SIR (Susceptible-Infected-Recovered) framework for disease spread [13] to instead describe

the spread of rioting behavior. A key feature of riots is the so-called “bandwagon effect,”

which suggests that the likelihood of an individual joining a riot is proportional to the

current number of rioters. However, this effect cannot exist without there being a small

population of rioters to begin with — for this reason, the authors of [12] consider a

“tipping point” which manifests in the model at hand in the form of a nonsmooth max

function. A switch in output from this max function represents a sudden shift from an

absence of rioting activity to the beginning of the bandwagon effect (or vice versa), but

results in points of nondifferentiability being introduced to the model.
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While smoothing approximations have occasionally been used to avoid breaking the C1

requirement of classical sensitivity theory (see, e.g., [37] for such a treatment of the minimal

model), issues arise which are hard to reconcile in general; solutions using this method have

inherent numerical error built-in and require subjective user-defined inputs. Furthermore,

in large-scale or highly-coupled systems, points of nondifferentiability may be visited

frequently, making it difficult to bound or estimate the cumulative error of simulations a

priori. Other efforts have been made to instead generalize the classical sensitivity functions

using nonsmooth analysis. For example, Clarke’s set-valued generalized derivative [16]

exists at points of nondifferentiability of locally Lipschitz continuous functions. Elements of

this generalized derivative characterize local first-derivative information and are useful in

dedicated nonsmooth methods, such as those for equation-solving [21, 42] or optimization

methods [33, 35]. The Clarke Jacobian itself also satisfies a variety of calculus properties,

including a mean value, implicit, and inverse function theorem. It can also be supplied to

the aforementioned nonsmooth numerical methods with guaranteed convergence properties;

however, the benefits of these properties are hindered in general due to difficulty associated

with calculating Clarke Jacobian elements. Any calculus rules associated with the Clarke

Jacobian (e.g., the sum or product rules) hold only as inclusions in most settings,

invalidating most systematic attempts at calculating such elements.

Only recently have advancements been made in nonsmooth analysis which overcome

this issue. So-called lexicographic (L-)derivatives, introduced by Nesterov in [38], are

indistinguishable from Clarke Jacobian elements in the aforementioned dedicated

nonsmooth numerical methods; furthermore, related objects known as lexicographic

directional derivatives [32] provide a systematic, automatable, and accurate method of

calculating L-derivatives in general. These objects have been applied in tandem to

nonsmooth ODE systems [30] in order to yield generalized sensitivity theory which is

applicable to a large class of locally Lipschitz continuous functions referred to as

lexicographically smooth [38], including functions which are C1, piecewise continuously
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differentiable (PC1 in the sense of Scholtes [45]), or convex. This recently-developed theory

is numerically implementable even in large-scale problems.

The flexibility of lexicographic sensitivity theory allows its application to both models

highlighted above — Bergman’s minimal model [11], in which we provide a sensitivity

analysis of the original model and several variations tailored for individuals with diabetes,

and the model of riot spread introduced in [12], where we examine a municipal-scale model

of the 2005 French riots across the entirety of the Île-de-France region. These applications

represent the primary original contributions of this thesis, with further original work found

in a proof of the lexicographic directional derivative rule for the nonsmooth mid function

and in illustrative examples throughout.

The rest of this thesis is structured as follows: in Chapter 2 preliminaries and

background theory, including classical sensitivity functions and Clarke’s generalized

derivative, are discussed. In Chapter 3, we define the class of lexicographically smooth

functions and introduce the concept of lexicographic differentiation before introducing

recently-developed lexicographic sensitivity functions. We first apply this theory in Chapter

4 after introducing the minimal model of glucose-insulin kinetics, and proceed in Chapter 5

by performing similar analysis on a municipal-scale model of the spread of rioting activity.

In Chapter 6, we make concluding remarks and suggest future directions for research.
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CHAPTER 2

PRELIMINARIES AND BACKGROUND

In this section we introduce relevant results from nonsmooth analysis and motivate the

need for the lexicographic approach in cases where nondifferentiability is present.

2.1 Notation

Throughout this thesis, scalar functions and arguments are denoted as standard-weight

lowercase letters; e.g., f(x) is a scalar-valued function which depends on a scalar variable.

More generally, vector-valued functions and arguments are denoted as bold lowercase

letters; e.g., f(x) denotes a vector of outputs f = (f1, . . . , fm) ∈ Rm depending on a vector

of inputs x = (x1, . . . , xn) ∈ Rn. Standard-weight uppercase letters (e.g., X) are used to

denote sets, while bold uppercase letters (e.g., X) are used to denote real-valued matrices

in Rm×n, and well-defined vertical block matrices
X

Y

 are represented by the tuple (X,Y).

In particular, the classical Jacobian matrix of a vector-valued continuously differentiable

(C1) function f at x is written Jf(x), and is defined as

Jf(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)

... . . . ...
∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)

 ∈ Rm×n.

Several special generalizations of the classical Jacobian are present throughout this thesis.

In the case that f is scalar-valued (i.e., m = 1), then we find that Jf(x) = (∇f(x))T,

where ∇f(x) denotes the gradient of f . If instead we have the case that f is a function of

multiple vector-valued inputs (x,y) ∈ Rn+q, then we define

Jxf(x,y) =


∂f1
∂x1

(x,y) . . . ∂f1
∂xn

(x,y)

... . . . ...
∂fm
∂x1

(x,y) . . . ∂fm
∂xn

(x,y)

 ∈ Rm×n;
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Jyf(x,y) =


∂f1
∂y1

(x,y) . . . ∂f1
∂yq

(x,y)

... . . . ...
∂fm
∂y1

(x,y) . . . ∂fm
∂yq

(x,y)

 ∈ Rm×q.

The Euclidean norm is denoted by | · |, and an open n-dimensional Euclidean ball of radius

ϵ centered at the point x0 ∈ Rn is referred to as a “neighborhood of x0” and denoted

Nϵ(x0); i.e.,

Nϵ(x0) = {x ∈ Rn : |x− x0| < ϵ}

for some ϵ > 0. The interior of a set X is denoted as “int(X)” and likewise its closure is

denoted “cl(X).” The convex hull of X — that is, the smallest convex set containing X —

is denoted “conv(X).”

2.2 Classical sensitivity theory of ordinary differential equations

With the goal of quantifying the dependence of ODE-based models to their parameters,

we begin by exploring foundational ODE theory. Consider a general initial value problem

(IVP) of the form

ẋ(t) = f(t,x(t)),

x(t0) = x0,

(2.1)

where x = (x1, x2, . . . , xn) denotes the vector of state variables, t is the independent

variable, f : Dt ×Dx → Rn is the right-hand side function, where Dt ⊂ R and Dx ⊂ Rn are

open sets, and t0 ∈ Dt and x0 ∈ Dx are the initial conditions.

Definition 2.1 (Solution of an Initial Value Problem). A solution to the IVP (2.1) on the

connected set T ⊂ Dt is some function x(t) satisfying the following properties:

(i) x(t) is differentiable on T ;

(ii) x(t) ∈ Dx for each t ∈ T ;
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(iii) x(t0) = x0 with t0 ∈ T ; and

(iv) ẋ(t) = f(t,x(t)) for each t ∈ T.

In the classical case, the (local) existence and a uniqueness of a solution to the IVP

(2.1) is guaranteed; in general, the “classical case” is characterized by the continuous

differentiability of the participating right-hand side functions.

Theorem 2.2 (Fundamental Existence-Uniqueness Theorem). (Adapted from [25].)

Suppose that f : Dt ×Dx → Rn is C1 on its domain. Then there exists some δ > 0 such

that the initial value problem (2.1) has a unique solution x(t) on the interval [t0, t0 + δ].

Now instead consider a general parametric IVP:

ẋ(t,p) = f(t,p,x(t,p)),

x(t0,p) = f0(p),

(2.2)

where x = (x1, x2, . . . , xn) continues to denote the vector of state variables and

p = (p1, p2, . . . , pq) now denotes the vector of problem parameters. Furthermore, suppose

that f : Dt ×Dp ×Dx → Rm and f0 : Dp → Dx where Dt ⊂ R, Dp ⊂ Rq, and Dx ⊂ Rn are

open sets and t0 ∈ Dt, p∗ ∈ Dp. The goal of sensitivity theory is to quantify the influence

that the model parameters p have on the system; conveniently, in the classical case, the

solution of (2.2) inherits the continuous differentiability of the ODE’s right-hand side rule.

Assumption 2.3. Suppose that f : Dt ×Dp ×Dx → Rn and f0 : Dp → Dx are C1 on

their respective domains.

Theorem 2.4 (C1 Dependence on Parameters). (Adapted from [40]). Suppose Assumption

2.3 holds. Then there exist ϵ, δ > 0 such that the initial value problem (2.2) has a unique

solution x(t,p) on [t0, t0 + δ] for each fixed p ∈ Nϵ(p
∗), and x(t,p) is C1 with respect to p

on Nϵ(p
∗) for each fixed t ∈ [t0, t0 + δ].
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Definition 2.5 (Classical Sensitivity Functions). The (classical) forward-parametric

sensitivity functions associated with a solution x(t,p) of the IVP (2.2) on T , if they exist,

are

Sx(t) =
∂x

∂p
(t,p∗) ∈ Rn×q, (2.3)

where p∗ ∈ Dp again denotes some chosen reference parameters.

The classical forward-parametric sensitivity functions describe the first-order response

of an IVP’s solution x(t,p) to perturbations in the reference parameters. However, while

Theorem 2.2 guarantees the unique existence of a solution to the IVP (2.2) and Theorem

2.4 guarantees C1 dependence of this solution to parameters p (and hence existence of the

sensitivity functions (2.3)), it is often not trivial to produce the sensitivity functions in

closed form. Moreover, it is often desirable to calculate sensitivity functions on a non-local

time horizon, requiring existence of a solution non-locally instead of relying on the local

existence theorem. Therefore, it is often convenient to calculate the sensitivity functions

(2.3) numerically via the following result.

Assumption 2.6. Let tf > t0 and suppose there exists a unique solution of the IVP (2.2)

on [t0, tf ] ⊂ Dt.

Theorem 2.7 (Existence and Calculation of the Classical Sensitivity Functions). (Adapted

from [28].) Suppose that Assumptions 2.3 and 2.6 hold. Then, in addition to the

conclusions of Theorem 2.4, the sensitivity functions (2.3) exist and are the unique solution

of the sensitivity system

Ṡx(t) = Jpf(t,p
∗,x(t,p∗)) + Jxf(t,p

∗,x(t,p∗))Sx(t),

Sx(t0) = Jf0(p
∗),

(2.4)

on the time horizon [t0, tf ].

Example 2.8. Consider the following IVP with parameters p = (p1, p2):

ẋ(t,p) = x(t,p) + p1,

x(0,p) = p2.

(2.5)

9



0 0.5 1 1.5 2 2.5 3

-30

-20

-10

0

10

20

30

40

50

60

Figure 2.1: Solutions of the system (2.5) with differing choices of reference parameter p∗. In
black, p∗ = (0,−1); in blue, p∗ = (1, 1); and in red, p∗ = (1, 2).

This ODE is linear and separable and solutions are easily found in closed-form (see

Figure 2.1): x(t,p) = (p1 + p2)e
t − p1. For different choices of reference parameter

p∗ = (p∗1, p
∗
2), the long term behavior of solutions to this system varies (see, for example,

Figure 2.2). Since solutions are known in closed form, however, given any reference

parameter p∗, we can calculate the sensitivity functions (2.3) as

Sx(t) =

[
et − 1 et

]
. (2.6)

Alternatively, after defining f(x,p) = x+ p1 and f0(p) = p2, we may calculate

Jpf(p, x(t,p
∗)) = [1 0],

Jxf(p, x(t,p
∗)) = [1],

Jf0(p∗) = [0 1].

Substitution into the classical sensitivity system (2.4) then yields

Ṡx(t) = [1 0] + [1] Sx(t),

Sx(0) = [0 1].

(2.7)

To solve this system, decompose the vector-valued IVP as

Ṡp1
x (t) = 1 + Sp1

x (t), Sp1
x (0) = 0,

Ṡp2
x (t) = Sp2

x (t), Sp2
x (0) = 1.
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Figure 2.2: Varying behavior in solutions to (2.5) for different choices of p at different fixed
times. At top-left, t = 0 and solutions take the form of the x = p2 plane. At top-right, t = 1
and solutions begin to diverge. At bottom, by t = 3, solutions have diverged greatly (note
the difference in scale between the figures).

Both systems can be solved independently to find that

Sp1
x (t) = et − 1, Sp2

x (t) = et.

Hence, the solution to the sensitivity system (2.7) recovers the classical sensitivity functions

found earlier in Equation (2.6). Fundamentally, these functions describe the first-order

response of the solution x(t,p) to perturbations in p1 and p2. Since et − 1 < et in general,

we find that perturbations in p2 are more influential in the behavior of the system than

similar perturbations in the value of p1 starting from any reference values p∗1, p∗2 ∈ R.

As mentioned in Example 2.8, sensitivity functions are useful in making quantitative

comparisons between the effects of different parameters and allow the determination of the
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“most influential” parameter at any time within the time horizon. With aims of performing

a sensitivity analysis on (i.e., finding the sensitivity functions associated with) the two

biological models considered in this thesis, however, we must first note that the C1

requirement of the right-hand side function f within Assumption 2.3 is broken in each case

due to a desire to capture sudden switches in model behavior. Hence, the C1 dependence of

solutions x(t,p) to parameters p is not guaranteed by Theorem 2.4, and the sensitivity

functions (i.e., ∂x
∂p

) may not exist as a result. Therefore, in order to characterize parametric

sensitivities in the nonsmooth case, we must turn to another method. One approach is

using generalized derivative theory; here, we specifically consider Clarke’s generalized

derivative [16]. Other common approaches to a local sensitivity analysis within the

nonsmooth setting include one-at-a-time (OAT) calculations (employing, e.g., directional

derivatives) or smoothing approaches. In methods employing an OAT approach,

parameters are individually perturbed from their original reference values and the new

output is compared with previous solutions to see the effect, though this approach can fail

to gain similar insights on parameter interactions which may be present. In methods

employing a smoothing approach, a C1 approximating function is used as a proxy for

functions exhibiting nonsmoothness. Shortcomings of this approach in general will be

discussed in Chapter 4. Global sensitivity analyses (such as the elementary effects method

of Morris [36]) are not the focus of this thesis, nor are established stochastic or

variance-based approaches, which have their own set of advantages and shortcomings.

2.3 Clarke’s generalized derivative

The field of nonsmooth analysis is broad, and often concerns itself with developing

differential calculus rules for functions which are classically nondifferentiable [17]. Such

rules are desirable in many of the same applications which employ classical derivatives

(e.g., optimization algorithms and numerical solvers for systems of ordinary differential

equations), but require special treatment since classical approaches often yield erroneous
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conclusions when used in (or adapted for) the nonsmooth case. We proceed by developing

the key concepts associated with these specialized rules, which together form the basis of

generalized derivative theory. The approach outlined here, based around Clarke’s

generalized derivative [16], requires that the functions of interest be at least locally

Lipschitz continuous.

Definition 2.9 (Lipschitz and Local Lipschitz Continuity). Given an open set X ⊂ Rn, a

function f : X → Rm is called Lipschitz continuous on D ⊂ X if there exists some L > 0

such that for all x,y ∈ D,

|f(x)− f(y)| ≤ L|x− y|.

The function is called locally Lipschitz continuous on X if for each x ∈ X there exists a

neighborhood N around x such that f is Lipschitz continuous on N .

Theorem 2.10 (Rademacher’s Theorem). Given an open set X ⊂ Rn and a locally

Lipschitz continuous function f : X → Rm, it must be that f is differentiable almost

everywhere. That is, the set of points Zf ⊂ X at which f is not differentiable must be of

Lebesgue measure zero.

With this class of functions in mind, we proceed by defining two of the principal objects

in generalized derivative theory [16].

Definition 2.11 (Clarke Jacobian). ([16]) Given a locally Lipschitz continuous function

f : X ⊂ Rn → Rm, X open, the Bouligand (B-)subdifferential of f at x is defined as

∂Bf(x) =
{

H ∈ Rm×n : H = lim
k→∞

Jf(xk),where {xk} → x, with xk 6= x,xk ∈ X \ Zf

}
.

(2.8)

The Clarke Jacobian of f at x is then defined as

∂Cf(x) = conv(∂Bf(x)).

The B-subdifferential (and hence, Clarke Jacobian) of a locally Lipschitz continuous

function is necessarily nonempty; furthermore, the B-subdifferential is always a compact
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set [16]. Since the B-subdifferential is comprised of the limit of the Jacobian of f evaluated

at sequences converging to x, it characterizes the behavior of f nearby to x; as a result,

the B-subdifferential may be roughly conceptualized as a set of “nearby Jacobians” to a

point of interest. Motivated by the formulation of the mathematical models explored later

in this thesis, we now introduce a subclass of locally Lipschitz functions referred to as

piecewise continuously differentiable.

Definition 2.12 (Piecewise Differentiable Functions). ([45]) For an open set X ⊂ Rn, a

function f : X → Rm is called piecewise continuously differentiable (PC1) at x ∈ X if

there exists (i) some neighborhood N ⊂ X of x on which f is continuous and (ii) a

corresponding finite collection of C1 selection functions Ff (x) = {f1, . . . ,fk} (for some

k ∈ N) where each fi is a C1 function mapping N to Rm such that

f(η) ∈ {f1(η), . . . ,fk(η)} ∀η ∈ N.

A set of essentially active indices of f at x with respect to Ff (x) is defined as follows:

Iessf (x) = {i ∈ {1, . . . , k} : x ∈ cl(int{η ∈ N : f(η) = fi(η)})}.

These indices are used to define the corresponding set of essentially active selection

functions

Ef (x) = {fi : i ∈ Iessf (x)} ⊂ Ff (x).

The function f is called PC1 on X if it is PC1 at each x ∈ X.

Functions which are PC1 are necessarily locally Lipschitz continuous [45] and can be

characterized as “nearly-smooth” by virtue of only failing to be continuously differentiable

(“smooth”) at a set of points whose Lebesgue measure is zero (by the result of Theorem

2.10). The following example demonstrates the process of identifying relevant selection and

essentially active selection functions.

Example 2.13. Consider the function f : R → R : x 7→ mid(0, |x| − 1, 1), where the mid

function returns the median of its three arguments. This function is depicted in Figure 2.3;
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notably, it is PC1 (and hence locally Lipschitz continuous) on its domain, and its set of

nondifferentiability is

Zf = {x : |x| = 1} ∪ {x : |x| = 2}.

Define the following selection functions:

f1 : x 7→ 0; f2 : x 7→ x− 1; f3 : x 7→ −x− 1; f4 : x 7→ 1; f5 : x 7→ 1

2
.

Then, for i = 1, 2, 3, 4, note that the set {x ∈ R : f(x) = fi(x)} is an interval and thus has

a nonempty interior. However, the set {x ∈ R : f(x) = f5(x)} is exactly {−3
2
, 3
2
}, whose

interior is empty. Thus, given any x∗ ∈ R and N ⊂ R, the set Iessf (x∗) will be a subset of

the set {1, 2, 3, 4} and as a result we have Ef (x∗) ⊂ {f1, f2, f3, f4}. The selection function

f5 will never be essentially active since for any such combination of x∗ ∈ R, N ⊂ R, we will

have

cl(int{η ∈ N : f(η) = f5(η)}) ⊂ cl
(

int
{−3

2
,
3

2

})
= cl(∅) = ∅.

Broadly, global satisfaction of the PC1 criteria implies that the function at hand may

be constructed in a piecewise fashion where the result is both continuous and is composed

of finitely many essentially active C1 “pieces.” Furthermore, given a PC1 function

f : X ⊂ Rn → Rm, X open, the B-subdifferential (2.8) simplifies as

∂Bf(x) = {Jfi(x) : fi ∈ Ef (x)}.

-4 -3 -2 -1 1 2 3 4

-0.5

0.5

1

1.5

Figure 2.3: A graphical representation of the function f(x) = mid(0, |x|−1, 1) from Examples
2.13 and 2.14.
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Using this simplified relationship, it is easy to check that the Clarke Jacobian recovers the

classical Jacobian in the case of functions which are C1, since for any relevant x∗ the set

Ef (x∗) will be a singleton and consequently

∂Cf(x
∗) = ∂Bf(x

∗) = {Jf(x∗)} (2.9)

in this case.

Example 2.14. Recall the function and corresponding selection functions introduced in

Example 2.13:

f(x) = mid(0, |x| − 1, 1).

As noted previously, this function exhibits nonsmoothness at the point where x = 1.

Letting N =
(

1
2
, 3
2

)
, note that Ef (1) = {0, x− 1} = {f1, f2} is an appropriate set of

essentially active selection functions, which can be seen by examining the behavior of the

function to the immediate left and right of x = 1 in Figure 2.3. Therefore, the

B-subdifferential of this function at x∗ = 1 is calculated as

∂Bf(1) = {0, 1},

while the Clarke Jacobian is calculated as the convex interval

∂Cf(1) = [0, 1].

To summarize, the Clarke Jacobian is motivated by a desire to at least describe the

nearby first-order derivative behavior of a function at points where the function itself is

nondifferentiable. This object and methods based around it benefit from several key

advantages. First and perhaps most obviously, in the context of functions which are at

least locally Lipschitz continuous (e.g., PC1), the Clarke Jacobian is defined at points

where the classical Jacobian is undefined. Secondly, the Clarke Jacobian possesses

theoretical properties which allow for its use in dedicated numerical methods [16].

Important theoretical results include a mean value theorem, inverse function theorem, and

16



an implicit function theorem; numerically, elements of the Clarke Jacobian are able to be

utilized in dedicated nonsmooth methods for equation-solving (e.g., [21, 42]) and

optimization (e.g., [33, 35]).

And yet, despite the great advantages offered by the Clarke Jacobian, its drawbacks can

be debilitating to methods employing it in many circumstances. The common theme in

these shortcomings is difficulty in the computation of Clarke Jacobian elements for

complex functions, even despite the aforementioned theoretical and numerical tools [8].

Here, we will examine two of these through constructive examples.

Example 2.15. Consider the trio of functions

f(x) = mid(0, x, 1); g(x) = mid(0, x, x− 1); h(x) = f(x) + g(x) = x,

displayed in Figure 2.4. Notice that f and g are both PC1 while their sum, h, is in fact C1.

We can find essentially active selection functions at x = 0, for example, easily:

Ef (0) = {0, x}; Eg(0) = {0, x}; Eh(0) = {x}.

Direct calculation of the respective B-subdifferentials reveals that

∂Bf(0) = ∂Bg(0) = {0, 1}, and consequently ∂Cf(0) = ∂Cg(0) = [0, 1]. With regards to the

function h, however, we find that ∂Bh(0) = {1} = ∂Ch(0). Notice here that

0 ∈ ∂Cf(0), ∂Cg(0), yet (0 + 0) /∈ ∂C(f + g)(0) = ∂Ch(0). Therefore, we find that any

-0.5 0.5 1 1.5 2 2.5

-0.5
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1

1.5

(a) Functions f (blue) and g (red).
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(b) Function h (i.e., f + g).

Figure 2.4: Depictions of the functions associated with Example 2.15.
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attempt to find elements of the Clarke Jacobian of the function h using a rule of sums is

strictly inclusive in this case: that is, ∂Ch(0) ⊊ ∂Cf(0) + ∂Cg(0).

A similar result occurs at x = 1: Ef (1) = {x, 1}, Eg(1) = {0, x− 1}, Eh(1) = {x} implies

∂Cf(1) = ∂Cg(1) = [0, 1] and ∂Ch(1) = {1}, so we conclude ∂Ch(1) ⊊ ∂Cf(1) + ∂Cg(1) in

this case as well.

Examples like this one provide an illuminating view of how Clarke Jacobian

computation can be hindered even in simple circumstances. Despite the prevalence of the

“sharp” (i.e., equality-based) rule of sums in classical derivative theory, we find that the

analogous rule holds only as an inclusion in the case of Clarke Jacobians. Indeed, any

calculus rules associated with the Clarke Jacobian are only inclusions in general, making

the systematic calculation of Clarke Jacobian elements difficult. The use of the Clarke

Jacobian can cause failure even in dedicated numerical methods, such as nonsmooth

extensions of classical automatic differentiation (AD) [23], as a result of the inability of

these rules to obey sharp equality in general.

In order to explore a different attempt at calculating Clarke Jacobian elements, we now

turn to directional derivatives.

Definition 2.16 (Directional Derivative). Given an open set X ⊂ Rn, a function

f : X → Rm, and some x ∈ X, the (one-sided) directional derivative of f at x in the

direction d ∈ Rn is given by

f ′(x;d) = lim
α→0+

f(x+ αd)− f(x)

α
,

if it exists. We call f directionally differentiable at x if f ′(x;d) exists for all d ∈ Rn, and

furthermore we say that f is directionally differentiable on X if it is directionally

differentiable at all possible x ∈ X.

The class of directionally differentiable functions includes — but is broader than — the

class of C1 functions. For example, functions which are only PC1 are also necessarily
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directionally differentiable on their domain [45]; therefore, in the case of functions which

are only PC1, directional derivatives offer the advantage of being defined even at points of

classical nondifferentiability. As an example, the PC1 function f(x) = |x| is not

differentiable at x = 0, yet for any chosen direction d ∈ R, we find that the directional

derivative is defined and in particular

f ′(0; d) =


d if d ≥ 0,

−d if d < 0.

If f does happen to be C1 then the directional derivative and classical Jacobian are related

in the following way:

f ′(x;d) = Jf(x)d. (2.10)

Due to this relationship, directional derivatives in the unit coordinate directions may be

appended in the C1 setting to calculate the Jacobian of a given function at a point of

interest since in this case, letting ei be the ith unit coordinate vector, we find

[f ′(x; e1) f ′(x; e2) · · · f ′(x; en)] = [Jf(x)e1 Jf(x)e2 · · · Jf(x)en]

= Jf(x) [e1 e2 · · · en]

= Jf(x)I

= Jf(x),

as expected. However, the analogous approach in the PC1 setting fails to reliably produce

an element of Clarke’s generalized Jacobian as desired.

Example 2.17. (Part a.) Consider the C1 mapping f : R2 → R : (x1, x2) 7→ x21 − x22,

which forms a saddle when visualized in R3 as seen in Figure 2.5. The Jacobian of this

function is easily computed directly:

Jf(x) =
[

∂f
∂x1

(x) ∂f
∂x2

(x)

]
=

[
2x1 −2x2

]
.
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Consider instead the directional derivative in the unit coordinate directions. Begin by

letting d1 = (1, 0) (i.e., the unit x1 direction). Then,

f ′(x,d1) = lim
α→0+

f(x+ α(1, 0))− f(x)

α

= lim
α→0+

f(x1 + α, x2)− f(x1, x2)

α

= lim
α→0+

[(x1 + α)2 − x22]− (x21 − x22)

α

= lim
α→0+

2x1α + α2

α

= 2x1.

Similar analysis with a choice of d2 = (0, 1) (i.e., the unit x2 direction) yields

f ′(x,d2) = −2x2.

Now, note that the Jacobian can be recovered by assembling these two unit-coordinate

directional derivatives in a matrix:[
f ′(x,d1) f ′(x,d2)

]
=

[
2x1 −2x2

]
= Jf(x),

as required, independent of the choice of x.

Figure 2.5: Function f , explored in Example 2.17, Part a.
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(Part b.) Now instead consider the related PC1 mapping

g : R2 → R : (x1, x2) 7→
∣∣x21 − x22

∣∣
(depicted in Figure 2.6a), which is nondifferentiable along the set

Zg = {(x1, x2) : x1 = x2} ∪ {(x1, x2) : x1 = −x2}.

This mapping has essentially active selection functions

Eg(x) ⊂ {x21 − x22,−(x21 − x22)} = {g1(x), g2(x)}.

At the point (1, 1) ∈ Zg, for example, we find that ∂Bg(1, 1) = {[2 − 2], [−2 2]}. In this

case, the Clarke Jacobian evaluates as

∂Cg(1, 1) = conv (∂Bg(1, 1)) =
{[

2λ −2λ

]
: λ ∈ [−1, 1]

}
.

Figure 2.6b illustrates the difficulty of attempting to recover an element of the Clarke

Jacobian using the directional derivative approach. In the unit coordinate direction (1, 0),

our function g behaves as the C1 essentially active selection function g1. Calculating the

(a) Function g. (b) A view of the domain of g. In the blue
regions, g mimics the behavior of selection
function g1; in red regions it instead mimics
selection function g2. At (1, 1), unit coordinate
vectors probe into different regions.

Figure 2.6: A depiction of the function explored in Example 2.17, Part b.
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Figure 2.7: In blue, a graphical depiction of ∂Cg(1, 1) calculated in Part b. of Example
2.17 with the Clarke Jacobian elements in R1×2 interpreted as an ordered pair. The object
constructed by assembling unit coordinate directional derivatives lies outside this set in red.

directional derivative, we find that

g′((1, 1); (1, 0)) = g′1((1, 1); (1, 0)) = 2.

Meanwhile, in the unit coordinate direction (0, 1), our function g behaves as the C1

essentially active selection function g2; calculating the appropriate directional derivative

here yields

g′((1, 1); (0, 1)) = 2,

as well. Thus, following a similar procedure as in Part a. above, we find that[
g′((1, 1); (1, 0)) g′((1, 1); (0, 1))

]
= [2 2] /∈ ∂Cg(1, 1).

The location of this object in relation to the Clarke Jacobian is depicted in Figure 2.7.

Ultimately, assembling the unit coordinate directional derivatives as is allowed in the C1

environment fails to yield even a generalized Jacobian object here.

Though this approach centered around directional derivatives may fail when applied

directly to the PC1 setting, we will shortly see their utility elsewhere. As a result of the

weaknesses outlined above, Clarke Jacobian elements are, plainly, difficult to calculate in

the case of complex or composite functions — and certainly in the setting of nonsmooth

dynamic models, which are the focus of this thesis. Yet, we have noted that these objects

are still desirable for the purposes of dedicated nonsmooth methods for equation-solving,
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for example. Ultimately, we seek an automatable and tractable method of calculating these

computationally relevant Clarke Jacobian elements. Recent developments by Khan and

Barton [32] in the topic of lexicographic differentiation pioneered by Nesterov [38] provide

a practically implementable such method.
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CHAPTER 3

LEXICOGRAPHIC SENSITIVITY FUNCTIONS FOR NONSMOOTH

ORDINARY DIFFERENTIAL EQUATIONS

Motivated by the shortcomings of trying to calculate Clarke Jacobian elements in a

straightforward and systematic way, we introduce the lexicographic derivative in this

chapter as an attractive alternative. This object possesses many traits which are desirable

in the search for computationally relevant generalized derivative (e.g., Clarke Jacobian)

elements including a sharp (equality-based) collection of calculus rules. Furthermore, these

objects can be extended into the theory of nonsmooth ordinary differential equations to

yield sensitivity theory analogous to the classical theory introduced in Section 2.2. We

start, however, with the relevant class of functions which allow this approach.

3.1 Lexicographically smooth functions and the lexicographic derivative

Lexicographic differentiation, first introduced by Nesterov in [38], is applicable to a

broad class of sufficiently-smooth functions referred to as “lexicographically smooth.”

Definition 3.1 (Lexicographically Smooth Functions). ([38]) Given an open set X ⊂ Rn

and a locally Lipschitz continuous function f : X → Rm, f is called lexicographically

smooth (L-smooth) at x ∈ X if it is directionally differentiable at x and if for any k ∈ N

and M = [m1 m2 . . . mk] ∈ Rn×k the following functions are well-defined:

f
(0)
x,M : Rn → Rm : d 7→ f ′(x;d),

f
(1)
x,M : Rn → Rm : d 7→ [f

(0)
x,M]′(m1;d),

f
(2)
x,M : Rn → Rm : d 7→ [f

(1)
x,M]′(m2;d),

...

f
(k)
x,M : Rn → Rm : d 7→ [f

(k−1)
x,M ]′(mk;d).
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The function f is then called L-smooth on X if it is L-smooth at each point x ∈ X.

Any function which is PC1, C1, convex, or a composition or integral of such functions is

necessarily L-smooth [32, 38]. Notably, the solution of any L-smooth system of ordinary

differential equations also inherits L-smoothness with respect to parameters [30]. In

addition, notice the reappearance of the directional derivative in these mappings; indeed,

the process above actually defines a chain of recursive directional derivatives. As with

classical directional derivatives, the mapping furnished at each step fundamentally depends

on the directions being “probed” (see, e.g., Example 2.17), which are represented by the

columns of the matrix M — for this reason, M is referred to as a directions matrix. If we

impose the additional constraint that M is full row rank (i.e., that the rows of M are

linearly independent), we gain the following result.

Proposition 3.2. ([38]) Given an open set X ⊂ Rn, an L-smooth function f : X → Rm,

and a full row rank matrix M ∈ Rn×k, the final mapping in the recursive directional

derivative process in Definition 3.1 (i.e., f (k)
x,M) is linear.

Roughly, the above result can be understood as follows: for any L-smooth function f ,

the domain over which f is nondifferentiable must be a set of Lebesgue measure zero by

Theorem 2.10. Thus, since M represents a collection of “probing” directions in the

n-dimensional domain space of f , the requirement of being full row rank guarantees that

this final recursive mapping probes away from any nonsmoothness which may be present.

This concept will be illustrated and expanded on in the following section (Example 3.8);

more immediately, the linearity of f (k)
x,M guaranteed by this proposition implies it is also C1,

and we are now prepared to introduce the lexicographic derivative.

Definition 3.3 (Lexicographic Derivative). ([38]) Given an open set X ⊂ Rn, an L-smooth

function f : X → Rm, and a full row rank matrix M ∈ Rn×k, the lexicographic

(L-)derivative of f at x is

JLf(x;M) = Jf (k)
x;M(0n) ∈ Rm×n.
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This object can be understood as the classical Jacobian of the necessarily linear

mapping f
(k)
x;M evaluated at 0n by convention (as the Jacobian of a linear function is

constant). However, as we have already noted, the mapping f
(k)
x;M (and hence the

L-derivative) is fundamentally influenced by the entries of M. Thus, it is feasible that

different acceptable choices of M yield different L-derivatives in general.

Definition 3.4 (Lexicographic Subdifferential). ([38]) Given an L-smooth function

f : Rn → Rm, the lexicographic (L-)subdifferential of f at x is given by

∂Lf(x) = {JLf(x;M) : k ∈ N,M ∈ Rn×k,M has full row rank},

and represents the set of all possible L-derivatives.

This subdifferential is necessarily nonempty and moreover is a non-singleton set when

evaluated at a point in the function’s domain of nondifferentiability. In general, elements of

the L-subdifferential are closely related to elements of the Clarke Jacobian.

Proposition 3.5. ([30, 32]) Given an open set X ⊂ Rn and an L-smooth function

f : X → Rm, L-derivatives of f are indistinguishable from Clarke Jacobian elements in

matrix-vector products; i.e.,

{Ad : A ∈ ∂Lf(x),d ∈ Rn} ⊂ {Ad : A ∈ ∂Cf(x),d ∈ Rn}.

If f satisfies the stronger requirement of being PC1, then we find that

∂Lf(x) ⊂ ∂Bf(x) ⊂ ∂Cf(x).

As we have discussed previously, Clarke Jacobian elements are useful tools in dedicated

nonsmooth methods. Such methods, however, typically only employ generalized derivatives

in the context of matrix-vector products or scalar-valued functions, implying any single

L-derivative or element of the Clarke Jacobian is sufficient for convergence whenever such

an outcome is possible. Lexicographic derivatives are therefore highly computationally

relevant and desirable in, e.g., numerical methods; unlike the Clarke Jacobian, however,
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L-derivatives possess a closely-related tool which allows accurate and automatable

calculation.

3.2 Computation of lexicographic derivatives

Recall the recursive chain of directional derivatives used to define the concept of

L-smoothness in Definition 3.1. We have defined the L-derivative as the Jacobian of the

final (linear) mapping produced by this process, and seek an automatable method of

calculating this object in general. Khan and Barton have presented such a method in [32],

which is constructed from the intermediate directional derivatives of the recursive process.

Definition 3.6 (Lexicographic Directional Derivative). ([32]) Given an open set X ⊂ Rn,

a function f : X → Rm which is L-smooth at x ∈ X, and a matrix

M = [m1 m2 . . . mk] ∈ Rn×k, the lexicographic directional (LD-)derivative of f at x

in the directions given by M is

f ′(x;M) =

[
f

(0)
x,M(m1) f

(1)
x,M(m2) . . . f

(k−1)
x,M (mk)

]
.

LD-derivatives generalize the classical directional derivative in order to provide

first-order generalized derivative information about f near x using the series of directions

specified by the columns of M. In the case where k = 1, note that M is in fact a column

vector and f ′(x;M) = f
(0)
x,M(m1) = f ′(x;m1); hence, if k = 1 then the LD-derivative

recovers the classical directional derivative. Furthermore, a general relationship between

LD- and L-derivatives (analogous to Equation (2.10)) is found in the L-smooth case.

Theorem 3.7 (Relation of LD- and L-Derivatives). ([32]) Given an open set X ⊂ Rn, a

function f : X → Rm which is L-smooth at x ∈ X, and a full row rank matrix

M =

[
m1 m2 . . . mk

]
∈ Rn×k, then

f ′(x;M) = JLf(x;M)M,

or equivalently,

JLf(x;M) = f ′(x;M)M−1.
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This theorem establishes the LD-derivative as a desirable object since a corresponding

L-derivative can be easily calculated using one whenever the directions matrix is full row

rank (and hence right-invertible). Often, it is convenient to choose M = In (i.e., the n by n

identity matrix) since in this case M−1 = M; as a result, any LD-derivative furnished with

this choice is also an L-derivative. Separately, if f satisfies the stronger requirement of

being C1, we find that the theorem specializes as

f ′(x;M) = Jf(x)M (3.1)

by Proposition 3.5 applied in conjunction with the relation in Equation (2.9).

Example 3.8. Recall the PC1 (and hence L-smooth) function explored in Example 2.17,

Part b:

g : R2 → R : (x1, x2) 7→
∣∣x21 − x22

∣∣ ,
which has the set of nondifferentiability

Zg = {(x1, x2) : x1 = x2} ∪ {(x1, x2) : x1 = −x2}

and essentially active selection functions

Eg(x) ⊂ {x21 − x22,−(x21 − x22)} = {g1(x), g2(x)}.

Consider the point x0 = (1, 1) ∈ Zg and the full row rank directions matrix M = I2 ∈ R2×2.

We aim to find an L-derivative of this function by first finding an LD-derivative; as

Definition 3.6 would suggest, we first need to calculate the first two recursive directional

derivatives of g.

The first directional derivative of g at x0 is calculated as

f
(0)
x0,M(d1, d2) = lim

α→0+

g(x0 + α(d1, d2))− g(x0)

α

= lim
α→0+

|(1 + αd1)
2 − (1 + αd2)

2| − |12 − 12|
α

= lim
α→0+

|1 + 2αd1 + α2d21 − 1− 2αd2 − α2d22|
α

28



= lim
α→0+

|2αd1 + α2d21 − 2αd2 − α2d22|
α

= lim
α→0+

|2d1 + αd21 − 2d2 − αd22|

= |2d1 − 2d2|,

where the penultimate equality holds by virtue of α being greater than zero (by definition).

In the direction (1, 0) given by the first column m1 of the directions matrix M, we find that

f
(0)
x0,M(m1) = 2.

The next directional derivative mapping has the effect of being “smoothed,” as

f
(0)
x0,M(d1, d2) is smooth in the direction (1, 0) (see Figure 3.1a) and the directional

derivative process is applied recursively. In effect,

f
(1)
x0,M(d1, d2) = [f

(0)
x0,M]′(m1; (d1, d2))

= lim
α→0+

|2(1 + αd1)− 2(0 + αd2)| − |2− 0|
α

= lim
α→0+

|2 + 2αd1 − 2αd2| − 2

α
.

Now since α → 0+, the number 2 is the dominating term within the argument of the

absolute value function and a positive result is yielded in the limit. Hence,

f
(1)
x0,M(d1, d2) = lim

α→0+

2 + 2αd1 − 2αd2 − 2

α

= 2d1 − 2d2.

With this information, we may calculate

f
(1)
x0,M(m2) = −2,

where m2 = (0, 1) is the second column of the directions matrix M here. All together, we

may assemble the LD-derivative of f at x0 in directions given by M:

f ′(x0;M) =

[
f

(0)
x,M(m1) f

(1)
x,M(m2)

]
=

[
2 −2

]
.
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(a) (b)

Figure 3.1: A conceptual view of the probing processes defined by directions matrices M = I2
and

[
1 1
1 1

]
, respectively.

Finally, from the LD-derivative, we may use the inverse of M = I to furnish an L-derivative:

JLf(x0;M) =

[
2 −2

]
I−1 =

[
2 −2

]
∈ ∂Cf(x0).

This L-derivative is indeed an element of the Clarke Jacobian since g itself is PC1, as

Proposition 3.5 would suggest.

Notice, however, that a poor choice of directions matrix need not furnish an

L-derivative. Consider the same computation with a choice of M =

1 1

1 1

, which is not

full row rank. The first directional derivative is again calculated as

f
(0)
x0,M(d1, d2) = |2d1 − 2d2|.

However, this mapping exhibits nonsmoothness in the direction (1, 1) given by the first

column of the directions matrix. Thus, we probe along the line of nondifferentiability

x1 = x2, and the “smoothing” effect exhibited before does not occur (Figure 3.1b). Thus,
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the next directional derivative evaluates as the same function:

f
(1)
x0,M(d1, d2) = [f

(0)
x0,M]′(m1; (d1, d2))

= lim
α→0+

|2(1 + αd1)− 2(1 + αd2)| − |2− 2|
α

= lim
α→0+

|2αd1 − 2αd2|
α

= |2d1 − 2d2|.

Again, no further information is gained by probing in the direction (1, 1) given by the

second column of our directions matrix, as we fail to probe away from the set of

nondifferentiability and directional derivatives remain nonsmooth. Therefore, we may not

use the information supplied by this probing matrix to furnish an L-derivative.

Keeping our original goal in mind — namely, the automatable calculation of generalized

derivative elements — we now note that LD-derivatives satisfy a long list of attractive

sharp calculus rules. These rules do indeed allow automatable LD-derivative computation,

and subsequent utilization of Theorem 3.7 in turn yields an L-derivative (i.e., a generalized

derivative object lying in or near the Clarke Jacobian).

Proposition 3.9. ([32]) Consider some open sets X ⊂ Rn, Y ⊂ Rq and functions

f , g : X → Rm, h : Y → X which are L-smooth on X and Y , respectively. Given any

directions matrix M ∈ Rn×k, the following calculus rules for LD-derivatives are satisfied:

f ′(x;M) = (f ′
1(x;M), f ′

2(x;M), . . . , f ′
n(x;M)),

[f + g]′(x;M) = f ′(x;M) + g′(x;M),

[fg]′(x;M) = g(x)f ′(x;M) + f(x)g′(x;M),

[f ◦ h]′(x,M) = f ′(g(x); g′(x;M)).

The sharp calculus rules outlined above allow for practical use in numerical methods;

for example, dedicated nonsmooth automatic differentiation methods employing the

LD-derivative have already been developed [29, 32]. These calculus rules may also be used
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to develop of a library of LD-derivative rules for common elemental nonsmooth functions.

An example of such a function is the maximum function, which can be extended to

matrix-valued inputs by using so-called lexicographic ordering to compare the matrices at

hand.

Definition 3.10 (Lexicographic Ordering). For any two vectors a, b ∈ Rk, we say that a is

lexicographically less than b if ai < bi for the first index i ∈ {1, 2, . . . , k} such that ai 6= bi

and write a ≺ b. We instead say a is lexicographically greater than b if ai > bi for the first

index i ∈ {1, 2, . . . , k} such that ai 6= bi and write a � b. The relational operators � and �

are used similarly whenever equality of a and b is possible.

Remark 3.11. The term “lexicographic” is used to describe this style of ordering due to

the conventional hierarchy of the elements of a vector (e.g., there is a “first element,” then

a “second element,” etc.). The vectors at hand (whether column or row vectors) are

compared element-wise with the highest level of importance given to the first elements in

the vectors; comparison moves to the second elements only if the first comparison resulted

in a tie and so on. As an example,

[4 1 3] ≺ [4 7 0],

but

[4 1 3] � [4 0 7].

This compares to alphabetical ordering; within a lexicon (the collection of words

comprising a language), a similar approach is used letter-wise in order to alphabetize a list

of distinct words.

We are now equipped to extend the classical scalar-valued “max” function to a

matrix-valued analog. This new function, the “lexicographic maximum,” takes in matrices

of identical dimension and compares them row-by-row. In each comparison, the row which

is lexicographically greatest is selected, and the result is a matrix consisting of these
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selected rows; e.g.,

lmax


1 2 3

4 5 6

 ,
0 5 9

4 7 9


 =

1 2 3

4 7 9

 .
The “shifted lexicographic maximum” function is defined as the left shift of the lmax

function:

slmax


1 2 3

4 5 6

 ,
0 5 9

4 7 9


 =

2 3

7 9

 .
Proposition 3.12. ([47]) Let X ⊂ Rn and Y ⊂ Rm be open sets and f : X × Y → Rv and

g : X × Y → Rv be C1 at (x,y) ∈ X × Y . Given directions matrix

M = (X,Y) ∈ R(n+m)×k,

[max ◦ (f , g)]′(x,y; (X,Y))

= slmax
([

f(x,y) Jxf · X + Jyf · Y
]
,

[
g(x,y) Jxg · X + Jyg · Y

])
∈ Rv×k,

(3.2)

where the partial Jacobian matrices are evaluated at (x,y).

The slmin function is defined similarly as the LD-derivative of the lexicographic

minimum function of two vector-valued arguments. An analogous rule for the lexicographic

mid function can be derived.

The lexicographic mid function returns the (row-by-row) median of its three

matrix-valued arguments; e.g.,

lmid


1 2 3

4 5 6

 ,
0 5 9

4 7 9

 ,
6 2 5

4 7 3


 =

1 2 3

4 7 3

 .
We continue by constructing the lexicographic mid function as a composition of the

matrix-valued max and min functions1 .

Lemma 3.13. For any A,B,C ∈ Rn×m, it holds that

lmid(A,B,C) = lmax
(

lmin(A,B), lmin
(

lmax(A,B),C
))

.

1This lemma and its proof correct an error in Lemma 2.1 in [1].
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Moreover,

slmid(A,B,C) = slmax
(

lmin(A,B), lmin
(

lmax(A,B),C
))

.

Proof. Since the lexicographic functions operate row-wise, we proceed by showing the

identities hold for an arbitrary row of A,B,C; denote these rows a, b, c, respectively. It is

straightforward to simply consider the six possible cases.

1. If a � b � c, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
a, lmin(b, c)

)
= lmax(a, b) = b,

and thus this composition returns the lexicographic median of the vectors as

expected.

2. If instead a � c � b, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
a, lmin(b, c)

)
= lmax(a, c) = c,

as expected;

3. if b � a � c, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
b, lmin(a, c)

)
= lmax(b,a) = a,

as expected;

4. if b � c � a, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
b, lmin(a, c)

)
= lmax(b, c) = c,

as expected;

5. if c � a � b, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
a, lmin(b, c)

)
= lmax(a, c) = a,

as expected;
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6. and finally, if c � b � a, then

lmax
(

lmin(a, b), lmin
(

lmax(a, b), c
))

= lmax
(
b, lmin(a, c)

)
= lmax(b, c) = b,

as expected.

Since the composition at hand returns the lexicographic median in each possible case, the

first statement of the lemma holds in general. The lemma’s second conclusion follows

immediately after a left-shift of both sides.

Proposition 3.14. Let X ⊂ Rn, Y ⊂ Rm, and Z ⊂ Rp be open sets and functions

f : X × Y × Z → Rv, g : X × Y × Z → Rv, and h : X × Y × Z → Rv be C1 at

(x,y, z) ∈ X × Y × Z. Given the choice of directions matrix M = (X,Y,Z) ∈ R(n+m+p)×k,

[mid ◦ (f , g,h)]′(x,y, z; (X,Y,Z))

= slmid
([

f(x,y, z) Jxf · X + Jyf · Y + Jzf · Z
]
,[

g(x,y, z) Jxg · X + Jyg · Y + Jzg · Z
]
,[

h(x,y, z) Jxh · X + Jyh · Y + Jzh · Z
])

∈ Rv×k,

with partial Jacobian matrices evaluated at (x,y, z).

Proof. We start by employing Lemma 3.13 with a choice of A = f(x,y, z) ∈ Rv×1,

B = g(x,y, z) ∈ Rv×1, and C = h(x,y, z) ∈ Rv×1. Since each argument is a column

vector, the result of Lemma 3.13 simplifies as

[mid ◦ (f , g,h)](x,y, z) = max
(

min(f , g),min
(

max(f , g),h
))

,

with f , g,h each evaluated at (x,y, z). (The arguments of f , g,h are omitted as needed

throughout this proof; however, these functions are always evaluated at (x,y, z).) Define
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the mappings

Ψ : X × Y × Z → Rv : (x,y, z) 7→ min(f(x,y, z), g(x,y, z)),

ζ : X × Y × Z → Rv : (x,y, z) 7→ max(f(x,y, z), g(x,y, z)),

λ : X × Y × Z → Rv : (x,y, z) 7→ min(ζ(x,y, z),h(x,y, z)),

Γ : X × Y × Z → R2v : (x,y, z) 7→ (Ψ(x,y, z), λ(x,y, z)).

Then, by the LD-derivative chain rule described in Proposition 3.9,

[mid ◦ (f , g,h)]′(x,y, z; (X,Y,Z)) = [max ◦ (Ψ, λ)]′(x,y, z; (X,Y,Z)),

= max′(Γ(x,y, z),Γ′(x,y, z; (X,Y,Z)).
(3.3)

We note that the LD-derivative mapping Γ′(x,y, z; (X,Y,Z)) can be found

component-wise based on the first rule outlined in Proposition 3.9:

Γ′(x,y, z; (X,Y,Z)) =

Ψ′(x,y, z; (X,Y,Z))

λ′(x,y, z; (X,Y,Z))

 ,
=

[min ◦ (f , g)]′(x,y, z; (X,Y,Z))

λ′(x,y, z; (X,Y,Z))

 ,
=

slmin
([

f Jf ·
[
X
Y
Z

]]
,

[
g Jg ·

[
X
Y
Z

]])
λ′(x,y, z; (X,Y,Z))

 ,

=

slmin
([

f Jf · M
]
,

[
g Jg · M

])
λ′(x,y, z; (X,Y,Z))

 .

(3.4)

Now notice that using a similar process, we have

λ′(x,y, z; (X,Y,Z)) = [min ◦ (ζ,h)]′(x,y, z; (X,Y,Z)),

= min′


ζ(x,y, z)
h(x,y, z)

 ;

ζ ′(x,y, z; (X,Y,Z))
h′(x,y, z; (X,Y,Z))



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by a second application of the LD-derivative chain rule, whereζ ′(x,y, z; (X,Y,Z))
h′(x,y, z; (X,Y,Z))

 =

[max ◦ (f , g)]′(x,y, z; (X,Y,Z))

Jh ·
[
X
Y
Z

]
 ,

=

slmax
([

f Jf ·
[
X
Y
Z

]]
,

[
g Jg ·

[
X
Y
Z

]])
Jh ·

[
X
Y
Z

]
 ,

=

slmax
([

f Jf · M
]
,

[
g Jg · M

])
Jh · M


after component-wise calculation. Thus,

λ′(x,y, z; (X,Y,Z)) = [min ◦ (ζ,h)]′(x,y, z; (X,Y,Z)),

= min′


[max ◦ (f , g)](x,y, z)

h(x,y, z)

 ;

slmax
([

f Jf · M
]
,

[
g Jg · M

])
Jh · M


 ,

= slmin
([

[max ◦ (f , g)] slmax
([

f Jf · M
]
,

[
g Jg · M

])]
,

[
h Jh · M

])
,

= slmin
(

lmax
([

f Jf · M
]
,

[
g Jg · M

])
,

[
h Jh · M

])
.

Now substitution of this result into Equation (3.4) gives

Γ′(x,y, z; (X,Y,Z)) =

 slmin
([

f Jf · M
]
,

[
g Jg · M

])
slmin

(
lmax

([
f Jf · M

]
,

[
g Jg · M

])
,

[
h Jh · M

])
 ,

and subsequent substitution to Equation (3.3) yields

[mid ◦ (f , g,h)]′(x,y, z; (X,Y,Z)) = max′(Γ(x,y, z),Γ′(x,y, z; (X,Y,Z)),

= slmax


 [min ◦ (f , g)]

min ◦ ([max ◦ (f , g)],h])

 ;

 slmin
([

f Jf · M
]
,
[
g Jg · M

])
slmin

(
lmax

([
f Jf · M

]
,
[
g Jg · M

])
,
[
h Jh · M

])

 ,

= slmax
([

lmin
([

f Jf · M
]
,
[
g Jg · M

])
, lmin

(
lmax

([
f Jf · M

]
,
[
g Jg · M

])
,
[
h Jh · M

])])
.
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Lastly, by Lemma 3.13 with matrices A = [f(x,y, z) Jf · M], B = [g(x,y, z) Jg · M]

and C = [h(x,y, z) Jh · M],

[mid ◦ (f , g,h)]′(x,y, z; (X,Y,Z))

= slmid
([

f(x,y, z) Jxf · X + Jyf · Y + Jzf · Z
]
,[

g(x,y, z) Jxg · X + Jyg · Y + Jzg · Z
]
,[

h(x,y, z) Jxh · X + Jyh · Y + Jzh · Z
])

,

where the omitted arguments of Jacobian and partial Jacobian matrices are (x,y, z).

3.3 Generalized sensitivity analysis of nonsmooth ordinary differential

equations

We now move to the applications of lexicographic theory in nonsmooth differential

equations. A lexicographic approach to systems of ODEs whose right-hand-side functions

are only L-smooth has yielded sensitivity theory [30] analogous to the classical case

discussed in Section 2.2.

Recall the general form of a parametric IVP:

ẋ(t,p) = f(t,p,x(t,p)),

x(t0,p) = f0(p),

(3.5)

where x = (x1, x2, . . . , xn) denotes the vector of state variables, p = (p1, p2, . . . , pq) denotes

the vector of problem parameters, f : Dt ×Dp ×Dx → Rm, and f0 : Dp → Dx, where

Dt ⊂ R, Dp ⊂ Rq, and Dx ⊂ Rn are open sets and t0 ∈ Dt, p∗ ∈ Dp. Rather than the

continuous differentiability of f , f0 required in classical theory, we proceed with the

following assumptions.

Assumption 3.15. Suppose that f : Dt ×Dp ×Dx → Rm and f0 : Dp → Dx are

L-smooth on their respective domains.
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The result of Theorem 2.2 (i.e., existence and uniqueness of a solution) extends to those

IVPs whose right-hand side functions f , f0 are only locally Lipschitz continuous (see, e.g.,

[25]), and thus includes the case where they are L-smooth on their respective domains.

However, the C1 dependence of solutions x(t,p) with respect to p is no longer guaranteed,

inviting the application of lexicographic theory instead.

Theorem 3.16 (L-Smooth Dependence on Parameters). (Adapted from [30]). Suppose

Assumption 3.15 holds. Then there exist ϵ, δ > 0 such that the initial value problem (3.5)

has a unique solution x(t,p) on [t0, t0 + δ] for each fixed p ∈ Nϵ(p
∗), and x(t,p) is

L-smooth with respect to p on Nϵ(p
∗) for each fixed t ∈ [t0, t0 + δ].

Roughly, the result of this theorem implies that solutions to L-smooth ODEs inherit the

property of being L-smooth with respect to parameters, motivating the definition of the

objects which form the foundation of this thesis.

Definition 3.17 (Lexicographic Sensitivity Functions). The lexicographic

(forward-parametric) sensitivity functions associated with a solution x(t,p) of the IVP

(3.5) on T , if they exist, are

Sx(t) = JL[x(t,p)](p
∗;M) ∈ Rn×q, (3.6)

where p∗ ∈ Rq denotes some chosen reference parameters and M ∈ Rn×k is full row rank.

As noted in Section 3.1, lexicographic derivatives characterize generalized first-order

derivative information around a point of interest; therefore, we may use them in place of

the classical sensitivity functions when nondifferentiability is present in the right-hand side

of (3.5). In general, we may calculate the lexicographic sensitivity functions using

corresponding LD-derivative objects.

Definition 3.18 (LD-Sensitivity Functions). The LD-sensitivity functions associated with

a solution x(t,p) of the IVP (3.5) on T , if they exist, are

X(t) = [x(t,p)]′(p∗;M) ∈ Rn×k (3.7)
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where p∗ ∈ Rq denotes some chosen reference parameters.

The LD-sensitivity functions are at least absolutely continuous when they exist [30].

Definition 3.19 (Absolute Continuity). Given a connected set X ⊂ R, a function

f : X → Rm is called absolutely continuous on X if for every compact subinterval X̄ ⊂ X

and every ϵ > 0 there exists some δ > 0 such that for each finite sequence of pairwise

disjoint subintervals {[ai, bi] : i = 1, . . . , q, q ∈ N} of X̄ satisfying
∑q

i=1(bi − ai) < δ then∑q
i=1 |f(bi)− f(ai)| < ϵ.

Assumption 3.20. Let tf > t0 and suppose there exists a unique solution of the IVP (3.5)

on [t0, tf ] ⊂ Dt.

Theorem 3.21 (Existence and Calculation of the LD-Sensitivity Functions). (Adapted

from [30].) Suppose that Assumptions 3.15 and 3.20 hold. Given any matrix M ∈ Rn×k,

the LD-sensitivity functions (3.7) exist, are absolutely continuous, and are the unique

solution of the LD-sensitivity system

Ẋ(t) = [ft]
′(p∗,x(t,p∗); (M,X(t))),

X(t0) = f ′
0(p

∗;M).

(3.8)

on the time horizon [t0, tf ] where ft : (p,x) 7→ f(t,p,x).

If M satisfies the stronger condition of being full row rank, then we may use Theorem

3.7 to generate an L-derivative object (for fixed t on the relevant horizon) instead.

Theorem 3.22 (Existence and Calculation of the Lexicographic Sensitivity Functions).

(Adapted from [30].) Suppose Assumption 3.15 holds and suppose that M ∈ Rn×k is full row

rank. Then, in addition to the conclusions of Theorem 3.16, the LD-sensitivity functions

(3.7) and lexicographic sensitivity functions (3.6) exist; furthermore, for some fixed t on the

time horizon [t0, tf ], the lexicographic sensitivity functions (3.6) may be calculated as

Sx(t) = X(t)M−1 ∈ Rn×q.
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We emphasize that lexicographic derivatives are Jacobian-like in nature and lie in or

near the Clarke Jacobian when participating functions are at least L-smooth (recall

Proposition 3.5); therefore, they characterize local first-order sensitivity information much

in the way that classical sensitivity functions do. Furthermore, if we find that f , f0 are in

fact C1 on their domains and the choice of M = In is made, then the classical sensitivity

functions are recovered since

JL[x(t,p)](p
∗; I) = X(t)I−1 = [x(t,p)]′(p∗; I) = Jpx(t,p

∗) =
∂x

∂p
(t,p∗)

in that case by Equation 3.1.

Example 3.23. Consider the following nonsmooth IVP with parameters p = (p1, p2):

ẋ(t,p) = |x(t,p)|+ p1,

x(0,p) = p2.

(3.9)

Notice that this is the same system given in Example 2.8 with the exception that the term

x(t,p) appearing on the right-hand side is now composed with the absolute value function.

Sample solutions to this system are given in Figure 3.2, while differences in the long term

behavior of the system for different choices of p are depicted in Figure 3.3.
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Figure 3.2: Solutions of the system (3.9) with differing choices of reference parameter p∗. In
black, p∗ = (0,−1); in blue, p∗ = (1, 1); and in red, p∗ = (1, 2).
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Figure 3.3: Varying behavior in solutions to (3.9) for different choices of p at different fixed
times. At top-left, t = 0 and solutions take the form of the x = p2 plane. At top-right,
t = 1 and solutions begin to diverge, with a nonsmooth crease apparent near the origin. At
bottom, by t = 3, solutions have diverged greatly and the crease is more prominent.

Given directions matrix M = [M1 M2 · · · Mk] ∈ R1×k, the LD-derivative of the

absolute value function is [8, 32]:

abs′(x;M) = fsign(x,M1, . . . ,Mk)M ∈ R1×k, (3.10)

where the fsign function returns the sign of its first non-zero entry (or zero otherwise).

Given this rule, we can calculate the LD-sensitivity system (i.e., Equation (3.8))

corresponding to the L-smooth IVP (3.9) as

Ẋp1(t) = fsign (0, Xp1(t), Xp2(t))Xp1(t) + P1,1, Xp1(0) = P2,1,

Ẋp2(t) = fsign (0, Xp1(t), Xp2(t))Xp2(t) + P1,2, Xp2(0) = P2,2,

(3.11)
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where the directions matrix is given by

M =

P1

P2

 =

P1,1 P1,2

P2,1 P2,2

 ∈ R2×2.

If we choose M = I2, then the system takes the form

Ẋp1(t) = fsign (0, Xp1(t), Xp2(t))Xp1(t) + 1, Xp1(0) = 0,

Ẋp2(t) = fsign (0, Xp1(t), Xp2(t))Xp2(t), Xp2(0) = 1.

Note that by inspection the unique solution to this system may be expressed as

X(t) = [Xp1(t) Xp2(t)] = [et − 1 et].

Recall Theorem 3.22. After right-multiplication of the inverse of the directions matrix, the

lexicographic sensitivity functions (i.e., Equation (3.6)) are furnished:

Sx(t) = JL[x(t,p)](p
∗; I2) = X(t)I−1

2 =

[
et − 1 et

]
,

which is computationally relevant sensitivity information. Indeed, this choice of directions

matrix actually recovers the result from Example (2.8).

A unique trait of lexicographic sensitivity theory as opposed to classical theory,

however, is that different lexicographic sensitivity functions (i.e., L-derivatives) may be

furnished under different choices of directions matrix M. Say, for example, that we instead

chose M =
[

0 −1
−1 0

]
. In that case, Equation (3.11) simplifies to the system

Ẋp1(t) = fsign (0, Xp1(t), Xp2(t))Xp1(t), Xp1(0) = −1,

Ẋp2(t) = fsign (0, Xp1(t), Xp2(t))Xp2(t)− 1, Xp2(0) = 0,

which admits the unique solution X(t) = [Xp1(t) Xp1(t)] = [−e−t e−t − 1]. As before, we

may furnish the corresponding lexicographic sensitivity functions by right-multiplication of

M−1 (which, in this case, is identical to M):

Sx(t) = JL[x(t, ·)]

p∗;

 0 −1

−1 0


 = X(t)

 0 −1

−1 0


−1

=

[
−e−t + 1 e−t

]
.
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Both classical and lexicographic sensitivity functions may also be normalized in order to

more easily compare the predicted effects of different parameters; examples and

applications of such normalization are discussed in Chapters 4 and 5.
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CHAPTER 4

QUANTIFYING PARAMETRIC SENSITIVITIES OF A NONSMOOTH

MODEL OF GLUCOSE-INSULIN INTERPLAY

The contents, figures, and tables appearing in this chapter are based on [1]. Within this

chapter, we demonstrate the utility of the lexicographic sensitivity functions explored in

Section 3.3 on a commonly-referenced nonsmooth model describing the dynamic

interaction between glucose and insulin in the body.

4.1 Model background

Glucose is a type of carbohydrate, and is in fact the most abundant monosaccharide

(i.e., “simple sugar”) found in nature [20]. The human body uses glucose as its primary

source of energy production [15], with a non-trivial baseline concentration being circulated

through the bloodstream at all times (i.e., “blood sugar”) and reserves of the saccharide

being stored in muscle and adipose (fat) cells throughout the body. The ability of the body

to maintain its healthy baseline concentration of glucose, or return to such a concentration

after a sudden influx, is referred to as glucose homeostasis.

In the ideal case, the body employs two key hormones in the quest of maintaining

homeostasis: glucagon, which is produced and released by pancreatic alpha (α-)cells to

stimulate glucose release from cell reserves, and insulin, which is produced and released by

pancreatic beta (β-)cells to stimulate glucose uptake from the bloodstream into cell

reserves. Over time, as blood-glucose concentration varies naturally due to use, decay, and

influx from food digestion, these two hormones cooperate to minimize deviation from the

baseline concentration.

The failure of the body to maintain homeostasis can have serious consequences. If

glucose concentration in the bloodstream drops too low (hypoglycemia), subjects may

experience serious symptoms such as fainting, vomiting, slurred speech, confusion, or heart

45



palpitations; in extreme cases, the brain is effectively starved of energy, causing brain death

[6]. If instead blood glucose remains too high (hyperglycemia), subjects may experience

symptoms such as blurred vision, fatigue, and excessive thirst, though more serious

complications can occur if levels remain elevated long-term [5]. As a result of these

potential issues, homeostasis is an essential physiological process. Moving forward, we

primarily concern ourselves with the body’s ability to return to homeostasis after a glucose

influx (e.g., a meal), and as a result turn our attention to glucose-insulin kinetics in

particular.

There are two common bodily failures which cause an inadequate insulin response to an

influx of glucose, referred to as type 1 and type 2 diabetes mellitus (“diabetes”). Type 1

diabetes is an autoimmune disease typically identified in early life which results in the

destruction of the pancreatic β-cells; consequently, the body is unable to secrete its own

insulin. The exact cause of the disease is unknown [3]. Type 2 diabetes often manifests

later in life and the risk factors associated with it are better understood; essentially, the

body is unable to absorb a sufficient amount of glucose from the bloodstream (often due to

a developed insensitivity to insulin or insufficient insulin production). Both types are

presently incurable, though well-timed insulin injections can induce homeostasis in the

short-term and alleviate symptoms [3].

The Intravenous Glucose Tolerance Test (IVGTT) was first used in 1941 as a

standardized method of measuring glucose and insulin interactions in the body [34]. Test

subjects fast for one night, and then are injected with a bolus of glucose whose size is

proportional to the subjects’ weight. Intravenous blood samples are taken periodically over

a predetermined time horizon (most generally, 1-3 hours; see, e.g., [11, 19, 49]) so glucose

and insulin concentrations in the subjects’ bloodstream may be measured. Due to its

relative simplicity, the test remains a feasible option in the modern day, with advantages

such as decreased variance in results over similar tests such as the Oral Glucose Tolerance

Test (where oral glucose intake invites error from gastrointestinal factors which may vary
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subject-to-subject). Furthermore, a subject’s results may be compared to others’ at the

population level to predict or detect patterns associated with diabetes.

The “minimal model” of the IVGTT was developed out of a desire to replicate the

typical results of an IVGTT test subject with as few parameters as possible. The model

was first published in 1979 by Bergman et al. [11], and was shown to be the most accurate

of several variations studied. One year later, the model was improved and published under

the same name in [49]. While the model is minimalistic in nature (as the name would

suggest), it has been shown to yield a reasonable approximation of the biology at hand and

has been studied extensively [48].

In its original formulation, meant to model a healthy (non-diabetic) individual,

nonsmoothness arises from a desire to model the natural pancreatic process: below a

threshold blood-glucose concentration, pancreatic β−cells remain inactive, but they

suddenly begin secreting insulin once the biochemical threshold is crossed. A max function

is used to model this switch in behavior, and points of nondifferentiability are introduced

as a result. A slight variation on the minimal model employed by many other authors is

also studied here to give insight into the case where the subject is afflicted with type 1

diabetes [9, 14, 22]. In the case of a healthy individual, glucose is introduced to the

bloodstream from the intestine at a negligible rate due to the required fast; if the subject is

instead diabetic, the rate of this exogenous introduction of glucose becomes non-negligible.

The model variation studied here incorporates an additional exponential term to describe

this difference. Furthermore, the failures in the insulin subsystem of type 1 diabetics mean

that pancreatic insulin secretion is practically nonexistent in this case [14]. Therefore, a

model input is considered which describes insulin secretion from an external (wearable)

device. Two different profiles are explored in detail here: one following a nonsmooth

sigmoidal pattern with abrupt on and off features, and another which describes secretion at

a progressively (exponentially) decreasing rate.
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We will proceed by introducing the model itself and describing its physical

interpretation. Since the presence of nonsmoothness in this model invalidates the classical

approach, we will then turn to the lexicographic theory outlined in Section 3.3 in order to

perform a sensitivity analysis of the system and describe its qualitative dependence on

parameters.

4.2 Model formulation for healthy subjects

The minimal model itself is an ODE system containing ten problem parameters. The

state variables described by the model are G(t), the glucose concentration in a subject’s

bloodstream in units (mg/dL), I(t), the insulin concentration in a subject’s bloodstream in

(µU/mL), and X(t), which describes the net effect of insulin on glucose disappearance with

units (1/min). These variables are related as follows [11]:

Ġ = −p2(G− p9)−GX, G(0) = p1,

Ẋ = −p3X + p4(I − p10), X(0) = 0,

İ = u− p7(I − p10), I(0) = p8 + p10,

(4.1)

where the arguments of the independent variable t are suppressed for readability and the

present right-hand side functions are notably PC1 (and hence L-smooth). The physical

interpretation and reference value p∗i of each model parameter is given in Table 4.1, sourced

from [1]. It should be noted that reference values for each parameter can vary widely from

subject to subject; the values selected for our simulations were originally meant to model

an “average” person and were sourced from [4, 19]. These choices were also previously

shown to give reasonable results in a study done by Munir [37].
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Parameters

pi Units Description [37] p∗i [4, 19]

p1 mg/dL “Theoretical glucose concentration in plasma

at time t = 0;” i.e., post-injection glucose

concentration

291.2

p2 min−1 “Rate constant of insulin-independent

glucose uptake in muscles and adipose

tissue”

0.0317

p3 min−1 “Rate constant for decrease in tissue glucose

uptake ability”

0.0123

p4 min−2(µU/mL)−1 “Rate constant for the insulin-dependent

increase in glucose uptake ability in tissue

per unit of insulin concentration above p10”

4.92× 10−6

p5
(

µU
mL∗min2

)
1

(mg/dL) “Rate constant for insulin secretion by

the pancreatic β-cells after the glucose

injection and with glucose concentration

above threshold value p6”

0.0039

p6 mg/dL “Threshold value of glucose in plasma above

which the pancreatic β-cells secrete insulin”

79.0353

p7 min−1 “First order decay rate for insulin in plasma” 0.2659

p8 µU/mL “p8 + p10 is the theoretical insulin

concentration in plasma at time t = 0”

357.8

p9 mg/dL “Baseline pre-injection level of glucose” 60

p10 µU/mL “Baseline pre-injection level of insulin” 7

Table 4.1: Parameters in (4.1) are labeled and described above. Note that p∗i represents a

reference parameter [1].
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While X plays an important internal role in modeling the interactivity of glucose and

insulin, we will proceed in our analysis with most emphasis placed on the state variables G

and I, which possess a more obvious physical interpretation in general. Indeed, even the

individual terms present in the equations for Ġ, İ are easily interpreted in a biological

manner: for example, since p9 represents the basal (pre-injection) glucose concentration,

(G− p9) represents the amount of excess glucose in a subject’s bloodstream at time t.

Since p2 describes the constant rate at which glucose is removed from the bloodstream

from insulin-independent means, we may then conclude that the term −p2(G− p9)

represents the rate at which excess glucose is removed from the bloodstream by means

outside of insulin itself. The term GX, on the other hand, represents the rate at which

glucose is removed from the bloodstream as a direct result of insulin interaction.

On the right-hand side of the equation for İ, we notice similarly that the term

−p7(I − p10) represents the rate at which excess insulin decays (or is removed) from the

bloodstream. The term u, which also appears, is a model input representing the rate at

which insulin is introduced to the bloodstream. In the case of a healthy individual, insulin

is produced and secreted by the pancreas in response to elevated glucose levels; to model

this scenario, Bergman et al. [11] originally proposed

u = u1 = p5tmax(0, G− p6). (4.2)

The max function appears here in order to model the switching behavior exhibited by

insulin-producing pancreatic beta cells. When blood-glucose concentration in the body

remains below the threshold value p6, we find that max(0, G− p6) = 0 and the pancreas is

idle; once this biochemical threshold is reached, the max function switches output to model

the pancreas beginning to release insulin.

Simulations of the state variables G and I using reference parameters p∗ ∈ R10 (from

Table 4.1) are given in Figure 4.1. Note that glucose and insulin concentration levels do

indeed stabilize at their basal values (i.e., p9 and p10, respectively). Furthermore, the

insulin concentration simulated here mirrors the real-life behavior of the pancreas, which
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occurs in two phases. The first phase is characterized by a large initial secretion, seen in the

spike at t = 0 min; the second phase is smaller in scale and can be seen as the brief plateau

which follows. However, despite these features of the insulin subsystem, we also note that

glucose concentration tends back to its basal value in a seemingly smooth, controlled

manner — indicative that the body’s steady return to glucose homeostasis is successful in

this case. Finally, we note that the point where G intersects the value p∗6 represents the

time at which the max function in (4.2) switches output (and hence causes a point of

nondifferentiability). With our choice of p∗, this switch occurs at roughly t = 55.2 min.

(a) The intersection of G(t) and p6 occurs at
t = 55.2 min and indicates the time at which
the max function switches outputs.
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(b) Numerical simulation of I(t).

Figure 4.1: Glucose and insulin concentrations attained over the course of three hours,
respectively, using u = u1 (Equation (4.2)) and p = p∗ [1].

We again emphasize the main goal of this section: to characterize the sensitivity of

these biologically-based state variables to their parameters. The presence of the

nonsmoothness discussed here, however, invalidates any classical attempt at characterizing

the sensitivity of the system to its parameters. Assuming a solution to the IVP in

Equation (4.1) exists over a time horizon of three hours, we proceed by deriving the

nonsmooth sensitivity system (3.8) for a generic model input u.

Theorem 4.1 (Lexicographic Sensitivity System of the Minimal Model). Given some

L-smooth model input u and reference parameter p∗, assume the corresponding reference
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solution (G,X, I) exists on the time horizon [t0, tf ] = [0, 180]. Suppose M ∈ R10×10 is a full

row rank directions matrix. Then the lexicographic (forward parametric) sensitivity

functions are given by
SG(t)

SX(t)

SI(t)

 =


XG(t)M−1

XX(t)M−1

XI(t)M−1

 =


[G(t; ·)]′(p∗;M)M−1

[X(t; ·)]′(p∗;M)M−1

[I(t; ·)]′(p∗;M)M−1

 , (4.3)

where, letting M(i) represent the ith row of M, the LD-derivatives (XG,XX ,XI) are the

unique solution of the LD-sensitivity system

ẊG(t) = −(G(t)− p∗9)M(2) + p∗2M(9) − (p∗2 +X(t))XG(t)−G(t)XX(t),

ẊX(t) = −X(t)M(3) + (I(t)− p∗10)M(4) − p∗4M(10) − p∗3XX(t) + p∗4XI(t),

ẊI(t) = [u(t; ·)]′(p∗;M)− (I(t)− p∗10)M(7) + p∗7M(10) − p∗7XI(t)

(4.4)

on the time horizon [t0, tf ] = [0, 180] with initial conditions
XG(0)

XX(0)

XI(0)

 =


M(1)

0

M(8) + M(10)

 . (4.5)

Furthermore, if u = u1 = p5tmax(0, G− p6), then

[u1(t; ·)]′(p∗;M) = tmax(0, G(t)−p∗6)M(5)+p
∗
5tslmax

(
01×11,

[
(G(t)− p∗6) XG(t)− M(6)

])
.

Proof. Recall that the right-hand side function of (4.1) is given by

f(t,p, G,X, I) =


f1(t,p, G,X, I)

f2(t,p, G,X, I)

f3(t,p, G,X, I)

 =


−p2(G− p9)−GX

−p3X + p4(I − p10)

u− p7(I − p10)

 . (4.6)

Given any full row rank directions matrix M ∈ R10×10, we aim to find the LD-derivative of

the right-hand side function f from (4.6) to apply Theorem 3.21, where the LD-sensitivity
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system (3.8) is given by


ẊG(t)

ẊX(t)

ẊI(t)

 = [ft]
′





p∗

G(t)

X(t)

I(t)


;



M

XG(t)

XX(t)

XI(t)




(4.7)

where ft : (p, G,X, I) 7→ f(t,p, G,X, I).

The LD-derivative in (4.7) may be calculated component-wise by Proposition 3.9. Since

the first two components f1 and f2 are smooth on their domains, Equation (3.1) implies

that for any fixed t we have

[f1t ]
′(p∗, G(t), X(t), I(t); (M,XG(t),XX(t),XI(t)))

=
∂f1
∂p

M +
∂f1
∂G

XG(t) +
∂f1
∂X

XX(t) +
∂f1
∂I

XI(t),

= −(G(t)− p∗9)M(2) + p∗2M(9) − (p∗2 +X(t))XG(t)−G(t)XX(t),

where the partial derivatives are evaluated at reference solutions (G,X, I), and similarly,

[f2t ]
′(p∗, G(t), X(t), I(t); (M,XG(t),XX(t),XI(t)))

=
∂f2
∂p

M +
∂f2
∂G

XG(t) +
∂f2
∂X

XX(t) +
∂f2
∂I

XI(t),

= −X(t)M(3) + (I(t)− p∗10)M(4) − p∗4M(10) − p∗3XX(t) + p∗4XI(t).

Lastly, we find that

[f3t ]
′(p∗, G(t), X(t), I(t); (M,XG(t),XX(t),XI(t)))

= [u(t; ·)]′(p∗;M)− (I(t)− p∗10)M(7) + p∗7M(10) − p∗7XI(t).

Condensing our results so far, we have that the LD-sensitivity system (4.7) is given by the

following system of ODEs:

ẊG(t) = −(G(t)− p∗9)M(2) + p∗2M(9) − (p∗2 +X(t))XG(t)−G(t)XX(t),

ẊX(t) = −X(t)M(3) + (I(t)− p∗10)M(4) − p∗4M(10) − p∗3XX(t) + p∗4XI(t),

ẊI(t) = [u(t; ·)]′(p∗;M)− (I(t)− p∗10)M(7) + p∗7M(10) − p∗7XI(t).

(4.8)
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Furthermore, since f0 : p 7→ (p1, 0, p8 + p10) is itself a C1 function, the initial conditions for

this sensitivity system are given by
XG(0)

XX(0)

XI(0)

 = [f0]
′(p∗;M) = Jf0(p

∗)M =


M(1)

0

M(8) + M(10)

 . (4.9)

The form of the lexicographic sensitivity functions (4.3) follows directly from an

application of Theorem 3.22 to the solutions of (4.8) with initial conditions (4.9).

Separately, our choice of u = u1 = p5tmax(0, G− p6) (i.e., Equation (4.2), motivated by

a healthy individual’s pancreatic response) is PC1 and hence L-smooth, allowing the use of

LD-derivative calculus rules from Proposition 3.9. Let u1 = αtρ, where in particular

ρ : R10 × R3 → R : (p, G,X, I) 7→ max(0, G− p6),

αt : R10 × R3 → R : (p, G,X, I) 7→ p5t.

Then,

ρ′ (p, G,X, I; (M,XG,XX ,XI)) = slmax
([

0 01×10

]
,

[
(G− p6) XG − M(6)

])
,

=


01×10, if G > p6 or G = p6,XG � M(6),

XG − M(6), otherwise,

where we recall that the relational operator � is evaluated using lexicographic ordering.

Separately,

α′
t (p, G,X, I; (M,XG,XX ,XI)) = Jαt(p, (G,X, I))



M

XG

XX

XI


= tM(5).

Putting these pieces together via the lexicographic product rule, we find that

[u1(t; ·)]′(p∗;M) = tmax(0, G(t)−p∗6)M(5)+p
∗
5tslmax

(
01×11,

[
(G(t)− p∗6) XG(t)− M(6)

])
,

as we required.
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Thanks to the library of common LD-derivative rules outlined in Chapter 3 and the

tractability of lexicographic sensitivity theory in general, we find that the ODE system in

Theorem 4.1 can be solved by standard numerical methods. Here, in order to

simultaneously solve the LD-sensitivity system (4.4), initial conditions (4.5), and minimal

model itself (4.1) with reference parameter p∗ as required, equations were implemented in

the ode45 solver of MATLAB on the time horizon [t0, tf ] = [0, 180]. The ode45 solver is a

common, versatile solver built around the fourth-order Runge-Kutta method; here, apart

from defining an explicit function for the shifted lexicographic maximum (slmax), no

special treatment is necessary to find solutions. We emphasize that this process furnishes

the LD-sensitivity functions (XG,XX ,XI), and subsequent right-multiplication by M−1 for

each fixed time t on the time horizon yields the lexicographic sensitivity functions

(SG,SX ,SI) found in Equation (4.3).

Initially, we selected M = I10 as the directions matrix; however, since local sensitivities

in the L-smooth case are characterized by L-derivatives, we recall that different choices for

the directions matrix M may ultimately yield different elements of the L-subdifferential.

To begin exploring this possibility, we also simulated results with the matrices furnished by

nine successive circular right-shifts of the identity matrix, which was easily implemented

due to the freedom of choice for full row rank M granted by Theorem 4.1. By virtue of

being built around the concept of lexicographic ordering, lexicographic differentiation gives

inherent preference to the first column of M, and only considers subsequent columns in the

case of ties. Therefore, the ten choices of M outlined above represent granting

lexicographic “favor” to each unit coordinate direction in parameter space. Beyond these

choices, we also performed the simulation with 1,000 different randomized (full row rank)

directions matrices. In each and every case, however, simulation results were identical to

those furnished by the choice of M = I10 within a small degree of numerical error.

Since the reference values of the parameters p∗ differ from each other largely (by up to

five orders of magnitude), we provide the relative sensitivity functions here, which scale the
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lexicographic sensitivity functions by both the reference solution and parameter for the

purpose of more direct comparison: i.e.,

ŜG(t) = SG(t)�
(p∗)T

G(t)
;

ŜI(t) = SI(t)�
(p∗)T

I(t)
,

(4.10)

where � denotes the Hadamard (element-wise) product of the two vectors. The relative

sensitivity functions ŜG and ŜI are given in Figures 4.2a and 4.2b, respectively. A vertical

line appears at t = 55.2 min in each figure to represent the time at which the max function

within (4.2) changes output.
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(a) Relative sensitivities of glucose
concentration in the bloodstream with M = I.
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(b) Relative sensitivities of insulin
concentration in the bloodstream with M = I.

Figure 4.2: Numerical solutions of the lexicographic sensitivity system (4.3) scaled according
to (4.10) [1].

The numerical sensitivity solutions depicted in Figure 4.2 provide several insights to the

model which we highlight here, and we begin by examining the sensitivities of state

variable G. Parameter p1 represents the (higher-than-basal) blood-glucose concentration of

a subject who has just received the initial injection; therefore, it would make sense that

this parameter is most influential to blood-glucose concentration G as a whole at the

beginning of the time horizon, with decreasing importance as time goes on and glucose is

removed from the bloodstream. Indeed, Figure 4.2a supports this idea. Similarly, recall

that parameter p2 represents the constant rate at which glucose is absorbed due to
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insulin-independent means; G predictably becomes highly sensitive to this parameter, but

its influence decreases as glucose approaches its basal concentration once more starting at

approximately t = 40 min (see Figure 4.1a). Furthermore, the sensitivity of G to this

parameter is negative, implying that an increase in the reference value p∗2 would have the

predicted effect of decreasing the reference solution G across the time horizon; this also

makes intuitive sense, as an increase in glucose uptake would result in less glucose

remaining in the bloodstream. Finally, we note that parameter p9 actually possesses

increasing influence over time. This can be explained by the physical interpretation of p9 as

the baseline blood-glucose concentration: since this is the concentration the body is aiming

to return to over time, its exact value becomes more important as G itself approaches.

Overall, parameters p1, p2, and p9 can clearly be seen as the most influential to G on

average, since other parameters play at most moderate roles over the relevant time horizon.

With respect to blood-insulin concentrations I, our simulations in Figure 4.2b suggest

that the greatest overall sensitivity is observed with respect to the threshold parameter p6

appearing in Equation (4.2). The fact that the magnitude of this sensitivity is greatest

nearby to the switching time t = 55.2 min is unsurprising: since p6 itself has direct influence

on when the max function appearing in Equation (4.2) switches output, the system

becomes more sensitive to small perturbations in this parameter as the switching time is

approached. Away from this time, perturbations simply carry less importance. Outside of

p6, insulin sensitivity to other parameters tends follow a more homogeneous pattern than

those of glucose in general. It is clear that the nonsmoothness introduced by the switching

of the max function is translated into these sensitivities and captured by the L-derivative,

but it is of special note that the nonsmoothness is not limited to the threshold parameter

p6 and is instead echoed throughout the dynamic system. This can be seen through the

clear sharp peak in sensitivity exhibited by nearly every parameter at the switching time

t = 55.2 min, with the notable exception to this remark being parameter p10. As the
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baseline concentration of glucose, the value of p10 becomes gradually more influential over

time as I stabilizes (similarly to parameter p9 in the case of glucose, discussed above).

4.3 Variations for modeling subjects with type 1 diabetes

Two main issues arise when extending the minimal model to subjects with type 1

diabetes (“diabetes” for the remainder of this section except where otherwise noted). First,

we find that individuals with diabetes often have a non-negligible amount of glucose

entering their bloodstream from digestive processes, even after a night of fasting (in

healthy individuals, on the other hand, the body handles this input more efficiently and it

becomes unimportant). An exponential term employed by many other authors (e.g.,

[9, 14, 22]) is added to the right-hand side of Ġ to represent this change and two more

model parameters are introduced as a result, yielding the adjusted model

Ġ = −p2(G− p9)−GX + p11 exp(−p12t), G(0) = p1,

Ẋ = −p3X + p4(I − p10), X(0) = 0,

İ = u− p7(I − p10), I(0) = p8 + p10.

(4.11)

Descriptions of these new parameters are found in Table 4.2. The second main issue

regards the virtual nonexistence of any endogenous (pancreatic) insulin secretion. This

invalidates the choice of u1 (hereafter, Input Method 1) used before, which was motivated

by “normal” pancreatic behavior. Consequently, we consider the model input u to now

describe insulin infusion from an external, wearable device, such as an insulin pump. Since

such pumps are not typically able to dynamically measure blood-glucose concentrations,

the two predetermined insulin infusion patterns for u studied here (hereafter, Input

Methods 2 and 3) do not incorporate the state variable G.

Both input methods repurpose the parameters p5 and p6 originally appearing in Input

Method 1. Input Method 2 utilizes a mid function in addition to a third parameter, γ

(which is unique to this input method, and hence raises the total number of model

parameters in this setting to 13 — i.e., p = (p1, p2, . . . , p12, γ)). The resulting infusion
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profile is best described as nonsmooth, decreasing, and sigmoidal in nature; switching times

indicate when a sharp change in insulin infusion behavior occurs. From t = 0 min to t = p5

min, insulin infusion occurs at constant rate γ; at t = p5 min, the infusion rate decays

linearly until infusion ceases completely at time t = p6 min. On the other hand, Input

Method 3 employs only parameters p5 and p6, and is meant to describe continuous insulin

infusion at an exponentially decreasing rate. This model formulation means that all

participating right-hand side functions in the minimal model (4.1) are smooth (i.e., C1).

The precise formulation of each input method, along with parameter interpretations

and reference parameter values in each case, are found in Table 4.3. The reference

parameters for Input Methods 2 and 3 were chosen such that the total amount of insulin

infused to the body mimics that secreted by a healthy subject’s pancreatic β−cells over the

same time horizon. As a result, we find that even with these different choices for the model

input u, the corresponding reference solutions G and I very closely resemble those

illustrated in Figure 4.1 in each case; in fact, at the scale of this figure, all three reference

solutions overlap with little deviation. For ease of comparison between the three different

choices for u, Figure 4.3 depicts the dynamic rate at which insulin is released alongside the

total insulin introduced to the body over time for each of the three input methods.

Parameters
pi Units Description p∗i [22]
p11 mg/(dL*min) Positive constant; initial rate of the bodily

introduction of glucose sourced from meals
0.5

p12 Unitless Positive constant describing the steepness of the
drop-off in the rate of bodily introduction of
glucose sourced from meals

0.05

Table 4.2: The parameters introduced to the minimal model when formulated to represent
a diabetic patient. Note that p∗i represents a reference parameter [1].

We now proceed with the sensitivity analysis of our two variations on the minimal

model. In each case, the LD-sensitivity system derived closely mirrors the system found

previously in Theorem 4.1, though we again emphasize the relevant differences. Recall that
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Input
Method

u pi Units Description p∗i

1 p5tmax(0, G− p6)
p5

(
µU

mL∗min

)
1

(mg/dL)
See Table 4.1 0.0039

p6 mg/dL See Table 4.1 79.0353

2 mid
(
0, γ(t−p6)

p5−p6
, γ
)

γ µU/(mL*min) Initial rate of external
insulin infusion

5.9

p5 min Time at which insulin
infusion rate begins

to decline

20

p6 min Time at which
external insulin
infusion ceases

60

3 p5exp(−p6t)

p5 µU/(mL*min) Initial rate of external
insulin infusion

10

p6 Unitless Positive constant
which describes the
rate of decrease of

external insulin
infusion

0.0423

Table 4.3: The different considerations of the insulin infusion term u [1].
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all three input methods.
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(b) The cumulative amount of insulin
infusion over the time horizon via each
input method. Each choice yields a total
infusion of approximately 236.3 µU/mL.

Figure 4.3: Comparison of total insulin infusion over the time horizon based on different
choices of u with reference parameters from Table 4.3 [1].

the adjustments incorporated in the right-hand side function for Ġ in Equation 4.11 cause

a slight adjustment in the formulation of XG which was derived in Theorem 4.1. Secondly,
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the original minimal model (4.1) contained ten parameters, prompting the directions

matrix M to be full row rank and an element of R10×10; these new input methods require

adjustment. In Input Method 2, there are thirteen parameters p = (p1, p2, . . . , p12, γ) in

total, so M ∈ R13×13 with M(13) representing the probing directions for γ. In Input Method

3, twelve parameters p = (p1, . . . , p12) are present, and so M ∈ R12×12 in this case.

Under the same assumptions associated with Theorem 4.1, the lexicographic sensitivity

functions associated with Input Method 2 are as follows.

Theorem 4.2 (Lexicographic Sensitivity System of the Adjusted Minimal Model with

Input Method 2). Let u = u2 = mid
(
0, γ(t−p6)

p5−p6
, γ
)

and let p∗ be a reference parameter.

Assume that a corresponding reference solution (G,X, I) exists on the time horizon

[t0, tf ] = [0, 180]. Letting M ∈ R13×13 be a full row rank directions matrix, the lexicographic

forward-parametric sensitivity functions of the adjusted minimal model are given by

Equation (4.3) where the LD-derivatives appearing on the right-hand side are the unique

solution of the system

ẊG(t) = −(G(t)− p∗9)M(2) + p∗2M(9) + exp(−p∗12t)[M(11) − p∗11tM(12)]

− (p∗2 +X(t))XG(t)−G(t)XX(t),

ẊX(t) = −X(t)M(3) + (I(t)− p∗10)M(4) − p∗4M(10) − p∗3XX(t) + p∗4XI(t),

ẊI(t) = [u(t; ·)]′(p∗;M)− (I(t)− p∗10)M(7) + p∗7M(10) − p∗7XI(t)

(4.12)

on [t0, tf ] = [0, 180], with initial conditions in Equation (4.5), and where [u(t; ·)]′(p∗;M) is

calculated as

[u2(t; ·)]′(p∗;M)

= slmid
(

01×14,

[
γ∗(t−p∗6)

p∗5−p∗6

t−p∗6
p∗5−p∗6

M(13) − γ∗(t−p∗6)

(p∗5−p∗6)
2 M(5) +

γ∗(t−p∗5)

(p∗5−p∗6)
2 M(6)

]
,

[
γ∗ M(13)

])
.
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Proof. The proof mirrors that of Theorem 4.1, with the main difference that

[f1t ]
′(p∗, G(t), X(t), I(t); (M,XG(t),XX(t),XI(t)))

=
∂f1
∂p

M +
∂f1
∂G

XG(t) +
∂f1
∂X

XX(t) +
∂f1
∂I

XI(t),

= −(G(t)− p∗9)M(2) + p∗2M(9) + exp(−p∗12t)[M(11) − p∗11tM(12)]

− (p∗2 +X(t))XG(t)−G(t)XX(t).

The formulation of [u2(t; ·)]′(p∗;M) follows directly from an application of Proposition 3.14

where M(i) continues to denote the ith row of M, (x,y, z) = p∗, and

(f , g,h) = (0, γ(t−p6)
p5−p6

, γ), since

Jpf = 01×13,

Jpg =

[
0 0 0 0 − γ(t−p6)

(p5−p6)2
γ(t−p5)
(p5−p6)2

0 0 0 0 0 0 t−p6
p5−p6

]
,

Jph =

[
01×12 1

]
.

Again under the same assumptions as Theorem 4.1, the lexicographic sensitivity

functions associated with Input Method 3 are given as follows.

Theorem 4.3 (Lexicographic Sensitivity System of the Adjusted Minimal Model with

Input Method 3). Let u = u3 = p5exp(−p6t) and let p∗ be a reference parameter. Assume

that a corresponding reference solution (G,X, I) exists on the time horizon

[t0, tf ] = [0, 180]. Letting M ∈ R12×12 be a full row rank directions matrix, the lexicographic

forward-parametric sensitivity functions of the adjusted minimal model are given by

Equation (4.3) where the LD-derivatives appearing on the right-hand side are the unique

solution of Equation (4.12) on [t0, tf ] = [0, 180] with initial conditions given in Equation

(4.5) and where [u(t; ·)]′(p∗;M) is calculated as

[u3(t; ·)]′(p∗;M) = exp(−p∗6t)M(5) − p∗5t exp(−p∗6t)M(6).
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Figure 4.4: With a choice of Input Method 2: in 4.4a, the relative sensitivities of glucose to
parameters, and in 4.4b, the relative sensitivities of insulin to parameters [1].

Proof. The proof of the formulation of the LD-sensitivity system is identical to that of

Theorem 4.2. The formulation of [u3(t; ·)]′(p∗;M) requires the product and chain rules

along with Equation (3.1), and yields

[u3(t; ·)]′(p∗;M) = [p5exp(−p6t)]′(p∗;M),

= p∗5[exp(−p6t)]′(p∗;M) + exp(−p∗6t)[p5]′(p∗;M),

= p∗5exp(−p∗6t)(−M(6)t) + exp(−p∗6t)M(5),

= exp(−p∗6t)M(5) − p∗5texp(−p∗6t)M(6),

as we aimed to show.

Our choice of Input Method 2, which is nonsmooth, required a hard-coded

implementation of the mid and slmid functions and also invited further analysis with

different choices of directions matrix M (similar to the analysis done in the previous

section). In each case, however, the same L-derivative was again recovered within a small

degree of numerical error. Since the choice of u associated with Input Method 3 is in fact

C1, the lexicographic sensitivity functions are guaranteed to recover the classical sensitivity

functions with every choice of full row rank M. The relative sensitivity functions furnished

by the choice of Input Method 2 and 3 are presented in Figures 4.4 and 4.5, respectively.
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Figure 4.5: Glucose and insulin sensitivities to parameters, respectively, with a choice of
Input Method 3 [1].

Just as the nonsmooth switch appearing in Input Method 1 invites corresponding

nonsmoothness in parametric sensitivities (recall Figure 4.2b), the switching nature of

Input Method 2 yields similar abrupt changes in behavior in terms of insulin sensitivities.

The vertical bars appearing in Figure 4.4 correspond the the times t = p5 = 20 min, where

the output of the mid function associated with Input Method 2 switches from being

constant to decreasing, and t = p6 = 60 min, where the mid function switches its output to

zero. Sharp changes in the parametric sensitivity of insulin concentration I are observed at

each switching time. At t = p5 min, a sharp increase is observed with respect to p5 itself,

which is clearly seen in Figure 4.6; meanwhile, insulin sensitivity to the switching time p6

peaks at (and remains high nearby to) t = p6 min, but is low elsewhere. Since the value of

p6 directly influences the time at which insulin secretion ceases, small perturbations to the

parameter become influential as t = p6 min is approached on the time horizon — once the

switch is made, however, sensitivity to this parameter decreases rapidly. The third

parameter required in the choice of Input Method 2, γ, exhibits its maximum influence at

roughly t = p5 min and diminishes over time; insulin sensitivity to other parameters

including p7, p8, and p10 follows a similar trajectory as that seen in the case of Input

Method 1. Presumably due the absence of the state variable G in the formulation of Input

Method 2, insulin appears to be largely insensitive to the other parameters not explicitly
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appearing in the right-hand side rule for İ. On the other hand, glucose sensitivity results

are nearly indistinguishable from seen in Input Method 1, with the exception of the

sensitivities pertaining to the differing input parameters p5, p6, and γ.
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Figure 4.6: A closer view of Figure 4.4b, where the sharp switch in insulin sensitivity to p5
is more clearly seen [1].

In Input Method 3, where the L-sensitivity functions recover the classical sensitivity

functions due to the absence of any nonsmoothness, glucose sensitivities are again nearly

indistinguishable from those seen in Input Methods 1 and 2 (apart from those relating to

the input parameters p5 and p6 in this case). The insulin sensitivities are a bit more

unique, though qualitative behavior similar to Input Method 1 can still be seen in, e.g.,

sensitivity to parameters p7 and p10 — though nuances like the brief plateau of sensitivity

to p7 and the clearly sigmoidal sensitivity to p10 present when using Input Method 1

(Figure 4.2b) are absent in Figure 4.5b. For a similar presumed reason as Input Method 2,

parameters absent from the right-hand side rule for İ such as p1 → p4 are not influential to

insulin concentration when using Input Method 3.

In Table 4.4, we highlight differences in parameter sensitivities arising in state variables

G and I due to the different choices 3 input methods considered (recalling their

formulation from Table 4.3). This is done with respect to the input parameters p5, p6, and

γ according to three different metrics: the maximum magnitude, average magnitude, and

variance of observed relative sensitivity.
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Input
Method

pi max |Ŝpi
G | avg

(
Ŝpi
G

)
var
(
Ŝpi
G

)
max |Ŝpi

I | avg
(
Ŝpi
I

)
var
(
Ŝpi
I

)
1

p5 0.078 -0.046 0.001 0.752 0.148 0.071
p6 0.148 0.086 0.003 5.245 -0.523 1.071

2
p5 0.020 -0.011 0.000 0.339 0.062 0.013
p6 0.056 -0.031 0.000 3.187 0.283 0.409
γ 0.085 -0.051 0.000 0.737 0.181 0.075

3
p5 0.080 -0.051 0.000 0.686 0.217 0.053
p6 0.065 0.042 0.000 0.840 -0.367 0.084

Table 4.4: Sensitivity metrics for glucose and insulin concentrations with respect to model
input parameters: the absolute maximum of relative sensitivity over time horizon, the
average relative sensitivity over time horizon, and the absolute variance of relative sensitivity
over time horizon [1].

Several overall observations can be made. First, the sensitivity of G with respect to the

parameter studied is more uniform than those corresponding to insulin sensitivity I, as

seen through the differences in variance. This is presumably contributed to by the presence

of the relevant parameters in the right-hand side rule for İ, and absence elsewhere.

Furthermore, notice that across each row, the average sensitivity of G to any given

parameter is always opposite in sign to the average sensitivity of I to the same parameter,

independent of the input method chosen. This can be understood via the opposing nature

of glucose-insulin interactions within the body in general.

In Input Method 1, recall that p5 represents the rate of pancreatic secretion (when

active) and p6 represents the threshold glucose concentration above which insulin secretion

is triggered. An increase in the reference value of p5 would therefore simulate an

introduction of more insulin to the bloodstream, and as a result, the average sensitivity of

insulin concentration I to this parameter is positive. On the other hand, average glucose

sensitivity to the same parameter is negative due to the aforementioned fact that higher

insulin levels induce greater glucose uptake (and hence a reduction in the reference solution

G over the time horizon). On the other hand, an increase in the reference value of p6 would

raise the threshold glucose concentration required to initialize insulin secretion in the first,
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making it more difficult to trigger the release of insulin. This effect is shown to be more

influential than the effect of p5: here, for example, a 1% increase in the reference value of

p6 would produce an approximate average decrease of 0.523% in the reference solution I

itself, while a similar increase in p5 would cause a respective increase in I of only 0.148%.

Incidentally, the metrics associated with Input Method 3 tell a similar qualitative story

as in Input Method 1. Parameter p5 here now represents the initial rate of insulin infusion

from an external device (e.g., an insulin pump), and p6 > 0 is an exponential decay

parameter describing the steepness of the decrease in infusion over time. Overall, an

increase in p5 would cause a clear increase in the state variable I, while increasing p6

(resulting in a steeper infusion decrease) would result in a corresponding decrease in I. For

these reasons, the sensitivities of I to both parameters in Input Method 3 here are opposite

in sign, with the decay parameter p6 being more influential both at its peak and on average

when compared to p5.

In Input Method 2, a decreasing nonsmooth sigmoidal function is used to model the

rate of insulin infusion, with parameters p5 and p6 representing the times at which the

nonsmooth mid function changes output and parameter γ representing the initial

(constant) rate of infusion. An increase in any of these parameters would seem to cause a

respective increase in insulin concentration I: by increasing p5 or p6, the switching times

which the decrease or cessation of insulin secretion would be delayed, meaning that more

insulin would be secreted overall. Similarly, by increasing the initial (constant) infusion

rate γ, an obvious increase in I would result. Table 4.4 reinforces these ideas

quantitatively, with the average insulin sensitivity to each parameter being positive. Of the

three parameters, p6 is shown to be the most influential at its maximum and on average.

At the fixed time marking the peak of this sensitivity, a 1% increase in the reference value

of p6 corresponds to a predicted 3.187% increase in the value of the reference solution; from

Figure 4.4b, it is clear that said peak sensitivity occurs at t = p6 = 60 min.
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4.4 Discussion

The lexicographic sensitivity approach taken in this chapter provides accurate results

without the introduction of inherent numerical error, though separate efforts to

characterize the sensitivity of the minimal model to its parameters have previously been

made. For example, without the knowledge of the lexicographic sensitivity functions, Munir

[37] recently performed a “generalized sensitivity analysis” of the minimal model (4.1) using

the standard model input (4.2) with the goal of specifically approximating the sensitivity

data presented in Section 4.2. This analysis was done by first replacing the max function

with the smoothing approximation max(0, x) ≈ 1
2
(x+

√
x2 + ϵ) for some user-defined ϵ > 0,

and proceeded by simply implementing the resulting classical sensitivity functions 2.4. The

relative accuracy of this approach is not guaranteed in general, especially since it is

typically difficult to know how many times points of nondifferentiability may be visited in a

simulation a priori; therefore, the cumulative numerical error introduced by even small

choices of ϵ may be significant. Indeed, there is not even a guarantee of the convergence of

the resulting sensitivity functions to those produced by the flexible lexicographic approach

(which avoids such issues entirely). Due in part to issues of this nature, Munir deserted

this approach later in [37] in favor of a stochastic “generalized sensitivity” approach.

Though the minimal model is relatively simple in nature, it provides a reasonable

approximation of biological glucose-insulin interactions; the sensitivity information

provided here is therefore potentially relevant in biological applications. In particular,

Input Methods 2 and 3 were both successful in replicating the dynamics of glucose

concentration from a normal, healthy response (i.e., in Input Method 1), implying that the

data supplied in this chapter may be useful in design considerations for, e.g., external

insulin pumps for diabetics.

Since several of the parameters appearing in the model can be easily adjusted physically

(e.g., p1 and input parameters p5, p6, and γ associated with Input Methods 2 and 3),

dynamic optimal control is a future direction of research within the model. In fact, the
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sensitivity information given in this chapter can be provided to open-loop nonsmooth

optimizers with this goal in mind [31]. A similar direction of interest is nonsmooth

dynamic optimization within the model of type 1 diabetes put forth by Hovorka et al. [26]

in order to compare the accuracy of previous attempts to optimize the model’s input.
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CHAPTER 5

QUANTIFYING PARAMETRIC SENSITIVITIES OF A NONSMOOTH

MODEL OF RIOT SPREAD

The contents, figures, and tables appearing in this chapter are based on [2]. Following a

similar approach as the previous chapter, we now explore the ramifications of lexicographic

sensitivity theory when applied to a novel mathematical model describing the spread of

riots on a municipal scale.

5.1 Model background

Riots, often a symptom of larger issues causing widespread civil discontent, have long

been influential and metamorphic factors in many aspects of history. This is no less true in

the modern day, with recent examples of high-profile riots often attracting international

attention and social movement. In 2019, for example, the introduction of an extradition

bill in Hong Kong set off protests which eventually involved nearly 1 in every 4 residents of

the territory [27]; international coverage of the events sparked larger conversations about

political change and police brutality (see, e.g., [50]). In January of 2021, another example

of such activity was seen as American rioters breached the United States Capitol building

in response to the results of the 2020 presidential election, contributing to the deaths of 5

people and causing a number of arrests relating to the riots [46]. In this thesis, the 2005

French riots are of particular interest, which were triggered by the deaths of two minority

youths in the municipality of Clichy-sous-Bois outside of Paris and transpired in a violent

three-week backlash against police brutality.

Incidents of police harassment and abuse were frequently reported in Clichy-sous-Bois,

with a particular emphasis on events which subjected the municipality’s youth population

to heightened scrutiny. The municipality is among the poorest suburbs of Paris, and low

employment rates led to a large number of youths unoccupied with work or school. It was
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not uncommon for police to detain and question loitering youth for upwards of several

hours without any evidence of wrongdoing — a habit which eventually led to these youth

simply fleeing to avoid harassment and interrogation whenever police were noticed in the

area [18]. This led to tension between the police and youths which came to a head on

October 27, 2005, as police were dispatched to investigate a possible break-in at a

construction site and saw a group of about ten teenage boys nearby, who were later

revealed to be returning home after a game of soccer. The teenagers fled upon seeing the

police and officers pursued, with three of of the teens ultimately scaling a wall in order to

hide in a nearby power substation. Within several minutes, power outages occurred across

the city as the boys were electrocuted inside. Two of the young men died, and one survived

with severe injuries [18].

Despite some discrepancies between different accounts of officers’ actions, the deaths

invited intense scrutiny into the habits of police in the area and the behaviors which led

youth to immediately flee in general. This culminated with the general public rallying

behind renewed calls for ending police harassment and brutality, but also spawned riots

which broke out shortly after the boys’ death and spread throughout the country for the

next three weeks. In the end, nearly 3000 rioters were arrested, 9000 cars were destroyed or

burned, 125 police or firefighters were injured, and nearly $300 million dollars worth of

property damage had been done [43].

Daily police reports described the spread and extent of the riots across the country at a

level of detail rarely seen in large-scale riots and allowed impressive progress in attempts to

model their spread. In [12], authors amassed the collection of police reports for the relevant

timeframe and simplified their contents, measuring the approximate number of rioters and

“rioting events” (i.e., individual instances of criminal activities such as arson or assault).

This data collection did not discriminate, however, between events transpiring as a direct

result of the riots and unrelated events. For this reason, a constant level of “background”

criminal activity was assumed among the data.
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Riots themselves can be conceived as a form of “social contagion,” in which behavior of

a group of individuals affects the behavior of nearby susceptible individuals; for this reason,

the authors of [12] then fit their data to a generalized modeling framework for social

contagions originally formulated by Berestycki et al. in [10]. This framework is built on a

conventional SIR (Susceptible-Infected-Recovered) framework for epidemic spread [13] and

emphasizes four main concepts which specifically influence dynamics in a social setting:

that activity is initialized by an (exogenous) shock or triggering event, that endogenous

factors can cause self-reinforcement and growth, that social discontent can accelerate the

occurrence of both triggering events and self-reinforcement, and that riot spread between

“sites” is influenced by their spatial proximity. Different variations were considered in the

context of the 2005 French riots in order to describe the spread at different levels of

granularity: between cities (the “municipality scale”) and between larger administrative

regions (the “département scale”).

While the model at hand is similar in nature to that of an SIR epidemic model, there is

one key difference at hand. When describing the spread of disease, the probability that a

susceptible individual becomes infected (typically) varies proportionally with the fraction

of the total population already infected in their community; however, the probability that a

susceptible individual (i.e., member of a reference population) joins a riot is instead simply

proportional to the current number of rioters (regardless of the proportion of the

population engaged in the activity). Furthermore, nonsmoothness is introduced (in the

municipal-scale variation of this model) in an effort to describe a so-called “bandwagon

effect,” which proposes that susceptible individuals are unlikely to join a riot when existing

activity is low and that this likelihood grows exponentially once the riot grows beyond a

certain threshold. However, this nonsmoothness again invalidates any classical efforts to

describe model sensitivity to parameters. In an effort to describe identify key factors to the

spread of riots at the most granular possible level, we proceed with a lexicographic

sensitivity analysis of this municipal-scale model proposed in [12].
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5.2 Model formulation

Within the model, there are two state variables associated with each site involved in the

riot. For the ith site, σi represents a reservoir of all potential rioting events and is

proportional to the number of susceptible individuals present at the site; similarly, λi

represents the level of rioting activity, and is proportional to the present number of rioters.

Under the assumptions that rioters leave the riot at a constant rate and never rejoin once

doing so, Bonnasse-Gahot et al. propose the following model for the spread of riots between

n total sites at the municipal scale [12]:

σ̇i = −Ψi(Λi(λ))σi, σi(0) = ε0Ni,

λ̇i = Ψi(Λi(λ))σi − ωiλi, λi(0) =


0, if i 6= i0,

λ∗, if i = i0.

(5.1)

In this formulation, each σi (i.e., the maximum number of events that may possibly

occur at site i) is initialized at a value proportional to the site’s reference population, Ni.

Here, in the spirit of [12], the reference population is taken as the number of 16-24 year old

males without a diploma, the demographic which typically comprises the majority of

rioters (see, e.g., [24]). Site i0 is assumed to be the site where the exogenous “shock” or

triggering event occurs, leading to the initial level of rioting activity to be nonzero at site i0

(i.e., λ∗ > 0) and 0 elsewhere. Parameter ωi is the aforementioned constant rate at which

rioters leave an active riot, and is meant to incorporate a variety of different reasons why

individuals choose to leave including, e.g., arrest, fear, and fatigue. The function Λi(λ) is

meant to represent the “global activity” observed from the perspective of site i; roughly,

the authors of [12] suggest interpreting this as the average sentiment of concern that a

member of a site’s susceptible population holds with respect to rioting events occurring

among all sites. This concern may be raised or lowered through, e.g., person-to-person

interactions and media coverage of rioting events, with a stronger influence assumed by
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events or coverage happening nearby to an individual. It is modeled by the expression

Λi =
n∑

j=1

Wijλj, (5.2)

with weights Wij, representative of the relative influence of site j on site i, being modeled

by the “power decay law”

Wij =


(1 + dist(i, j)/d0)−δ, if i 6= j

1 if i = j.

(5.3)

Here, dist(i, j) is the distance between sites i and j in kilometers, parameter d0 is the

“characteristic distance” beyond which geographic influence decreases exponentially, and

parameter δ describes the non-local effect of sites (as a result of, e.g., media coverage).

This power decay law primarily favors geographic proximity as a medium for riot spread,

but also accounts for indirect or long-distance effects from distant sites.

The authors of [12] considered several different formulations for the so-called

“activation function” Ψi, which represents the likelihood of a susceptible individual to join

a riot and is a function of the global activity or “level of concern” seen from site i, within

several constraints. First, Ψi(Λi) = 0 when Λi = 0 — that is, there should be no propensity

for an individual to riot when no rioting activity is present. Secondly, Ψi(Λi) should

approach some Λ∗
i < 1 monotonically from below as Λi approaches infinity, suggesting that

the likelihood for a susceptible individual to join a riot saturates for large riots. The best of

the considered options was identified using the Akaike Information Criterion (AIC; see

[44]) after employing maximum likelihood estimation to optimize parameter values in each

case, and is given as the nonsmooth sigmoidal function

Ψi = ηimax(0, 1− exp(−γi(Λi − Λc
i))), (5.4)

with parameter ηi describing a general level of rioting susceptibility within the site, Λc
i

representing the threshold on global activity seen from site i above which rioting activity

grows exponentially, and γi representing the steepness of the activity function after the
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Parameters
pi Description p0i

ω rate of removal/recovery from rioting activity 0.26
η susceptibility parameter and saturating value 0.63
γ sharpness of threshold effect in rioting activation 1.27
Λc rioting activation threshold 0.06
d0 power law decay parameter 0.008
δ power law decay parameter 0.67
ξ0 initial value proportionality constant 0.00656
λ∗ initial rioting activity caused by exogeneous shock 5.5

Table 5.1: Site-independent parameters used in (5.1), with reference values from [12] [2].

threshold is reached. In this formulation, the global activity term Λi builds without

physical consequence until it reaches the threshold parameter Λc
i , after which the

bandwagon effect is initiated and rioting begins. For simplicity, we assume independence of

parameters between sites (e.g., ηi = η for all i ∈ {1, 2, . . . , n}, etc.), resulting in 8 model

parameters in total. A summary of all parameters present in the model can be found in

Table 5.1.

In order to visualize the form of a typical system, suppose we investigate the simple

case where there are two potential rioting sites (“Site 1” and “Site 2”) and that rioting

initializes in Site 1. Assuming site-independent parameters, the model (5.1) would

incorporate 2× 2 = 4 total state variables and take the following form:

σ̇1 = −ηmax(0, 1− exp(−γ((W1,1λ1 +W1,2λ2)− Λc)))σ1, σ1(0) = ε0N1,

λ̇1 = ηmax(0, 1− exp(−γ((W1,1λ1 +W1,2λ2)− Λc)))σ1 − ωλ1, λ1(0) = λ∗,

σ̇2 = −ηmax(0, 1− exp(−γ((W2,1λ1 +W2,2λ2)− Λc)))σ2, σ2(0) = ε0N2,

λ̇2 = ηmax(0, 1− exp(−γ((W2,1λ1 +W2,2λ2)− Λc)))σ2 − ωλ2, λ1(0) = 0.

Within our simulations, reference populations Ni (i.e., the number of 16-24 year old

males without a diploma) were calculated using 2007 data from the Institut National de la

Statistique et des Études Économiques (INSEE), which is France’s national statistics
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bureau. Relevant distances between sites were calculated between the geographic centroids

of each municipality using QGIS [41] in conjunction with data supplied by the

collaborators at OpenStreetMap ([39]; map data copyrighted by OpenStreetMap

contributors and available from www.openstreetmap.org), as they were in [12]. Based on

the geographic and population data collected here, we proceed with n = 1287 total sites

within the Île-de-France region in which the initial rioting site Clichy-sous-Bois is situated;

furthermore, we select t = t0 = 0 to represent October 27, 2005 and t = tf = 44 days later

(i.e., December 10, 2005) in order to capture the full riot dynamics.

Among the 1287 sites present in our analysis, we highlight the 12 most active sites

within the Île-de-France region in order to characterize the general behavior of the model

at hand. The INSEE assigns each municipality in France a unique 5-digit administrative

identification code which we adopt in our analysis; in particular, the highlighted sites are

Clichy-sous-Bois (the initial site; INSEE 93014), Meaux (77284), Mantes-la-Jolie (78361),

Grigny (91286), Nanterre (92050), Aulnay-sous-Bois (93005), Bobigny (93008), Saint-Denis

(93066), Sevran (93071), Stains (93072), Champigny-sur-Marne (94017), and Argenteuil

(95018). The geographic location of these 12 sites can be found in Figure 5.5a later in this

chapter, with Clichy-sous-Bois appearing just north of center. Simulations of the state

variables for these sites are found in Figure 5.1 alongside simulations of the global activity

function Λi in each site. These follow largely intuitive behavior. Each state variable σi

(reservoir of events at site i) is a monotonically decreasing function due to the removal of

potential rioting events in each site’s reservoir over time, while each λi (rioting activity at

site i) behaves in a wavelike fashion and suggests that the riots largely die out within 3

weeks. Examination of each Λi suggests that the global activity seen from each site follows

similar wavelike behavior — recall, however, that the nonsmooth activation function Ψi

switches output as Λi crosses the threshold described by parameter Λc. Our analysis

suggests that this switch, indicating the start of the bandwagon effect, occurs within a day
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of the triggering event even in sites beyond Clichy-sous-Bois; between 3 and 4 weeks later,

the switch is thrown once more as the bandwagon effect then subsides in each site.

Figure 5.1: Simulations of (5.1) with the dynamics of the initial rioting site Clichy-sous-Bois
denoted by dashed lines. Vertical lines appearing in the results of Λi represent the times
at which each of the 12 highlighted sites have their respective activation functions ψi (5.4)
turned on as threshold parameter Λc is crossed [2].

5.3 Lexicographic sensitivity analysis

Recalling our original goal of characterizing the sensitivity of the spread of these riots

to the parameters outlined in the section so far, we now proceed with a sensitivity analysis

of the model at hand. The nonsmoothness present in the activation function Ψi associated

with each site invalidates classical sensitivity theory, but we note that the PC1 right-hand

side functions associated with Equation 5.1 make this model well-suited for the

lexicographic approach.
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Theorem 5.1 (Lexicographic Sensitivity System of the Rioting Model). Given some

reference parameter p∗ ∈ R8, assume that the corresponding reference solution (σ∗,λ∗)

exists on the time horizon [t0, tf ] = [0, 44]. Suppose M ∈ R8×8 is a full row rank directions

matrix with the form

M =



Mω

Mη

Mγ

MΛc

Md0

Mδ

Mε

Mλ∗



.

Then the corresponding lexicographic (forward-parametric) sensitivity functions at site i are

given by Sσi
(t)

Sλi
(t)

 =

Xσi
(t)M−1

Xλi
(t)M−1

 =

[σi(t; ·)]′(p∗;M)M−1

[λi(t; ·)]′(p∗;M)M−1

 , (5.5)

where the LD-derivatives (Xσi
,Xλi

) are the unique solution of the LD-sensitivity system

Ẋσi
= −[Ψi]

′σi −ΨiXσi
,

Ẋλi
= [Ψi]

′σi +ΨiXσi
− λiMω − ωXλi

,

(5.6)

on the time horizon [t0, tf ] = [0, 44] with initial conditions

Xσi
(0)

Xλi
(0)

 =



NiMε

0

 , if i 6= i0,

NiMε

Mλ∗

 if i = i0.

(5.7)
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Furthermore, given

Ψi = ηmax(0, vi),

vi = 1− exp(−γ(Λi − Λc)),

Λi =
n∑

j=1

Wijλj,

we find that

[Ψi]
′ = max(0, vi)Mη + ηslmax(0, [vi v′i]),

[vi]
′ = (1− vi) ((Λi − Λc)Mγ − γMΛc) + (1− vi) (γΛ

′
i) ,

[Λi]
′ =

(
n∑

j=1

[
∂Wij

∂d0

∂Wij

∂δ

]
λj

)Md0

Mδ

+

(∑
j

WijXλj

)
,

with each function being evaluated at the reference parameter

p∗ = (ω∗, η∗, γ∗,Λc∗, d∗0, δ
∗, ε∗, λ∗∗) ∈ R8.

Proof. Recall that for the ith site, the right-hand side function of (5.1) is given by

f(p, σi, λi) =

f1(p,σ,λ)
f2(p,σ,λ)

 =

 −Ψiσi

Ψiσi − ωλi

 . (5.8)

Given any full row rank directions matrix M ∈ R8×8, we aim to find the LD-derivative of

the right-hand side function f from (5.8) since the LD-sensitivity system (3.8) is given by

Ẋσi
(t)

Ẋλi
(t)

 = f ′




p∗

σ(t)

λ(t)

 ;


M

Xσ(t)

Xλ(t)


 . (5.9)

Proposition 3.9 dictates that the LD-derivatives appearing in Equation (5.9) may be

calculated component-wise. By the LD-derivative product rule also appearing in
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Proposition 3.9, we find that

f ′
1(p

∗,σ,λ; (M,Xσi
(t),Xλi

(t)))

=
∂f1
∂p

M +
∂f1
∂σ

Xσ(t) +
∂f1
∂λ

Xσ(t)

= −
(
∂Ψi

∂p
σi +Ψi

∂σi
∂p

)
M −

(
∂Ψi

∂σ
σi +Ψi

∂σi
∂σ

)
Xσ(t)−

(
∂Ψi

∂λ
σi +Ψi

∂σi
∂λ

)
Xλ(t)

= −
(
∂Ψi

∂p
σiM +

∂Ψi

∂σ
σiXσ(t) +

∂Ψi

∂λ
σiXλ(t)

)
−
(
Ψi
∂σi
∂p

M +Ψi
∂σi
∂σ

Xσ(t) + Ψi
∂σi
∂λ

Xλ(t)

)
= −[Ψi]

′σi −Ψi[σi]
′

= −[Ψi]
′σi −ΨiXσi

.

Note that f2 may be expressed as

f2(p,σ,λ) = −f1(p,σ,λ)− α(p,λ),

where α(p,λ) = ωλi. We can find the LD-derivative α′ via the relationship (3.1) since it is

C1 with respect to both parameters and state variables:

α′(p∗,λ; (M,Xλ)) = λiMω + ω∗Xλi
.

Thus, we find that

f ′
2(p

∗,σ,λ; (M,Xσi
(t),Xλi

(t)))

= −f ′
1(p

∗,σ,λ; (M,Xσi
(t),Xλi

(t)))− α′(p∗,λ; (M,Xλ))

= [Ψi]
′σi +ΨiXσi

− λiMω − ω∗Xλi
,

which gives the form of Equation (5.6) when combined with the form of f ′
1 above. The

initial conditions (5.7) may be found by straightforward partial differentiation since the

initial conditions of Equation (5.1) are C1 and Equation (3.1) applies. Afterwards, the

form of Equation (5.5) follows directly from an application of Theorem 3.22.
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Now suppose we are given the functions

Ψi(p,λ) = ηmax(0, vi),

vi(p,λ) = 1− exp(−γ(Λi − Λc)),

Λi =
n∑

j=1

Wijλj,

where Wij is a C1 function of the parameters d0, δ. By the lexicographic product rule, we

can compute

[Ψi]
′(p∗,λ; (M,Xλ)) = max(0, vi)Mη + η∗[max ◦(0, vi)]′(p∗,λ; (M,Xλ))

= max(0, vi)Mη + η∗slmax(0, [vi v′i]),

where the final equality holds by the LD-derivative rule for the max function found in

Proposition (3.12).

Turning our attention to vi, we again recall the relationship found in (3.1) since this

function is C1 with respect to both parameters and state variables. The main challenge,

therefore, simply lies in taking the classical partial derivatives; here we calculate

[vi]
′(p∗,λ; (M,Xλ(t)))

=
∂vi
∂p

M +
∂vi
∂λ

Xλ(t)

= − exp(−γ∗(Λi − Λc∗))([
0 0 − (Λi − Λc∗) γ∗ − γ∗

∂Λi

∂d0
− γ∗

∂Λi

∂δ
0 0

]
M

− γ∗
[
∂Λi

∂λ

]
Xλ(t)

)

= − exp(−γ∗(Λi − Λc∗))

(
[0 0 − (Λi − Λc∗) γ∗ 0 0 0 0]M

− γ∗
∂Λi

∂p
M − γ∗

∂Λi

∂λ
Xλ(t)

)
= − exp(−γ∗(Λi − Λc∗)) ([0 0 − (Λi − Λc∗) γ∗ 0 0 0 0]M − γ∗[Λi]

′)

= exp(−γ∗(Λi − Λc∗)) ([0 0 (Λi − Λc∗) − γ∗ 0 0 0 0]M + γ∗[Λi]
′)
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= exp(−γ∗(Λi − Λc∗)) ((Λi − Λc∗)Mγ∗ − γ∗MΛc∗ + γ∗[Λi]
′) .

The form of [vi]′ presented in the theorem follows directly after noticing that

exp(−γ(Λi − Λc)) = (1− vi). The form of [Λi]
′ follows in turn from term-by-term partial

differentiation since it is C1:

[Λi]
′(p∗,λ; (M,Xλ)) =

∂Λi

∂p
M +

∂Λi

∂λ
Xλ(t)

=

(
n∑

j=1

[
∂Wij

∂d0

∂Wij

∂δ

]
λj

)Md0

Mδ

+

(∑
j

WijXλj

)
.

Following a similar path as our previous analysis in Chapter 4, we hard-coded the

slmax function and implemented the nonsmooth sensitivity system 5.6 alongside initial

conditions (5.7) and the riot model itself (5.1) in the ode45 solver of MATLAB on the time

horizon [t0, tf ] = [0, 44]. Our simulation included 1287 sites which are each described by a

pair of state variables; in addition, the sensitivities of each state variable are described by 8

sensitivity functions (i.e., one for each parameter present in the model). The simulation

itself therefore required the simultaneous solving of (1287× 2) + (1287× 2× 8) = 23, 166

fully coupled equations. This process yielded the numerical solutions of the LD-sensitivity

functions (Xσ,Xλ); these results are then right-multiplied by M−1 in order to determine

the lexicographic forward-parametric sensitivity functions (Sσ,Sλ) via Equation (3.6).

Different choices for the directions matrix M were also explored in the form of seven

successive circular right-shifts of the identity matrix, which in turn gave lexicographic

preference to each unit coordinate direction in parameter space. Unfortunately, limitations

imposed by the runtime of the simulation prevented the analysis of a greater number of

options for M, though in each case studied we found that simulation results were identical

beyond small numerical discrepancies.

Relative sensitivities are again explored here for the purpose of easier comparison

between the effect of parameters — however, due to the tendency of rioting behavior to
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return to a basal value of 0 over time, the relative sensitivities in the spirit of Equation

(4.10) are unsuitable for this model due to the presence of the state variable in the

denominator (i.e., the relative sensitivity functions may tend to infinity). To counter this

issue, we scaled the resulting sensitivity functions in the following way:

Ŝσi
(t) = Sσi

(t)� 1
σi(t)
(p∗)T

+ 1
;

Ŝλi
(t) = Sλi

(t)� 1
λi(t)
(p∗)T

+ 1
,

(5.10)

where the addition of 1 to each state variable avoids infinite behavior resulting from

division by said variables tending to zero. (Note that in the absence of this addition, these

functions would simplify to a form which mirrors that in Equation (3.6).)

The relative lexicographic sensitivity functions associated with the state variables,

activation function Ψi, and “global activity” function Λi within Clichy-sous-Bois (the

initial site of rioting, INSEE 93014) are found in Figure 5.2. Note that at t = t0 = 0, the

global activity Λi (i.e., Equation (5.2)) as seen from Clichy-sous-Bois must be greater than

or equal to λ∗ since the term Wiiλi = λ∗ in this case and Wij, λj ≥ 0 in general;

furthermore, since λ∗ is greater than the threshold parameter Λc, we find that the output

of the nonsmooth activation function (5.4) is nonzero starting at t = t0 and hence the

bandwagon effect is immediately established. The vertical lines appearing on plots in

Figure 5.2 represent the time at which the activation function (5.4) switches its output to

zero at after approximately 24.69 days of activity.

The sensitivity results found in Figure 5.2 establish several parameters as the most

influential within the site. The removal rate from the riot, ω, is the most dominant within

the dynamics of riot activity λi. The sensitivity function Sω
λi

is (mostly) negative, meaning

an increase in the removal rate yields a predicted decrease in rioting activity for fixed time

t, as intuition would suggest here. To a lesser extent the riot susceptibility parameter η,

which describes the saturating probability that a susceptible member of the population

joins a large riot, plays an opposing role in these dynamics: early in the time horizon, Sη
λi

is
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Figure 5.2: Simulations of the lexicographic sensitivity functions (Sλi
and Sσi

) and relative
lexicographic sensitivity functions (Ŝλi

and Ŝσi
) for initial rioting site Clichy-sous-Bois.

Sensitivity functions for the “global activity” function Λi and activation function Ψi are
also given. Vertical lines correspond to time t = 24.69 days at which the activation function
Ψi reverts to an output of 0 [2].

large and positive, indicating that an increase in this parameter would grow the riot itself

quickly. Meanwhile, η seems to also be the most influential parameter on the reservoir of

events σi. Here, however, the negative sensitivity function Sη
σi

suggests that an increase in

population susceptibility would result in a sharp decrease in the number of rioting events

within the reservoir (indeed, due to the increase in riot size discussed above). The relative

sensitivity functions convey a largely similar story, while also manifesting the relative

importance of the initial value parameter λ∗ for early times in the horizon; the influence of

this parameter diminishes over time, as expected. Notably, sharp changes in sensitivity are

observed in the activation function Ψi as its output changes to zero, with the L-derivative
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approach capturing this sharp behavior as the threshold is crossed. Further analysis

establishes the characteristic distance d0 as influential within the global activity function

Λi and within Ψi, though this large influence is apparently not translated to the larger

scope of the state variables σi, λi themselves.

Figure 5.3 communicates analogous results for the municipality of Saint-Denis (INSEE

93066), which hosts the largest reference population (i.e., 16-24 year old males without a

diploma) of any individual municipality in the Íle-de-France region and is located directly

outside of Paris (only approximately 15 km/9.3 mi from the initial rioting site

Clichy-sous-Bois). We first note that the influential parameters within Clichy-sous-Bois, η

and ω, play largely similar roles here (note their similar qualitative behaviors between

Figures 5.2 and 5.3 despite the change in scale). It is notable, however, that the effects of

the parameters d0 and δ — the parameters appearing in the weightings Wij (5.3) within

the global activity function Λi — are magnified here to a large extent. This behavior is

representative of the other most active sites, with weightings only playing a large relative

role outside of the initial site itself.

In order to gain a more well-rounded view into the sensitivities of the riot dynamics

throughout the country, we chose three more sites with unique qualities (in addition to

initial site Chichy-sous-Bois and most populous site Saint-Denis) for direct comparison:

Tartre-Gaudran (INSEE 78606, which hosts the smallest reference population of only

approximately 1 person), Livry-Gargan (INSEE 93046, which borders Clichy-sous-Bois),

and Fontaine-Fourches (INSEE 77187, which is situated farthest from Clichy-sous-Bois).

The rioting activity λi for each site on the time horizon [t0, tf ] = [0, 14] is shown in Figure

5.4 alongside the respective relative sensitivities Sλi
, while the geographic location of each

participating site can be observed in Figure 5.5b.

Rioting activity reaches its height in the populous municipality of Saint-Denis, while

rioting activity is almost completely negligible in the distant site of Fontaine-Fourches and

the largely uninhabited site of Tartre-Gaudran. The scale of their respective sensitivities
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Figure 5.3: Lexicographic sensitivity functions and relative lexicographic sensitivity functions
for the populous site of Saint-Denis [2].

reflects this, with Saint-Denis possessing the largest observed magnitude of sensitivity to

any parameter by a large margin. The sensitivities observed in the site of Livry-Gargan

closely mirror the qualitative behaviors exhibited in Saint-Denis and is typical of other

active sites as well; the sensitivities observed in Clichy-sous-Bois, on the other hand,

remain unique due to the effects of the initial triggering event.

With the goal of again expanding the scope of our analysis in order to visualize the

influence of parameters across all 1287 sites present in the model, we now consider the

metric

‖Ŝpj
λi
‖1 =

∫ tf

t0

|Ŝpj
λi
(t)|dt,
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Figure 5.4: Riot activity and relative riot lexicographic sensitivity functions for the 5 distinct
sites [2].

which allows the characterization of the total overall (relative) influence of parameter pj to

the rioting activity appearing within site i over the time horizon [t0, tf ] = [0, 44]. This

metric was calculated in each site with respect to the four key parameters highlighted so

far: ω, η, d0, and δ. Results were then provided to a routine employing the Mapping

toolbox of MATLAB in conjunction with geographic data from the collaborators at

OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from

https://www.openstreetmap.org) in order to generate the heat maps presented in

Figures 5.5c to 5.5f. Within these figures, lightly-shaded municipalities displayed low

overall sensitivity to the parameter at hand, while heavily-shaded municipalities

experienced high levels of overall sensitivity. Noting that Clichy-sous-Bois is located

north-of-center within the region and just northeast of Paris, it is reasonable that the
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largest sensitivity metrics ‖Ŝpj
λi
‖1 depicted here are predominantly concentrated in this area

for each parameter studied due to large reference populations Ni and direct proximity to

the initial riots. The maximum overall sensitivity in any site is observed with respect to ω,

though the relative absence of any heavily-shaded municipalities outside the Paris area in

Figure 5.5b indicates that inter-municipal relative sensitivity to ω is highly variable across

the region. In contrast, region-wide sensitivity to d0 (for example) is more uniform, but the

maximum overall sensitivity observed with respect to this parameter clearly falls short of

that exhibited by ω (noting the differences in scale between Figures 5.5c and 5.5e).

We proceed by attempting to quantify the apparent contrasts between the scale and

variance of region-wide sensitivity to different parameters. To do this, we average the

metrics Ŝpj
λi

across the region with respect to each parameter via

µj =
1

n

n∑
i=1

‖Ŝpj
λi
‖1. (5.11)

The region-wide standard deviation of Ŝpj
λi

with respect to each parameter pj is calculated

via a similar method and is expressed as SDj. The results of these calculations are given in

Figure 5.6.

Ultimately, this analysis solidifies ω as the most influential parameter on average to

rioting activity across the region, though it also highlights the high standard deviation

experienced between municipalities. Clichy-sous-Bois, for example, experiences high

relative sensitivity to ω (recall Figure 5.2), though SDω remains high due to the emergence

of other more locally influential parameters such as d0 in other sites (recall, e.g., Figure

5.3). On average, the distance parameters d0 and δ are the second and third most

important parameters, respectively, though each also exhibit high standard deviation

across the region as well. Moderate region-wide is enjoyed by the parameters η, γ, Λc, and

λ∗, while parameter ε0 is insignificant at large.

Perhaps most surprising among these results is the relative unimportance of the

threshold parameter Λc. Recall the results of Chapter 4.2, in which we formulated the basic
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(a) 12 most active municipalities. (b) 5 distinct municipalities.

(c) ‖Ŝpj
λi
‖1 for pj = ω. (d) ‖Ŝpj

λi
‖1 for pj = η.

(e) ‖Ŝpj
λi
‖1 for pj = d0. (f) ‖Ŝpj

λi
‖1 for pj = δ.

Figure 5.5: Heat maps of ‖Ŝpj
λi
‖1 across Île-de-France [2].

variation of the minimal model of glucose-insulin kinetics. The threshold parameter p6

describing the blood-glucose concentration at which insulin began to be secreted was shown

to be highly influential in, e.g., Figure 4.2b. In the present model, Λc behaves in a similar
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Figure 5.6: Parameter influence measures across Île-de-France [2].

way, now describing the threshold global activity which mobilizes the bandwagon effect

(and hence growth of a site’s rioting activity). Since the crossing of this threshold

influences the very spread of the riot itself, it is surprising that it is not more important

overall (in the spirit of, e.g., the minimal model’s p6 discussed above). This becomes more

clear upon closer analysis of the initial state of Λi across all sites, as it turns out that the

particular reference values outlined in Table 5.1 induce a total of 22 different sites

(including Clichy-sous-Bois itself) to satisfy the inequality Λi > Λc at t0 = 0. Thus, the

bandwagon effect is immediately in effect in these sites, with small perturbations in Λc

likely not preventing this widespread initial riot growth. Hence, the predicted influence of

Λc as a whole is relatively small on average.

5.4 Discussion

The work of Bonnasse-Gahot et al. [12] proposing a model capable of replicating riot

dynamics is a milestone in the study of social contagions, and was supported by a

compilation of a comprehensive dataset allowing model verification against the 2005 French

riots. Part of the model’s utility comes in the ability to replicate riot dynamics at multiple

scales or levels of granularity (e.g., between cities or between larger regions) — a feature
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which is expanded on in [12] with few adjustments to the model (5.1). In [2], the paper

which forms the foundation of the present chapter, we considered multiple levels of

granularity in the model and even performed a non-local sensitivity analysis at the

municipality scale using parameter values sampled from a Latin Hypercube Sampling

scheme — in essence, allowing us to perform a full-scale lexicographic sensitivity analysis

with many qualitatively different choices of reference parameters and then compare the

resulting model behavior. In each case, the parameters ω, η, d0, and δ were routinely the

most influential, with the rankings of relative importance largely following a similar

behavior as that discussed within the local analysis of the municipality-scale model in the

preceding section. With this in mind, we suggest that our results here are not limited to

the 2005 French riots on which [12] is based, and that our analysis may have more general

implications.

Since the removal rate ω seems to be the most influential parameter in general, it

should be the primary focus in any efforts to curtail the growth or spread of rioting

behavior (via, e.g., focused political action in the area). Efforts to adjust other influential

parameters such as the susceptibility parameter η should also be considered, though the

reference value of η in particular will likely change from riot to riot based on levels of social

tension associated with, e.g., the triggering event, making certain subsets of the population

as a whole more or less likely to riot in response. Efforts to make adjustments could be

made via, e.g., media coverage or political action which appeases a significant portion of

the reference population, with potential issues arising if such efforts are made by autocratic

governments or against peaceful protests. Parameters such as the distance parameters d0

and δ seem less malleable in general, meaning that while influential, it is unclear how

real-world adjustments could be made. Similar difficulties may be seen in attempts to

adjust other parameters such as γ and ε0, which suffer from overly abstract physical

interpretation. The heat maps found in Figure 5.5 also confirm the intuitive idea that any

efforts which are made in reducing riot spread should be focused in heavily populated areas
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and those nearby to the initial site of rioting, since parametric sensitivities are shown to be

highest in these areas.

One clear direction of future research involves the introduction of site-dependent

parameters to the model — for example, demographic or geographic considerations may

cause parameters such as ω, η, γ, or Λc to vary between sites (as alluded to in the

formulation of the model in Equation (5.1)). The challenge associated with this task is

primarily computational: for each new parameter introduced to the model, 1287 more

sensitivity equations are introduced to describe the sensitivity of each σi and λi present. In

a full-scale model, assuming site-dependent ωi, ηi, γi, and Λc
i , the LD-sensitivity system

associated with Equation (5.1) would be comprised of roughly 13.3 million fully-coupled

ordinary differential equations, making numerical solutions nearly impossible to furnish due

to computational limitations. More focused study in the topic of which parameters are

most likely to vary between municipalities may provide insight into which parameters

warrant a smaller-scale site-dependent sensitivity analysis. Another area of interest is the

analysis of rioting behavior in different countries or environments to see if similar results

are furnished.
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CHAPTER 6

CONCLUSION

In this thesis, we were motivated by the shortcomings of classical sensitivity theory

when applied in the context of mathematical models which incorporate switching behavior.

Such behavior typically results in the introduction of points of nondifferentiability within

the model at hand, invalidating classical derivative-based efforts to characterize parametric

sensitivities. Recent developments in nonsmooth analysis, however, have been shown to be

useful in efforts to extend sensitivity theory into the nonsmooth case.

We first discussed classical sensitivity theory, but noted it may fail when participating

ODEs are not C1; therefore, we introduced the Clarke Jacobian as an attractive generalized

derivative object which satisfies a number of useful calculus properties, but then showed

that it suffers from difficulties in computation in general. Closely related objects referred to

as lexicographic (L-)derivatives were then introduced and it was highlighted that they to lie

in or near the set-valued Clarke Jacobian, with the result of Proposition 3.5 implying that

L-derivatives are computationally relevant objects which can stand in for Clarke Jacobian

elements in dedicated numerical methods employing them. The existence of lexicographic

directional (LD-)derivatives enable the automatable calculation of L-derivatives within this

setting, however, circumnavigating the typical difficulties in Clarke Jacobian calculation.

After exploring the process of calculating LD- and L-derivatives in general, we discussed

how LD-derivatives can be employed in lexicographic sensitivity theory which is analogous

to classical theory but applicable to a much larger class of (nonsmooth) ODE systems.

Using the established lexicographic sensitivity theory, we then explored a pair of models

exhibiting nonsmoothness: a classic model of glucose-insulin kinetics and a

recently-developed municipal-scale model describing the spread of riots. In the variation of

the former meant to model a healthy individual, nonsmoothness arises from an effort to

model pancreatic behavior as a biochemical threshold is crossed and insulin secretion
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abruptly turns on and off. We presented the parametric sensitivities for this case which

have previously only been estimated using a smooth approximation to evade the

nonsmoothness inherently present in the model; by considering the case of a diabetic

subject as well, we also produced novel results regarding parametric sensitivities in two

distinct cases where insulin infusion is performed by an external device as opposed to the

pancreas. One of these considerations was nonsmooth (but PC1) in nature, warranting the

use of lexicographic sensitivity theory and allowing the automatable and accurate

calculation of the lexicographic sensitivity functions. Within our analysis of the nonsmooth

model of riot spread, we noted that the nonsmoothness arising from an effort to model the

sudden change in likelihood for a person to join a riot as the riot grows beyond a threshold

size again invalidates classical theory. By employing lexicographic sensitivity theory here as

well, we furnished the first known parametric sensitivity information associated with the

model.

Beyond the future directions for research associated with the minimal and riot models

themselves in Sections 4.4 and 5.4 respectively, there are also several future directions for

lexicographic theory as a whole. In general, the approach of using an LD-derivative (which

can be found using its sharp calculus rules) to calculate a corresponding L-derivative via

the relationship in Theorem 3.7 is systematic in producing a single element of the

lexicographic subdifferential. Recall that in both Chapters 4 and 5, however, many

different choices of directions matrix M were employed in the search for different resulting

lexicographic sensitivity functions (i.e., L-derivatives of ODE solutions) since the

lexicographic subdifferential may be a non-singleton set at points of nondifferentiability.

Despite the many choices studied, we found the same L-derivatives in each case, though

this need not hold in general. The ability to calculate more than one element of the

lexicographic subdifferential is therefore of interest and it is hoped that future study,

perhaps regarding a systematic approach to the choice of directions matrix M, will

guarantee different resulting L-derivatives (and hence lexicographic sensitivity functions in
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future relevant applications). Another area of interest involves the explicit development of

a nonsmooth dynamic optimization algorithm in the spirit of [31] for the models explored

in this thesis or other relevant examples. One pertinent such example involves the insulin

infusion term u appearing in the Hovorka model of glucose-insulin kinetics [26]. This input

was a previous candidate for dynamic optimization in [26], and so results arising from a

lexicographic approach could be compared to (or improve on) existing results. We also note

that lexicographic sensitivity theory has great potential within the analysis of other many

other nonsmooth models in mathematical biology, such as those describing sharp behavioral

changes in predator-prey dynamics or the spread of disease, and hope that the approach

outlined and employed within this thesis will serve as a foundation for future studies.
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